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Abstract—This paper introduces ZeroTune, a novel cost
model for parallel and distributed stream processing that
can be used to effectively set initial parallelism degrees of
streaming queries. Unlike existing models, which rely ma-
jorly on online learning statistics that are non-transferable,
context-specific, and require extensive training, ZeroTune
proposes data-efficient zero-shot learning techniques that en-
able very accurate cost predictions without having observed
any query deployment. To overcome these challenges, we
propose ZeroTune, a graph neural network architecture
that can learn from the structural complexity of parallel
distributed stream processing systems, enabling them to
adapt to unseen workloads and hardware configurations. In
our experiments, we show when integrating ZeroTune in a
distributed streaming system such as Apache Flink, we can
accurately set the degree of parallelism, showing an average
speed-up of around 5× in comparison to existing approaches.

Index Terms—Zero-shot cost models, Parallelism tuning

I. Introduction

Why Parallel Stream Processing? Distributed Stream
Processing (DSP) is the key data processing paradigm for
analyzing data streams in real time. It is commonly used in
a wide range of application domains, such as key players
in retail Alibaba [1] or online gaming providers King [2]
use DSP for their core operations [3]. Nowadays, many DSP
applications are required to process very high volumes of
data, e.g., Alibaba needs to process an average of 4 million
transactions per second while workload peaks can be even
much higher [1]. Such scenarios require data processing over
many parallel operator instances to keep up with the high
arrival rates of data tuples. Furthermore, such applications
impose a wide range of different workload characteristics,
raising the challenging problem of parallelism tuning, i.e.,
setting parallelism degree, dependent on the workload.

Cost Model for Parallelism Tuning. However, to tune
the parallelism of DSP operators, it is essential to understand
the resulting performance accurately before actually applying
the change. The reason is that each change in parallelism
might result in reconfiguration of a DSP query requiring
expensive relocation and splitting of operators and state to
run under a new degree of parallelism. As such, accurate cost
models are required that can upfront — before applying a new
degree of parallelism — estimate the expected performance
metrics such as latency or throughput in a precise manner.

Why is it challenging? Designing an accurate cost model
for operator parallelization is, however, a highly challenging
task. Many existing solutions for parallelism tuning [5–11]
based on machine learning adapts online learning where they
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Fig. 1: ZeroTune model offers robust and generalized cost predic-
tion of latency for seen and (even better for) unseen parallel query
plans in contrast to other non-transferable model architectures [4].

directly predict parallelism degrees on-the-fly by monitoring
runtime performance of queries. This has three major chal-
lenges for a parallel DSP. C1: While online learning appears
more attractive for scaling decisions in stream processing,
it results in highly incorrect initial provisioning of parallel
operators. Consequently, the DSP query needs several oscil-
lations until it reaches a stable state and hence has very long
convergence times [12]. This iterative nature of trying several
parallelism degrees is impractical for real-time applications
such as online gaming as it leads to substantial delays.

C2: Because of the nature of online learning, they train
the model on a set of context-specific, herein termed as non-
transferable features, which poses challenges for its applica-
tion in machine learning [6]. Such features, like a tempera-
ture filter literal of “≤ 27 degrees” may work well for certain
data streams (e.g., weather reports) but fail to generalize
across varied contexts (e.g., smoke detection data stream).
We should instead learn from context-independent charac-
teristics, e.g., filter complexity like how many attributes are
specified, to generalize across data contexts and cope with
highly changing data environments of streaming workloads.

C3: While initial models achieve generalization, they re-
quire an enormous training effort [13, 14]. For instance,
known models from databases have to be trained on more
than 200k queries and 15 different databases to allow gen-
eralizability across unseen databases [15, 16]. Contrary to
databases, DSP workloads and in particular data charac-
teristics of streams cannot be known in advance, so both
supporting more variety of workloads and reducing training
effort for unseen workloads are highly important to support
predictable behavior of parallel operator deployments.

