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Abstract—With the increasing diversity and complexity of
cyber attacks on computer networks, there is a growing demand
for Intrusion Detection Systems (IDS) that can accurately
categorize new unknown network flows. Machine learning-
based IDS (ML-IDS) offers a potential solution by learning
underlying network traffic characteristics. However, ML-IDS
encounters performance degradation in predicting the traffic
with a different distribution from its training dataset (i.e., new
unseen data), especially for attacks that mimic benign (non-
attack) traffic (e.g., multi-stage attacks). Diversity in attack
types intensifies the lack of labeled attack traffic, which leads to
reduced detection performance and generalization capabilities
of ML-IDS. The generalization refers to the model’s capacity
to identify new and unseen samples, even in cases where their
distribution deviates from the training data used for the ML-
IDS. To address these issues, this paper introduces SSCL-
IDS, a Self-Supervised Contrastive Learning IDS designed to
increase the generalization of ML-IDS. The proposed SSCL-
IDS is exclusively trained on benign flows, enabling it to
acquire a generic representation of benign traffic patterns and
reduce the reliance on annotated network traffic datasets. The
proposed SSCL-IDS demonstrates a substantial improvement in
detection and generalization across diverse datasets compared to
supervised (over 27%) and unsupervised (over 15%) baselines
due to its ability to learn a more effective representation of
benign flow attributes. Additionally, by leveraging transfer
learning with SSCL-IDS as a pretrained model, we achieve
AUROC scores surpassing 80% when fine-tuning with less than
20 training samples. Without fine-tuning, the average AUROC
score across different datasets resembles random guessing.

Index Terms—Network Intrusion Detection System, Machine
Learning, Self-Supervised Learning

I. INTRODUCTION

Nowadays, nearly two-thirds of the global population has
access to the Internet, highlighting how deeply intertwined
it has become in our daily lives [1]. Nevertheless, this
widespread connectivity has also led to a notable increase in
cyber attacks, doubling over the past five years, from 2018
to 2023 [1]. A recent study [2] revealed that 80% of security
breaches stem from zero-day attacks, which are distinguished
by their lack of prior information or defenses (i.e., unseen and
unknown attacks). These attacks incur an average cost of 1.2
million per incident [2]. This underscores the severity of the

threat posed by zero-day attacks and the need for a network
Intrusion Detection System (IDS) capable of detecting them.

Traditional signature-based IDSs are restricted to identi-
fying known attacks stored in their databases. Consequently,
they exhibit shortcomings in detecting zero-day attacks or
any attack that is not stored in their databases [3]. Conversely,
anomaly-based IDSs, leveraging Machine Learning (ML)
models, can discern statistical patterns in network traffic,
enabling the classification of unseen flows with similar (not
exact) patterns.

Supervised ML models can be used in IDSs to learn the
relationship between statistical features of flows and ground-
truth labels (Attack/Benign), which exhibit high detection
performance. However, in practical scenarios, the availability
of labeled network traffic is often limited, demanding exten-
sive human involvement for labeling, which can be infeasible
in certain cases [4]. On the other hand, unsupervised learning
models (e.g., autoencoders) can address the network intru-
sion detection task without annotated data by reconstructing
network traffic and learning its abstract features. However,
these models are limited to learning features that are relevant
to the categorization of the training data, which may restrict
their detection capability to flows resembling the training data
distribution [5].

In real-world scenarios, the evolving network architecture,
varied network management rules, and the availability of new
technologies (e.g., Internet of Things) can lead to diversified
traffic pattern distributions [6], [7]. Additionally, there has
been the emergence of new attack types, such as Multi-stage
Attacks (MSA), botnets, and SlowDoS attacks, which can
mimic benign flow behaviors, rendering them difficult to
detect, particularly when ML models were not specifically
trained to recognize them [8], [9].

Accordingly, there is a possibility that new, unseen flows
(including zero-day attacks) originate from a distribution dis-
tinct from what the ML models were trained on. Therefore,
assessing the ML-IDS’s ability to detect new, unseen flows,
regardless of whether they have the same distribution as the
training data or not, is a crucial metric commonly referred to
as the ML model’s generalization [10], [11]. To address the
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challenge of reduced generalization of detection performance
in ML-IDS when dealing with diverse and unseen flows, it’s
essential to develop an ML model that can effectively discern
abstract representations of flow statistical features.

Self-Supervised Learning (SSL) serves as an unsupervised
learning approach that addresses the need for labeled data
in supervised learning models by extracting meaningful rep-
resentations from extensive unlabeled datasets. Additionally,
SSL models enhance the generalization capability of unsuper-
vised models by learning higher-level semantics and thereby
obtaining more robust representations from the training data
[12]. In SSL, for each sample, a label is automatically
generated using its content. This label is utilized to minimize
objective functions referred to as pretext tasks. These pretext
tasks aim to learn a useful representation of data that can
subsequently undergo fine-tuning for specific tasks, such
as classification [13]. One of the well-known pretext tasks
is contrastive learning, which aims to increase the mutual
information between the representation of similar samples
known as positive pairs [14]. Recently, contrastive methods
have been used widely in computer vision and the natural
language processing domain [13].

