
Pratyush Agnihotri, Boris Koldehofe, Carsten Binnig, Manisha Luthra. PANDA: performance prediction for parallel and dynamic stream processing. In Proceedings
of the 16th ACM International Conference on Distributed and Event-Based Systems (DEBS’22), pp. 180–181, ACM press

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights
therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

PANDA: Performance Prediction for Parallel ANd
Dynamic StreAm Processing

Pratyush Agnihotri
Technical University of

Darmstadt

Boris Koldehofe
University of Groningen

Carsten Binnig
Technical University of

Darmstadt

Manisha Luthra
Technical University of

Darmstadt

ABSTRACT

Distributed Stream Processing (DSP) systems highly rely on paral-

lelism mechanisms to deliver high performance in terms of latency
and throughput. Yet the development of such parallel systems alto-
gether comes with numerous challenges. In this paper, we focus on
how to select appropriate resources for parallel stream processing
under the presence of highly dynamic and unseen workloads. We
present PANDA that provides a novel learned approach for highly
efficient and parallel DSP systems. The main idea is to provide
accurate resource estimates and hence optimal parallelism degree

using zero-shot cost models to ensure the performance demands.

CCS CONCEPTS

• Computer systems organization→ Real-time systems.

KEYWORDS

Parallel stream processing, Zero-shot cost models

1 INTRODUCTION

Why Parallel Stream Processing is Important? Distributed Stream
Processing (DSP) is a paradigm that allows the processing of a high
volume of infinite data streams and delivers continuous results
to the end-users or applications of these systems. Today, various
real-world applications build on DSP for their core operations. For
instance, this year’s DEBS Grand challenge requires triggering
pattern detection queries timely for a financial trading company,
Infront Financial Technology. Infront processes around 24 billion

events on average everyday, which translates to roughly 300,000
events per second [1]. One of the core mechanisms of DSP for
meeting such high performance requirements is to split the data
and use resource parallelism to deal with high loads. As such, most
prominent from real-world systems at Alibaba that uses Blink [2]
implement parallelism in their DSP applications to efficiently man-
age the high workload requirements of its application.

Yet designing such massively parallel systems comes with major
challenges. One of the core challenges is how to select appropriate
resources for parallelism? Here, the decision highly depends on
the characteristics of the resource type, but also the characteristics
of the workload (data stream and query) being executed on such
resources. Thus, accurately modelling the performance of streaming
queries with different degrees of parallelism on a wide range of
resources is a major challenge especially for streaming applications
where workload changes are very common.

Existing Solutions and Their Pitfalls. Several works aim at ad-
dressing this issue by proposing prediction methods for parallelism
degree [3]. Recently, machine learning have been applied in these re-
source management decisions, that has achieved promising results
[4, 5]. However, these learned approaches are highly workload-

driven, i.e., they fail to perform well on new workload or even when

a workload changes at runtime. Supporting accurate resource man-
agement for dynamic or unseen workloads at runtime is highly
crucial for proper functioning of DSP systems as, consequently,
over- or under-provisioning can lead to either wasted resources or
inferior performance.

A prominent direction that has shown promising initial results,
which works for unseen workloads are zero-shot cost models [6] that
aim to predict costs of a continuous query on the placed resources.
The main promise of zero-shot models is to (once) train on a va-
riety of workloads with so-called transferable features that allows
the model to generalize across streaming workloads. However, cur-
rently the zero-shotmodels are limited to the task of cost-estimation,
in particular, latency and throughput prediction. Thus, it is unclear
how these zero-shot cost models can solve other optimization tasks
of DSP systems like predicting parallelism degree of resources.

Accurate Resource Estimates by PANDA. In this paper, we present
PANDA that addresses the aforementioned challenge, by proposing
a learned approach for parallelism prediction by leveraging zero-
shot cost models [6, 7] that can deal with unseen workloads. The
end goal of PANDA is to guarantee the performance and elasticity
requirements of DSP applications using accurate estimates based
on our learned approach. While we initially focus on CPU-based
hardware only, in future we believe that we can support accurate
performance predictions also for stream processing on heteroge-
neous hardware such as CPUs and GPUs. In the remaining sections,
we first detail on our approach, challenges and present preliminary
experiments addressing the first challenge.