Our proposal: ZeroTune1 cost model. In this work,
we propose ZeroTune that can already initially configure
parallelism degrees based on cost estimations of parallel

1Source code: https://github.com/pratyushagnihotri/ZeroTune

https://github.com/pratyushagnihotri/ZeroTune
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Fig. 2: Overview of ZeroTune for cost prediction that can be used in the parallelism tuning task. We train ZeroTune (see left fig.) using
transferable features of a wide range of streaming workloads with different parallelism degrees. Once the model is trained, it can be used
in the inference phase (see right fig.) to accurately estimate the cost of unseen parallelism degrees without requiring costly retraining of
the model. Based on the costs, an optimizer is used to select the parallelism degree that has the minimum cost.

query plans to avoid costly oscillations from the beginning
of query execution. While the proposed model can also be
used to readjust parallelism degree at runtime, this is not
the focus of this paper. We rather want to show that the
cost model provides initial good selections of parallelism
degrees. To do this, ZeroTune must be able to understand the
dynamics of a DSP system in an offline way, such that it can
be transformed across parallel DSP queries and applications
without expensive retraining. Therefore, ZeroTune builds on
a novel learning paradigm for cost estimation based on the
recent advances in transfer learning such as in LLMs [17],
here referred to as data-efficient zero-shot learning [18].
ZeroTune’s main goal is to accomplish generalizability and
an accurate cost prediction across workloads while reducing
the amount of training data.

ZeroTune is trained with so-called transferable features,
which have the same semantic meaning across different
workloads. For instance, in the filter example above, we
take filter operator “≤” to learn from the cost (latency
and throughput) overhead for this operator based on a
datastream-agnostic characteristic.

Novel parallel graph representation. For learning and
encoding the transferable features, we introduce a novel
approach for predicting the costs of parallel query plans
(PQP) in a Graph Neural Network (GNN) model architecture.
We create a detailed graph model where each node represents
key elements of the parallel DSP system in the form of
transferable features, such as parallel operator instances,
partitioned data streams, and parallel operator mapping on
hardware resources. These nodes, defined by their unique
attributes and interconnections with other parallel operators,
allow the model to understand the complex relationships and
interdependencies within the parallel query plan. Through
this graph-based approach, our model, ZeroTune, is capa-
ble of adapting to unseen parallel operators and hardware,
extending its applicability beyond the initial training data.
This makes it a versatile model for optimizing parallel query
execution in diverse computational settings.

Benefits of ZeroTune. ZeroTune provides highly ac-
curate cost predictions in comparison to non-transferable
representations of ML models as evidenced in Figure 1. More
prominently, for unseen query types, it performs 1000×

better than existing learned cost models (e.g., using a flat
vector in contrast to our proposed graph representation). Fur-
thermore, by training ZeroTune with a novel data-efficient
training strategy OptiSample by exploring parallelism de-
grees derived based on the analytical approaches [12, 19],
it achieves generalizability in as little as 5k queries in
comparison traditional training strategies which need around
4× more training data as we show later in our evaluations.

Finally, the key contributions of this paper are:
• A zero-shot cost model for parallel query plan predic-

tions that enables generalizability (Section III).
• A novel data-efficient training strategy‚ OptiSample to

train the cost model that enables generalizability in a
few amount of training queries and time (Section IV).

• An extensive evaluation that shows the robustness
and accuracy of ZeroTune on seen-unseen workloads,
across parallelism degrees, unseen operator parameters,
data-efficiency in training and speed-ups achieved with
the parallelism tuning approach in comparison to other
approaches [4, 19, 20] (Section V).

II. Overview of ZeroTune
The main goal of ZeroTune is to provide cost predictions,

e.g., for latency and throughput of running parallel stream
processing query on distributed and parallel hardware re-
sources without having observed running the query, herein,
termed as unseen. In the following, we present the solution
(S) overview of our approach towards this along with how
we address the aforementioned challenges (C).