In this paper, we introduce a framework called Self-
Supervised Contrastive Learning-IDS (SSCL-IDS), which
learns a generic representation of benign traffic. Figure 1
demonstrates the general architecture of the proposed SSCL-
IDS. To extract the abstract representation of benign flows,
we employ a technique where a subset of features from the
anchor (original sample) is masked with their corresponding
empirical marginal distribution to generate another view
of the benign flow, termed its positive pair. Subsequently,
leveraging a contrastive approach, the model is trained to
minimize the distance between the anchor and its positive
sample while maximizing the distance with other samples.
The proposed SSCL-IDS enhances the generalization capa-
bilities of the ML-IDS, thereby improving detection per-
formance on unseen and sophisticated attacks, including
MSA and slow-rate attacks. Moreover, it reduces the need
for annotated network intrusion traffic. Furthermore, the
knowledge obtained by SSCL-IDS can be transferred to a
similar network intrusion classification task, particularly in
scenarios where labeled network traffic samples are scarce.
This technique, referred to as transfer learning, involves
transferring learned representations from one model to an-
other task. The model’s adaptability is greatly enhanced
by integrating transfer learning, enabling it to effectively
detect emerging network intrusions and improve detection
performance across diverse network traffic datasets.

In summary, the main contributions of this paper are as
follows:

• We present SSCL-IDS, a model that exclusively utilizes
benign flows and effectively addresses the scarcity of
labeled attack flows. We apply two distinct corruption
masks on both anchor and positive pairs to encourage
the model to tackle a more challenging pretext task.

• We conduct a thorough evaluation of SSCL-IDS’s ability
to generalize across diverse datasets, considering poten-
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Fig. 1: The general architecture of the proposed SSCL-
IDS with three main modules, including (1) preprocessing
pipeline, (2) data augmentation, and (3) model training.

tial differences in their distributions.
• Demonstrating the efficacy of pretraining with SSCL-

IDS, we exhibit results in transfer learning scenarios
when dealing with a limited number of flow samples.

The paper is structured as follows: Section II introduces
related works. Section III provides a brief overview of
necessary background information. Section IV explains the
architecture of the SSCL-IDS. In Section V, we conduct
a comprehensive evaluation from different perspectives. Fi-
nally, in Section VI, we conclude this work.

II. RELATED WORK

This section is divided into two categories of related works,
including methods that improve the generalization using
supervised ML models and ones that use SSL approaches.

A. Generalization Using Supervised ML-IDS

In [15], the authors designed a multi-aspect ensemble fea-
ture selection method to extract the most relevant features and
improve the generalization of supervised ML-IDS. However,
in their study, they could achieve good results from the
datasets with similar attacks that have similar distributions.
In [16], the optimization of hyper-parameters for supervised
learning models was explored to enhance ML-IDS gener-
alization. The study demonstrated the impact of dataset pre-
processing and modifying the hyper-parameters on achieving
higher detection performance. However, given the evalua-
tions, which are limited to attacks from a single dataset, it
is inferred that the improvements are targeted explicitly at
intra-dataset generalization and detection performance. The
authors in [10] explored the intra-dataset generalization of
supervised ML-IDSs. They leveraged ensemble methods to
improve generalization, constructing a pipeline comprising
12 supervised ML models from diverse categories.

The research results demonstrate that using the mentioned
methods, it is possible to improve only the intra-dataset
generalization of the supervised learning ML-IDS, which
means that benign and attack samples are derived from either
the same dataset or a dataset with a similar distribution.