2 OUR APPROACH: PANDA

The main goal of PANDA is to provide a new learned approach
for accurate performance prediction for parallel execution in DSP.
Figure 1 (left) presents the system model that PANDA is based
on. Overall, PANDA aims to support performance predictions for
parallel stream processing with different mechanisms: task- and
data-parallel. The main idea of leveraging the zero-shot cost models
is that the model is able to accurately predict cost metrics such as
throughput or latency under varying degrees of parallelism for
all these mechanisms. However, extending zero-shot models for
predictions in parallel stream processing is non-trivial.

As a first challenge, zero-shot model architectures need to be
extended to predict cost for parallel stream processing. In its core,
the zero-shot cost model uses a graph structure with nodes repre-
senting operators, producers and consumers with their transferable
features such as predicate types, selectivities of the operators and
tuple-width of the data stream [6]. In addition, we now feed the
zero-shot cost model with parallelism degree of an operator as an
additional transferable feature such that the model is able to learn
from correlations of the given degree and the costs. Another key
addition is that PANDA encodes hardware related features such as



Pratyush Agnihotri, Boris Koldehofe, Carsten Binnig, Manisha Luthra. PANDA: performance prediction for parallel and dynamic stream processing. In Proceedings
of the 16th ACM International Conference on Distributed and Event-Based Systems (DEBS’22), pp. 180–181, ACM press

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights
therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

Pratyush Agnihotri, Boris Koldehofe, Carsten Binnig, and Manisha Luthra

Infrastructure

Physical Plan

Logical Plan
OP1

OP2

OP3
OP4

OP1
OP2

Logical Operator

OP1.1

OP1.2

OP1.3

OP2.1

OP2.2

Resource allocation

Resources

GPU

OP3
OP3.1

OP3.2

Data Stream

Data Producer
Data Consumer

Data Stream

OP4
OP4.1

OP4.2

OP

OP Operator 
Instances

Output layerHidden layerInput layer

Seen Features Class

Data-stream (D)

Queries (Q)

Parallelism Degree (P)

Training Phase (One-time effort) 

Inference Phase (For unseen D’, Q’, P’)

Zero Shot Cost Model

Unseen Features Class

Optimizer
Search 

parallelism 
degree that 

minimizes costs

Data-stream (D’)

Queries (Q’)

Parallelism Degree (P’)

Zero Shot Cost Model

Cost:
estimated 
latency, 

throughput

Set of 
parallelism 
degrees

100

101

102

103

M1 M2
Machine Type

T
hr

ou
gh

pu
t (

K
bp

s)

SA SG WC

0

2

4

6

8

1 2 3 4 5 6 7 8
Parallelism Degree

La
te

nc
y 

(m
s)

SA SG WC

Figure 1: PANDA (left) uses zero-shot cost models combined with an optimizer (middle) that selects an optimal parallelism degree for unseen

workloads. Our initial results show a high influence of parallelism on the performance (right) for different workloads.

number of cores of the placed resource, as this is directly related to
the parallelism effect. This common graph representation allows
the zero-shot cost models to generalize across workloads, queries
and parallelism.

As a second challenge, for training a zero-shot model new train-
ing data needs to be collected that involves different query plans,
different input data streams as well as using a varying degree of the
operators within the plan. For this training data, the corresponding
cost metrics need to be collected and can then be used for training
the zero-shot cost model (cf. Figure 1 (middle) training phase).

The third challenge is how to integrate such a model into DSP.
Once a new unseen logical plan is submitted, the task manager uses
the cost model of PANDA to map operators to resources based on
the predicted costs given by the zero-shot cost models. Thus during
the inference phase (cf. Figure 1 (middle) inference), PANDA uses
the predicted costs and an optimizer such as an ILP solver to find
a set of optimal parallelism degrees for the given query plan such
that the costs are minimized (or maximized). In future, we aim to
use specialized parallel hardware architectures such as GPUs as
another resource type that will be used for deployment. Another,
key improvement we want to aim for is an end-to-end learned zero-
shot model that is able to predict the parallelism degree directly
without the need of a separate optimizer component.