C1: Incorrect initial parallelism. To correctly provision
the parallelism of operators right from the deployment of the
query, we use an offline supervised model as given next.

S1: Figure 2 shows the overall approach where we first
train ZeroTune on different data streams, query structures,
and heterogeneous resource configurations by selecting a set
of transferable features (see C2) in a supervised way (left).
Once trained, the ZeroTune is used to correctly infer the
costs (latency and throughput) for an unseen query and
resource combination (right). Finally, these costs are used by
an optimizer to select a parallelism configuration that gives
minimum costs. Contrary to existing work, ZeroTune sets
the right parallelism degrees from the start while adapting
to unseen workloads as we explain next.
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C2: Generalizability. One of the key questions of Zero-
Tune is how it achieves generalizability across workloads
of parallel and concurrent operators on diverse hardware
configurations. Here, we draw inspiration from how gen-
eralizable cost models are designed for databases [13, 15].
There are two main ideas behind this (1) novel feature
selection process of so-called transferable features and (2)
generic graph representation that maps the query plan to
learn from the runtime characteristics. However, the cost
model proposed in [15] is tailored towards database operators
and cannot reason about the costs of parallel and distributed
“streaming” operators. The difficulty therein is to capture and
understand the dependencies of parallel resource assignment
while taking into account the intricacies of transferability to
unseen PQP on multi-core hardware resources.

S2: Transferable features. In our approach, we learn
from features like data-partitioning schemes of an operator
and CPU cores of the given hardware resource that allows
ZeroTune to gain an understanding of the load distribution
on the overall costs. Such transferable features represent the
attribute space used by ZeroTune about the query opera-
tors and their instances with its deployment on hardware
resources so that the model can infer relationships between
them and transfer knowledge from seen to unseen classes.
An example of a non-transferable feature is the name of
data sources such as “temperature” instead of event rates,
which would tie ZeroTune to a particular data stream of
temperature readings. In Section III-B, we further detail on
how we select those transferable features.

S3: Parallel graph representation. In addition to the
transferable features, it is important that the model learns
from the structural relationships between the different par-
allel instances of operators and the partitioning of the data
streams. For this, graph representation is a natural choice as
it represents both “nodes” as operators with their transferable
features and their cross dependencies as “edges” representing
the data flow among parallel query operators. Our approach
encodes a PQP as a Directed Acyclic Graph (DAG) suitable
for GNN. In addition, the operator instance-resource mapping
is denoted as an additional edge (dotted lines as shown in
Figure 2). Within this structure, every operator or resource
node in the PQP derives a hidden state, determined together
by the input features transformed by an activation function
encoded using a Multi-Layer Perceptron (MLP). As data flows
through the graph, we employ a bottom-up message-passing
mechanism to update these hidden states. The states are
finally aggregated at the root node’s updated hidden state,
which then serves as input to a final regression responsible
for estimating relevant metrics. This generic graph repre-
sentation, combined with transferable features, enables us
to accurately derive costs for previously unseen PQP during
inference. We discuss the challenges and design ideas of this
graph mapping in Section III-C.

C3: Enormous training effort. Existing models have to
be trained on a broad spectrum of query workloads (200k

queries and up to 15 databases) [15]. It is hard to collect such
a workload for stream processing, as the data characteristics
of streams are known to be dynamic due to their continuous
nature. The lack of open stream processing benchmarks
makes it even harder to train such large models.

S4: Data-efficient Training. While it is important that
the model learns from diverse training data: data stream, PQP
and resource combinations; it is practically very costly if not
impossible because of the aforementioned reasons. Thus, we
propose a hybrid training strategy OptiSample that collects
workload by varying the data stream, query parameters
like window size, and resource combinations from low- to
high-end nodes while limiting the exploration to parallelism
degrees of the PQP as derived based on the literature [12, 19].
By doing this, we aim to achieve a generalizable model with
less training data and time as we explain later in Section IV.