B. Generalization Using Self-Supervise Learning

In [17], the authors used Graph Neural Networks (GNN)
to capture flow features, including valuable network-related
and edge information. They developed an SSL approach to
improve ML-IDS detection generalization. Node auxiliary
labels are extracted based on traffic volume, labeling nodes
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with high traffic as suspicious. However, this approach may
only effectively detect volumetric attacks. Authors in [18]
developed an ensemble feature selection approach to dis-
tinguish attack flows from benign ones utilizing anomaly
identification, clustering, and classification. Furthermore, to
learn the characteristics of benign and attack flows, they used
a contrastive learning approach to maximize the distance
between benign-attack pairs while minimizing the benign-
benign and attack-attack pairs. To this aim, they trained
their models using both benign and attack information. In
[19], a supervised contrastive learning approach is conducted
to perform the distance between features and labels in the
shared embedding space. In this case, the sample features
should be close to its ground-truth label (positive pair) while
having a higher distance from the other labels (negative
pairs). Therefore, ground-truth labels are required to create
positive and negative pairs. Similarly, [20] employed a su-
pervised contrastive learning approach to tackle imbalanced
and constrained feature extraction capability issues. In this
process, they used the dropout layer’s randomness in the
encoder for data augmentation, and the label information was
utilized to establish positive/negative pairs. The authors in
[21] aimed to overcome the limitation of lacking traffic labels
by developing a self-supervised contrastive learning method.
Their framework generated positive pairs by masking random
packets within a flow. However, as indicated by [22], the
data in the initial packets can have important statistical
features; therefore, masking them could result in information
loss. This approach was trained using both benign and
attack flows. In this regard, authors in [5] introduced a
self-supervised contrastive learning model in which the flow
array was transformed into two-dimensional vectors, and
various image-related augmentations, such as horizontal flip,
vertical flip, random crop, and random shuffle, were applied
to create positive/negative pairs. However, employing image
augmentations on flow data points may generate semantically
different pairs. Similar to [17], authors in [23] extracted
features from each node using GNN. However, unlike [17],
this work trained the SSL model in unsupervised settings.
They used the random selection of the K neighbors of
each node to create positive pairs. In this case, they masked
information from some neighbors.

III. BACKGROUND CONCEPTS
This section briefly introduces SSL and transfer learning,

along with the network traffic datasets used for training and
evaluating the proposed SSCL-IDS.

A. Self-Supervised Learning (SSL)

In contrast to traditional unsupervised learning models that
focus on learning the input data distribution, SSL models
optimize pretext tasks by leveraging inherent properties and
content of the data [13]. An example of pretext tasks includes
recovering masked parts of a sample or assigning the same
label to different augmentations of the sample [14]. There-
fore, SSL has advantages, particularly when dealing with
real-world data that lacks labeled annotations (e.g., network
traffic). The SSL model can learn useful representations of

the data, which can further be used for different tasks, such as
transfer learning when few labels are available. The pretext
task in the contrastive method is defined by maximizing a
similarity score between similar samples (i.e., positive pairs)
while minimizing it for samples with different semantics (i.e.,
negative pairs).

B. Transfer Learning

Transfer learning is a machine learning technique that
utilizes knowledge from one domain (source) or task to
another (target). It is mostly used when the target task has
a limited amount of annotated data available [24]. Transfer
learning has been extensively used in the computer vision
and NLP domain, where weights of an ML model pretrained
on the source dataset are used for prediction tasks on the
target dataset [25]. Note that the pretraining can be both with
or without label supervision from the source dataset. In this
paper, we use contrastive SSL for the pretraining task.

C. Datasets

In this work, we utilize five distinct network traffic datasets
to train and evaluate our proposed SSCL-IDS. The selection
of datasets is based on the availability of their traffic data
in PCAP format and the diversity of attacks they encompass
(contains MSA, and slow-rate attacks). In the following, a
brief explanation of each dataset is provided.

1) CICIDS2017 Dataset [26]: This dataset encompasses
benign traffic captured by the abstract behavioral profiles of
25 users through protocols such as HTTP, HTTPS, FTP, SSH,
and email. In addition to benign traffic, the dataset contains
various types of attack traffic, including Web Attack, Infil-
tration, Botnet ARES, Brute Force, DoS, DDoS, SlowDoS,
and Port Scan.

2) UNSW-NB Dataset [27]: This dataset consists of real
benign traffic and synthetic attack behaviors collected in a
controlled environment. The attacks are Fuzzers, Exploits,
Worms, Shellcode, Backdoors, Reconnaissance, and DoS
attacks.

3) CTU-13 Dataset [28]: This dataset consists of 13
scenarios of the botnet, benign, and background data. Benign
traffic was extracted from university routers to represent real
users’ behavior. Each of the 13 botnet scenarios, Neris, Rbot,
Virut, Menti, Sogou, Murlo, and NSIS.ay, is constructed to
represent various malware behaviors.

4) CICDoS Dataset [9]: This dataset is designed to detect
slow-rate DoS attacks. These attacks were combined with
another dataset (ICSX 2012), which consists of high-rate
DoS attacks. The attacks that are available in this dataset
are Goldeneye, ddossim, hulk, Slowhttptest, RUDY, and
Slowloris.