3 PRELIMINARY EXPERIMENTS

In our preliminary experiments, we benchmark PANDA that is
built on top of Flink to evaluate the influence of parallelism on the
performance of DSP system with different hardware types.

Setup and Benchmark. We evaluate using three streaming work-
loads: SA - Twitter Sentiment Analysis, SG - DEBS Smart Grid,WC -

Word Count, with a total of 12 GiB data. For benchmarking, we use
two different machine architectures, processing speed, memory and
parallel cores (i) M1: Intel Core i5-4200M CPU @ 2.50GHz machine
with 4GB RAM and 2 cores and (ii) M2: Intel Core i7-3520M CPU
@ 2.90GHz with 16GB RAM 4 CPU cores and NVIDIA GF108M
GPU (96 cores). We used a key-based parallelism strategy of Apache
Flink for creating multiple instances of query operators. As metrics,
we use end-to-end latency and throughput at the consumer.

Initial Results. In Figure 1 (right), we report initial results on the
impact of the parallelism degree and different hardware resources
on the performance. In the results, we can clearly see a decreasing
trend of end-to-end latency when running the different workloads
on machine M2 with increasing parallelism degree. A similar trend
is observed for throughput on different machines M1 and M2 with
different amount of cores and processing speed. For the throughput

evaluation (note the log scale), we take the respective parallelism
degree as the amount of cores for better usage of parallelism. We
observe that for different workloads and hardware characteristics
a clear impact of parallelism degree on the performance, i.e., with
better parallelism degree we observe better results and vice versa.
Another important observation is that for different workloads, the
performance changes significantly differently, which the zero-shot
model has to learn and capture for the prediction approach. More-
over, a completely newworkload such as a streaming join querymay
result in completely different performance in comparison to these
benchmarks, and how to predict parallelism under these changes is
our envisioned key contribution. With the learned approach, we
aim to study this impact and use our zero-shot cost modelling ap-
proach to provide accurate estimates on parallelism degrees for an
overall better performance of the DSP system.

Acknowledgements. This work is co-funded by the German Research
Foundation (DFG) in the Collaborative Research Center (CRC) 1053 - MAKI.

REFERENCES

[1] S. Frischbier, M. Paic, A. Echler, and C. Roth, “Managing the complexity of pro-
cessing financial data at scale - an experience report,” in CSDM, 2019, pp. 14–26.

[2] X. Jiang, “Blink: How Alibaba Uses Apache Flink,” https://www.ververica.com/
blog/blink-flink-alibaba-search, 2021, [Online; accessed 27-05-2022].

[3] X. Liu and R. Buyya, “Resource management and scheduling in distributed stream
processing systems: a taxonomy, review, and future directions,” in CSUR, vol. 53,
pp. 1–41, 2020.

[4] R. Mayer, B. Koldehofe, and K. Rothermel, “Predictable low-latency event detection
with parallel complex event processing,” in IEEE IoTJ, vol. 2, pp. 274–286, 2015.

[5] V. Cardellini, F. L. Presti, M. Nardelli, and G. R. Russo, “Decentralized self-
adaptation for elastic data stream processing,” in FGCS, vol. 87, pp. 171–185,
2018.

[6] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig, “Zero-shot cost models for
distributed stream processing,” in DEBS, 2022, accepted for publication.

[7] B. Hilprecht and C. Binnig, “Zero-shot cost models for out-of-the-box learned
cost prediction,” arXiv preprint, 2022.

https://www.ververica.com/blog/blink-flink-alibaba-search
https://www.ververica.com/blog/blink-flink-alibaba-search

	Abstract
	1 Introduction
	2 Our Approach: PANDA
	3 Preliminary Experiments
	References