III. The ZeroTune Cost Model

As stated above, ZeroTune aims at predicting costs for
the execution of unseen PQP on a resource combination not
observed. One of the ideas to achieve this generalizability is
finding the right set of transferable features that allows us to
estimate cost metrics without observing the deployment of
the PQP, as we explained next after defining the cost metrics.
A. Metrics for Cost Model

We consider two main cost metrics that are relevant
for most streaming applications: end-to-end latency and
throughput as defined in requirements for stream processing
by Stonebraker et al. [21] but still hold validity in current
applications [22–24]. Although we consider these metrics, our
model can be fine-tuned2 for other cost metrics like resource
usage and availability [25] depending on the application by
simply replacing the final MLP node.
Definition 1: End-to-end latency (L): It represents the time

interval starting from the production of the first data tuple
from the data source (So) until when the output of the query
result is delivered to the data sink (Si). In other words, it
is the sum of processing latency (Lproc) of each operator
in the processing pipeline, network latency (Lnw) of data
transmission from a data source, within operators (ω ∈ Ω) to
the data sink, and input (Lin) and output (Lout) latency of
reading and writing data to and from external systems like
IoT data sources. As operators may be allocated to resources
at different locations, network latency is also considered.
Definition 2: Throughput (T ): The second metric of our cost

model is throughput, measured as the number of data records
processed by the DSP system per unit of time [23].
B. Transferable Featurization

We define transferable features as those characteristics
related to query, data stream, and hardware learned for the
cost prediction task of PQP that can be effectively applied or
transferred to cost prediction of an unseen query, data stream

2A concept of ML where model’s parameters are updated using a small
amount of labeled data from target metric.
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Node Category Feature Description

Logical

operator-
parallelism Parallelism degree Parallel instances of the operator

operator-
parallelism Partitioning strategy Strategy for data distribution

(forward, rebalance, hashing)
operator-
parallelism Grouping number Number of operators grouped together by DSP

data Tuple width in Input tuple width
data Tuple width out Output tuple width
data Tuple data type Data types in a single tuple
data Selectivity Average selectivity of all instances of a given operator
data Event rate Emitted event rate of the source

operator Operator type Type of operator
operator Filter function Comparison filter function, e.g., <,≤,≥
operator Filter literal class Filter literal datatype for comparison, e.g., int
operator Window type Shifting strategy (tumbling/sliding)
operator Window policy Windowing strategy (count/time)
operator Window length Size of the window
operator Sliding length Size of the sliding interval
operator Join key class Join key data type
operator Agg. class Aggregation data type
operator Agg. function Aggregation function, e.g., min, max, avg
operator Agg. key class Aggregation key data type

Physical

resource CPU cores Number of processing cores
resource CPU frequency CPU frequency on this instance
resource Node identifier Unique identifier of every instance
resource Total memory Available memory of the node
resource Network speed Network link speed between nodes

TABLE I: Transferable features to derive costs of PQP.
and hardware. In Table I and the following text, we define
the selection of transferable features in three categories.
1) Operator Parallelism-related Features: The most im-

portant set of features for cost prediction of PQP are the
ones related to the parallel execution. The most obvious
key feature is the parallelism degree of individual operators,
which profoundly influences the execution cost of PQP in a
DSP system. To gain a deeper understanding of the influence
of parallelism degree, we conducted a micro-benchmark
illustrated in Figure 3, where we observed how parallelism
degree influences the cost metrics latency and throughput.
We conducted this experiment on Apache Flink with a count-
based tumbling window query where all other parameters
besides parallelism degree were kept deterministic. Here, the
input event rate is meant to achieve maximum utilization
of the cluster while ensuring there is no backpressure (with
increasing parallelism). Intuitively, we saw a decreasing trend
for latency and an increasing trend for throughput with the
increase in parallelism degrees.