5) Botnet Dataset [29]: This dataset is designed to focus
on generality, realism, and representativeness by incorporat-
ing diverse centralized and decentralized botnets utilizing
various protocols. It comprises 16 botnets characterized by
varying lifespans, accommodating both short and long-lived
instances to enhance realism.
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IV. SSCL-IDS METHODOLOGY

A. Problem Formulation

This section aims to explain the generalization challenge
encountered in developing an ML-IDS. Initially, in Section
III-C, we provided an overview of the datasets, character-
ized by various attack types and extracted from different
network architectures, each of which can exhibit distinct
behaviors, thereby indicating different distributions of func-
tional flow features. To formalize this challenge, we define
Ds = {Xs, Ps(x), x ∈ Xs} as the source dataset and
Dt = {Xt, Pt(x), x ∈ Xt} as the target dataset. Due to
potential differences in network types, service types, and
data collection methods between the two datasets, their
feature spaces (Xs and Xt) and probability distributions
(Ps(x) and Pt(x)) may vary. The generalization problem
arises when an ML model f is trained on Ds using a
learning algorithm A to minimize a loss function L, yet
its performance may significantly degrade on Dt, resulting
in Performance(f,Ds) ̸= Performance(f,Dt). This
performance discrepancy signifies the presence of the gen-
eralization problem, wherein the model’s efficacy on the
training dataset fails to generalize well to a test dataset.

B. Proposed SSCL-IDS Framework

To improve the generalization of the ML-IDS and address
the lack of labeled attack data, we propose the SSCL-IDS,
which trains on only benign flows. As illustrated in Figure
1, the SSCL-IDS architecture comprises multiple modules,
such as traffic preprocessing, data augmentation, and model
training, which are explained further in the following.

1) Flow Scope & Preprocessing Pipeline: In the pro-
posed SSCL-IDS, traffic flows are uniquely identified using
their 5-tuple information, including source and destination
IP addresses, source and destination port numbers, and the
protocol type. To capture the statistical features of network
flows, we utilize NFStream [30], a Python framework that
can extract post-mortem and statistical flow features. The
extracted features (88 features) are grouped into three cat-
egories: source to destination (src2dst), destination to source
(dst2src), and bidirectional, encompassing packets moving in
both src2dst and dst2src directions. Ground-truth labels are
assigned based on information regarding victim hosts and
attacker IP addresses provided by each dataset. To prevent
information leakage, we implement a preprocessing pipeline
across all datasets, which eliminates architecture-based fea-
tures (5-tuple features) and all time-related features except
for duration because these features could potentially reveal
specific information about the network from which the traffic
data originated. Additionally, features with a zero standard
deviation are filtered out from the feature set because they
cannot be informative. Following the preprocessing pipeline,
the dataset comprises 45 features.

2) Data Augmentation - Corruption Mask: In SSL
methods, augmentation generates additional training data by
applying different transformations (here, we use a corruption
mask) to the existing training data [13]. In SSCL-IDS, to
create a positive pair (i.e., semantically similar samples), an

augmented view of an anchor (original sample) is generated
by incorporating the content of the sample. Each augmented
sample represents a variant of the anchor sample with subtle
differences, preserving essential semantic information. This
approach ensures the creation of meaningful pairs for effec-
tive contrastive learning. In this work, to generate a positive
pair, we randomly apply a corruption mask with two different
corruption rates of Cp and Ca to two subsets P and A of
the anchor’s features. These subsets are randomly selected
from the original set of features F = {f1, f2, ..., fM}, where
|P | = Cp × M and |A| = Ca × M respectively. The
value of the jth corrupted feature f̂j is selected uniformly
from the empirical marginal distribution of fj ; hence f̂j ∼
Uniform(fj). The marginal distribution of each feature is
initially calculated for the entire network traffic dataset. The
method of extracting the value of the corrupted feature from
the marginal distribution aligns with the structure of traffic
flow features, which often includes diverse numerical scales
and types. Integrating the positive corruption rate provides
control over the dissimilarity among positive pairs. Larger
values can alter all feature values, whereas smaller corruption
rates only affect a limited subset of features. This results in
a more straightforward optimization task and a less robust
learned representation.

3) Model Architecture: In the proposed SSCL-IDS
method, positive pairs created for a training sample are
passed to an MLP-based encoder g with five hidden layers
comprising 45, 64, 128, 64, and 45 neurons. The encoder’s
output is then fed through the head network h, including a
projection head followed by a normalization layer, to prepare
the features for calculating the contrastive loss (Figure 1).
Note that for inference, the output of the encoder g is used
for all the similarity calculations as well as fine-tuning in
transfer learning tasks. Additionally, as shown in Figure 1,
the encoder and projection head weights are shared to ensure
the model learns consistent representations across different
views of the same input.

4) Contrastive Loss Function: To encourage minimizing
the distance between similar representations for positive pairs
(zi, ẑi) while maximizing the distance between dissimilar
representations for negative pairs (zi, zj), we use the NTXent
(Normalized Temperature-scaled Cross-Entropy) loss func-
tion as formulated in equation 1 [13].

NTXent(zi, ẑi) = − log

(
exp (sim(zi, ẑi)/τ)∑2N
j=1 exp (sim(zi, zj)/τ)

)
(1)

where (zi, ẑi) refers to the representations of positive pairs
while (zi, zj) refers to the presentations of the anchor and
all the other samples in the mini-batch. Also, τ is the
temperature parameter that scales the logits before applying
the softmax activation function. It controls how close the
similar data points should be. The smaller τ value leads to a
higher penalty, thereby making the model place semantically
similar data points closer to each other.

Algorithm 1 shows the proposed SSCL-IDS, including its
corruption mask procedure, the output of encoder and head



Pegah Golchin, Nima Rafiee, Mehrdad Hajizadeh, Ahmad Khalil, Ralf Kundel, Ralf Steinmetz. SSCL-IDS: Enhancing Generalization of
Intrusion Detection with Self-Supervised Contrastive Learning. To appear in Proceedings of the International Federation for Information

Processing (IFIP) Networking Conference, 2024.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the

authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

models, and how to incorporate these elements into the loss
function.

Algorithm 1 SSCL-IDS Algorithm

1: Input: Training data X ⊆ RM , Batch size N , tempera-
ture τ , anchor corruption rate Ca, positive pair corruption
rate Cp, encoder network g, head network h

2: ta = ⌊Ca ×M⌋
3: tp = ⌊Cp ×M⌋
4: B = {1, ...,M}
5: for sampled mini-batch {xi}Ni=1 do
6: for all i ∈ {1, ..., N} do
7: Ai: uniformly sample subset from B of size ta
8: Pi: uniformly sample subset from B of size tp
9: sample j uniformly from {1, ...,M}

10: if j /∈ Ai then ▷ Process of corrupting anchor
11: aji = xj

i ▷ Non-corrupted jth feature
12: else
13: aji = xj

k, where xk ∼ Uniform(X )
14: ▷ Corrupted jth feature
15: end if
16: let z2i−1 = h(g(ai))
17: sample j uniformly from {1, ...,M}
18: if j /∈ Pi then ▷ Creating positive sample
19: pj

i = xj
i

20: else
21: pj

i = xj
k, where xk ∼ Uniform(X )

22: end if
23: let z2i = h(g(pi))
24: end for
25: for all i ∈ {1, ..., 2N} and j ∈ {1, ..., 2N} do
26: si,j =

zT
i zj

(∥zi∥∥zj∥)
27: end for
28: let l(i, j) = − log esi,j/τ∑2N

k=1 ⊮k ̸=ie
si,k/τ

29: LSSCL = 1
2N

∑N
k=1⟨l(2k − 1, 2k) + l(2k, 2k − 1)⟩

30: end for

V. EVALUATION RESULTS

We evaluate the proposed SSCL-IDS on five different net-
work traffic datasets explained in Section III-C. Additionally,
we compare the generalization performance of the SSCL-
IDS with two selected supervised and unsupervised baselines.
Generalization performance refers to the model’s detection
performance on previously unseen samples from other net-
work traffic datasets that may have different distributions. To
perform the preprocessing and training, we utilize an Ubuntu
server equipped with 250GB RAM and 4 GPUs (NVIDIA
GeForce RTX 2080). The implementation is in Python, using
the Scikit-learn, Pandas, and Pytorch libraries.

We assess SSCL-IDS detection performance with AUROC
value, which is calculated across various thresholds (between
0 and 1), allowing us to evaluate the true positive rate against
the false positive rate. Note that the positive class corresponds
to the attack flows, while the negative class refers to the
benign flows.

A. Setup of Experiments

To assess SSCL-IDS and facilitate comparative analysis,
we briefly explain the designed baselines. Additionally, in
this section, we explain the training and test datasets and
the methodology for calculating the similarity metric in
unsupervised learning models.

1) Baselines: To conduct a comparison, we choose a
supervised ML model (Multi-Layer Perceptron (MLP)) and
an unsupervised ML model (AutoEncoder (AE)) as baselines.

• Unsupervised Setup: An AE model, consisting of an
encoder and a decoder, is known as an unsupervised
learning model, focusing on optimizing data reconstruc-
tion. To classify the flows using AE, the distance of the
new sample is computed from the embedded data, which
is the output of the encoder. In this work, the designed
AE model consists of a three-layer encoder including 64,
32, and 23 neurons and a three-layer decoder including
23, 32, and 45 neurons, which are selected using a cross-
validation approach.

• Supervised Setup: A deep MLP model is selected as
the supervised learning baseline. It consists of multiple
layers to learn the connections between features and
labels (Benign/Attack). To train this model, labeled data
for both benign and attack classes is required. In this
work, the designed MLP model comprises four layers
with 64, 128, 64, and 32 neurons, respectively, which
are selected using cross-validation approach.

2) Training Datasets:

• Training Dataset for SSCL-IDS & AE: The training
dataset used for unsupervised models of this work
includes 60% of only benign flows from datasets.