However, another major effect we observed that caused
non-linearity, in particular, for high parallelism degrees is
operator chaining (highlighted in blue). DSP systems like
Flink offer the capability to group multiple independent
operators with the same parallelism degrees. This grouping
allows them to be placed on a single computation unit or
physical node, resulting in enhanced performance by re-
ducing interprocess communication overhead and effectively
utilizing available processing cores. This specifically led to a
significant reduction in latency and, consequently, growth in
throughput. Therefore, our featurization approach takes into
account both individual operators and grouping number that
indicates the number of operators that are grouped together
on nodes during query execution.

Further, the costs of a parallel query plan are influenced
by partitioning schemes used by the operators as they dictate
how the load is distributed among the different parallel in-
stances of an operator. Thus, the partitioning strategy feature
specifies the kind of scheme that is applied. We support
forward, rebalance, or hashing schemes [26] in ZeroTune.
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Fig. 3: Effect of selected features parallelism degree and operator
grouping on the costs for a linear query. With the increasing
parallelism, a decrease in latency and an increase in throughput
are observed. For high parallelism degrees, the effect of operator
grouping (highlighted in blue) can be observed, which leads to a
sudden improvement in the costs.
2) Operator-related Features: Apart from parallelism-

features, we determine other transferable features that are
data stream and operators-related because of their influence
on runtime costs of PQP. For example, in the context of
the query (step 0© in Figure 4), for the window operator
we consider window types (tumbling or sliding window),
window policy (time-based or count-based), window length,
sliding length (for sliding window). Similarly, the features
for the aggregation operator are the aggregation function
and data type of the aggregate literal; features for the filter
operator are the filter function, the data type of filter literal,
and average selectivity, respectively, for each operator type.

Further, to reason about the performance of the given
data model, we consider data stream-related features. In DSP,
the data being processed by operators within a query is
highly dynamic and differs a lot with time. Unlike traditional
databases, where the data and its distribution are known
in advance, DSP operates on streaming data with limited
visibility before query execution. To optimize parallelism
in DSP, we focus on transferable attributes of the data
stream that can be generalized across different PQP. These
attributes majorly include the event rate (data arrival rate)
and tuple width (size of data elements). Since the given
event rate dictates the processing required by the operator
and hence the parallelism, by leveraging these transferable
data attributes, we can effectively adapt the parallelism of
operators to the dynamic nature of streaming data.

Another important data-related feature is the selectivity
of operators, which refers to the proportion of data meeting
specific conditions within an operator. Here, we consider the
average selectivity of all the parallel instances of an operator
(see next section), as different instances may be allocated to
different physical nodes, resulting in varying performance
impacts. For instance, a simple filter-aggregate query runs
on two different data streams with the same input rate but
different data characteristics. Without selectivity as an input
feature, a cost model cannot derive the cost of the aggre-
gate since it cannot differentiate between the computational
complexity for both streams. Similar observations have been
made in cost models for query runtime in DBMS [15].
3) Resource-related Features: Finally, a last crucial as-

pect to consider for cost estimation of PQP is the underlying
parallel resources used for deployment. By identifying the
hardware characteristics specific to parallelism, optimizing



Pratyush Agnihotri, Boris Koldehofe, Paul Stiegele, Roman Heinrich, Carsten Binnig, Manisha Luthra. ZeroTune: Learned Zero-Shot Cost
Model for Parallelism Tuning in Stream Processing. To Appear in Proceedings of the IEEE 40th International Conference on Data

Engineering (ICDE), 14 pages

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a
non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here
electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be
reposted without the explicit permission of the copyright holder.