• Training Dataset for MLP: Training supervised learn-
ing models require annotated data. Therefore, the train-
ing dataset for the chosen supervised model consists of
60% of the attack flows from CICIDS17, along with
the training dataset used for the unsupervised models
(SSCL-IDS and AE).

3) Test Dataset: The test dataset used for all evaluations
includes 40% benign flows from each dataset that were not
part of the training set. Furthermore, it involves all the attack
traffic flows from all of the five datasets, which are entirely
unseen for the SSCL-IDS and AE models.

4) SSCL-IDS Training Hyper-parameters: Following
cross-validation on various hyper-parameters, a positive cor-
ruption rate of Cp = 0.4 is selected (the reason is discussed in
Section V-C). The τ of the NTXent loss function in Equation
1 is set to 0.5. The embedding dimension remains the same
as the original, i.e., ed = 45. Moreover, the SSCL-IDS trains
for 500 epochs on the batch size of bs = 2046.

5) Similarity Metric for Unsupervised Models: To eval-
uate the embedded data (as defined in Section V-A1) learned
by SSCL-IDS and AE, we compute a similarity score sim(.)
by calculating the cosine similarity between the embedding
vector gtest of test data xtest and embedding vector gm of
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TABLE I: Evaluating the detection performance of SSCL-
IDS and comparing it with baseline models, including an
unsupervised model (AE) and a supervised model (MLP).

Dataset AUROC Value (%)
SSCL-IDS Unsupervised Model Supervised Model

CICIDS17 96.54 70.79 97.25
CICDoS 87.73 72.71 57.14
CTU-13 99.85 77.61 72.77
Botnet 89.21 73.48 60.64
UNSW-NB 98.32 65.64 60.59

all training data and finally take the maximum one. This
calculation is performed using Equation 2.

sim(xtest) = max
m

(
gTtestgm

∥gtest∥∥gm∥
) (2)

According to Equation 2, it is possible to compute the
directional similarity between the embedded benign training
data and the embedded benign or attack data in the unseen
test dataset. The expectation is that attack samples will
exhibit a higher cosine similarity score, indicating that they
are oriented in a different direction compared to benign
samples.

B. Detection Performance of SSCL-IDS & Baselines

To evaluate the detection performance of the proposed
SSCL-IDS and baselines, including AE (unsupervised) and
MLP (supervised) models, the AUROC value is computed
(as defined in Section V). Table I demonstrates the detection
performance of these models across all five datasets. Ac-
cording to the results, the proposed SSCL-IDS demonstrated
better detection and generalization performance across most
datasets, except for the CICIDS17 dataset, where it achieves
the second-best result, closely trailing the supervised model
(MLP). It’s worth noting that the MLP was trained on
labeled data, where the model was exposed to the attack
samples of the CICIDS17 dataset (mentioned in Section
V-A2). However, training on labeled data may not entirely
reflect real-world conditions. The results of the supervised
model’s detection performance on the other datasets show its
generalization performance, which is the lowest, as expected.
On the other hand, the proposed SSCL-IDS model achieved
up to 27% better generalization performance compared to
the supervised model (among all datasets). Furthermore, the
SSCL-IDS outperforms the unsupervised model across all
datasets by up to 15%. We argue that the better generalization
of SSCL-IDS stems from differences in its learning processes.
In SSCL-IDS, contrastive learning encourages the model
to push together the representation of the samples with
similar semantics in the embedding space proven to learn
more effective signals of training data semantics [12], [13].
This approach enables the model to learn a more effective
representation of benign flows in the training data.

C. Impact of the Corruption Rate on Detection Performance

As explained in Section IV, the anchor corruption rate
(Ca) and positive pair corruption rate (Cp) are fundamental
in SSCL-IDS architecture. While Cp controls the similarity of
constructed positive pairs, Ca introduces additional noise to

Fig. 2: Impact of positive pair corruption rate (Cp) on
detection performance. The experiment is carried out over
three independent runs, and the figure depicts the mean value
and standard deviation for each dataset.

the original data, challenging the SSCL-IDS model, leading to
an improvement in its detection performance generalization.
Through our experiments, we observed that selecting Ca

greater than 0.2 reduces the model’s detection performance
due to excessive noise added to the original data. Therefore,
we set Ca = 0.2 for all evaluation results. Additionally,
varying the value of Cp influences the corruption of a larger
subset of features, generating dissimilar positive pairs and
impacting the optimization process. A higher Cp makes
the optimization task more challenging, while a smaller Cp

results in a less robust representation. Figure 2 illustrates
the impact of different Cp values on the final detection
performance, measured through AUROC values, with the
experiment conducted three times independently. According
to the findings presented in Figure 2, a Cp value of 0.4
consistently yields the highest detection performance across
all datasets. In contrast, a very small Cp value, specifically
Cp = 0.2, results in a lower AUROC value than Cp = 0.3
and Cp = 0.4. Therefore, we choose Cp = 0.4 as the optimal
corruption rate for the final evaluation results of SSCL-IDS.

D. t-Distributed Stochastic Neighbor Embedding (t-SNE)

In this experiment, we utilize the t-SNE, a dimensionality
reduction technique, to depict the embedding data generated
by the proposed SSCL-IDS in a lower-dimensional space
[31]. Furthermore, it can show the quality of the learned
embeddings, indicating how effectively the model has cap-
tured the underlying structure of the data. When similar
examples are clustered together in the t-SNE plot, it can
be understood that the proposed SSCL-IDS has successfully
captured relevant features and relationships within the data.
Figure 3 illustrates the t-SNE plot for both the raw data
and the embedded data (output of the SSCL-IDS) within
the CICIDS17 dataset. As shown, the data points of each
class (Benign/Attack) in the plot with embedded data are
closely grouped, with a more clear separation between classes
and fewer overlaps compared to when t-SNE is applied on
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Fig. 3: Comparing the embedded data from SSCL-IDS with
the raw data of the CICIDS17 dataset in a lower-dimensional
space. The output of SSCL-IDS (the right one) illustrates a
clear distinction between attack and benign data points.

raw data. This separation enhances the ability to distinguish
between attack and benign flows, contributing to improved
model detection performance.

E. Analysing the Generalization of Detection Performance

In the prior experiments (Sections V-B and V-C), we
assessed the generalization of SSCL-IDS detection perfor-
mance using 40% of unseen benign flows and all attack
data from each dataset. In this section, we expand our
evaluation to a more challenging scenario where the models
have been trained with benign flows of only one of the
datasets and evaluated with all datasets. The outcomes of
this scenario are depicted in Figure 4, with the upper figure
representing SSCL-IDS results and the lower figure depicting
the supervised model results. Comparing these two figures re-
veals an improvement in the generalization of the SSCL-IDS
compared to the supervised learning model. Hence, it demon-
strates that SSCL-IDS effectively learns the characteristics of
benign flows, leading to enhanced generalization in detection
performance. Nevertheless, as expected, the diagonal values,
which represent the AUROC values of a test set split from
the same dataset as the training set, are lower in SSCL-
IDS compared to the supervised learning model. This arises
because SSCL-IDS exclusively trains on the benign flows in
the training set, while the supervised learning model trains
on both benign and attack flows. Moreover, as illustrated in
Figure 6, we extend the evaluation to analyze how adding
different numbers of datasets (which only contain benign
samples) during training affects the detection performance of
SSCL-IDS. The number of datasets increases following the
sequence outlined in Table I. To clarify, the initial dataset
(One DS) is CICIDS17, with CICDOS added in the second
dataset (Two DS), and so on. As shown in Figure 6, the
AUROC value for each data set increases when it is included
in the corresponding training dataset. Notably, CICDOS
shows an increase in AUROC value when included in the
Two DS training, and a similar improvement is observed for
CTU13 in the Three DS training with the addition of its
dataset. Likewise, the detection performance of UNSW-NB
shows a high value when the SSCL-IDS is trained with all
datasets, including its training dataset. We argue that adding
more datasets with benign flows encourages the model to
learn a more generic understanding of the benign traffic, thus
enabling the use of transfer learning methods.

Fig. 4: Comparing the generalization performance of SSCL-
IDS (upper figure) with the supervised ML-IDS (lower fig-
ure). Both ML models are trained on one dataset and tested
on others.

F. Sample Efficiency of SSCL-IDS for Transfer Learning

Transfer learning, as defined in Section III-B, is a machine
learning technique that uses the knowledge of a pretrained
model to perform a new task in the case of labeled data
scarcity. In this section, our focus is on sample efficiency, par-
ticularly examining the number of labeled samples needed for
transfer learning when employing SSCL-IDS as a pretrained
model. To demonstrate the effectiveness of transfer learning,
we train an MLP model (with the same configuration as
outlined in Section V-A1) twice: once on raw data (RD) and
another time on the embeddings of the training data (ED)
generated by the pretrained SSCL-IDS.

To assess the sample efficiency for each dataset, labeled
samples are added incrementally to the training dataset
starting from the 10−5 portion of the original dataset size,
which consists of only 7 to 20 labeled samples (depending
on the dataset’s size). Figure 5 illustrates a comparison of
the detection performance using the pretrained SSCL-IDS
(embedded data) and when the model is trained on the
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Fig. 5: Comparing label efficiency for the benign/attack classification task, ’ED’ denotes embedded data, and training on
it shows the detection performance when transfer learning is employed. ’RD’ refers to raw data, and training on it reflects
supervised ML-IDS results.

raw data. As depicted in Figure 5, across all datasets, the
AUROC values show higher detection performance when
the MLP model is trained on the pretrained SSCL-IDS. The
gap is bigger when only a few labeled samples are used
for training. For instance, the detection performance for two
datasets CICDoS and UNSW-NB when training on less than
20 labeled samples of raw data is close to random guessing
(AUROC=50%) while using pretrained embeddings results
in AUROC values above 80%. Additionally, it is noteworthy
that higher detection performance is attained when utilizing
all labeled samples for training with pretrained SSCL-IDS
compared to training with raw data.

G. Comparing SSCL-IDS with SSL-based Related Works

In this section, we compare our proposed SSCL-IDS with
other SSL-based related work. This comparison is made
using their reported values. Consequently, variations in pre-
processing pipelines among different works may affect their
final results. Table II presents a comparison of supervised
SSL (first category) and unsupervised SSL (second cate-
gory) methods utilizing two evaluation metrics, AUROC
and F1-score, on all mentioned datasets. Although some
related works evaluated their models on the NSL-KDD
dataset, we could not do so due to the unavailability of

Fig. 6: Comparing AUROC values for each dataset when the
number of training datasets increases. In the X-axis of the
figure, ’DS’ refers to the dataset.

its network traffic in PCAP format. In fact, to enhance the
flexibility of SSCL-IDS for evaluating generalization perfor-
mance on new datasets, we implemented a preprocessing
pipeline (detailed in Section IV-B1) that initiates receiving
traffic files. Furthermore, based on the available information,
there is no SSL-based approach that has been evaluated
on the CICDoS and CTU-13 datasets. According to Table
II, some of the supervised SSL methods that used label
information (for generating positive/negative pairs) in the
data augmentation process achieve higher detection perfor-
mance than SSCL-IDS, which doesn’t use label information
for creating positive pairs. Note that SSCL-IDS outperforms
the majority of supervised SSL methods on the UNSW-
NB dataset. However, SSCL-IDS outperforms all the other
unsupervised SSL-based related works, except for BYOL on
the Botnet dataset. Moreover, we evaluate our method on a
broader range of datasets compared to existing approaches,
showcasing its generalization in detection performance across
varied scenarios. For instance, the CTU-13 dataset contains
botnets that are part of multi-stage attacks (MSA), known
for their challenging detection characteristics. In addition,
the CICDoS dataset includes SlowDoS attacks, which further
demonstrates the effectiveness of our approach in detecting
sophisticated attacks.

TABLE II: Comparison of SSCL-IDS with related works.
Related
Work

AUROC / F1-Score (%)

CICIDS17 CICDoS CTU-13 Botnet UNSW-NB
Supervised SSL:
RLB-CL [19] - / 90.72 - - - / 85.65 - / 89.42
ConFlow [20] - / 99.96 - - - / 99.16 -
CLDNN [21] - / 99.96 - - - / 99.47 - / 92.91
TS-IDS [17] 98.80 / 99.55 - - 97.14 / 96.67 99.86 / 99.75
Unsupervised SSL:
BYOL [5] 96.0 / 95.48 - - 97.0 / 98.46 88.0 / 92.41
Anomal-E [23] - / 90.72 - - - - / 92.18
SSCL-IDS (ours) 96.54 / 97.73 87.73 / 95.47 99.85 / 98.32 89.21 / 97.16 98.32 / 99.43

VI. CONCLUSION
In our study, we highlight the challenges encountered by

Machine Learning-based Intrusion Detection Systems (ML-
IDS) for detecting network-based anomalies in practice.
For instance, coping with heterogeneous diverse network
traffic distribution patterns, accurately detecting attacks that
mimic benign flows, and the scarcity of labeled attack traffic
to build effective ML-IDS. Such obstacles often hinder
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the ML-IDS’s ability to generalize effectively and achieve
robust detection performance on unseen and zero-day at-
tacks due to their absence in the training data. To address
these issues, we introduced SSCL-IDS, a novel approach
that adapts self-supervised contrastive learning techniques
to boost the generalization capabilities of ML-IDS. Our
proposed method is trained exclusively on benign traffic,
mitigating the challenges posed by the scarcity of labeled
and unknown/zero-day attacks. The comprehensive results
demonstrate the detection and generalization improvement
of SSCL-IDS compared to both supervised (which leverage
labels) and unsupervised baseline methods. Additionally, by
transferring the representations learned by SSCL-IDS to a
new network traffic dataset utilizing only a few of its training
samples (< 20), we achieve AUROC scores exceeding 80%
where without fine-tuning the average AUROC score on
different datasets is close to random guess. This highlights
the adaptability of SSCL-IDS in detecting emerging network
intrusions and previously unseen traffic data. While SSCL-
IDS exhibits strong detection performance, contrastive learn-
ing lacks control over negative samples. Thus, integrating a
strategy to select negative samples can enhance the model’s
learned representation.
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