SELECT location, COUNT(*) FROM SensorStream [RANGE 1 HOUR] 
WHERE temperature > 70 WITH (PARALLELISM = 3); 
GROUP BY location WITH (PARALLELISM = 2); 
HAVING COUNT(*) > 100 WITH (PARALLELISM = 1);
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Fig. 4: ZeroTune model architecture detailed view on the training, inference, and optimizer for parallelism recommendation. For a given
arbitrary PQP, e.g., step 0© to get locations with high temperature, ZeroTune 1© transforms it into a physical execution plan dictating
the resource assignment. The plan is enumerated for different parallelism degrees based on the proposed strategy with the deployment on
physical resources. Step 2© shows how the query is represented as a graph structure with different operators and resources as node types
and their transferable feature representation that allows generalization across unseen workloads. 3© Afterwards, the resulting feature
vectors of every operator, including its features, are encoded into a node-specific MLP to obtain a hidden state which is propagated
through the graph to the sink using the specified order in the graph of the query. The final MLP is used to predict the cost of query
execution. 4© Finally, the optimizer uses the what-if costs of the parallel query plan to determine the optimal set of parallelism degrees.

the performance of DSP applications on different hard-
ware configurations is possible. We identify fixed hardware
specifications such as the number of processing cores and
CPU speed as representative transferable features for the
hardware types. All these features have a direct correlation
to achievable parallelism and the overall cost in terms of
latency and throughput. For instance, the available number
of processing cores in a physical node directly impacts the
level of parallelism that can be achieved for an operator. With
more processing cores, a higher level of parallelism can be
achieved, resulting in fast computation time, low processing
latency, and high throughput.

C. ZeroTune model architecture
In Figure 4, we present ZeroTune’s model architecture.

First, we define the training and inference of ZeroTune,
including our novel parallel graph representation. In the end,
we show how an optimizer based on cost predictions can be
used for parallelism tuning.
1) Training and Inference: The zero-shot model is

trained in an offline supervised manner using the queries
depicted in a graph representation and encoding of the
aforementioned transferable features in logical and physical
nodes using a GNN model (step 0© and 1©). Each graph
node serves in GNN as a multi-layer perceptron (MLP) with
the physical and logical nodes embedded into the input and
hidden layers in a bottom-up manner (of the PQP) based
on the proposed graph representation (step 2©). The neural
message passing takes place between the operator nodes
(data-flow graph depicted in black edge) followed by between
physical nodes (orange edge) and lastly on the operator-
resource mapping (green edge) to receive the aggregated
information on the sink where the predictions are read out
(step 3©). For example, given query in the figure, the hidden

state of the node representing filter operator instance 1 (ω1
σ)

is obtained by feeding the feature vector x1 (containing
transferable features of data source) into an MLP which is
shared by all the upstream nodes (grey nodes). The input and
output of the hidden states are combined along the data flow
and physical operator mapping using the message passing
scheme as illustrated in the order of step 3© in Figure 4. This
is important for the model to learn the runtime behavior
of each instance of parallel operators on distinct hardware
resources and vice versa to derive precise costs on them.
Followed by message passing, the final output node (y1)
predicts latency or throughput at the inference (step 4©).
2) Parallel Graph Representation: A key challenge in

the graph representation of PQP is to encode the attribute
space in the graph without increasing complexity and affect-
ing the performance of the cost model. To achieve this, we
explored two possibilities to encode the previously defined
transferable features in our graph representation: (1) encode
each operator instance and its features as a separate graph
node or (2) encode only distinct operators separately while
parallel operators together with parallelism-related features.

However, the problem with the first (1) design option is
that the transferable features that the model learns about
each parallel node (operator instance) are almost the same
(if not entirely), which leads to many duplicate nodes in the
graph with redundant information, not to mention the added
complexity to the model (with parallel nodes and edges).
For example, assuming maximum achievable parallelism on
a machine is maxP = 64, then for a linear query, there
will be 64 instances of filter operator and correspondingly 64
edges from single source (ωP

So = 1) to filter instances. Then
there will be twice 128 edges from each filter to window
aggregation (ωP

ξ = 2) which would lead to 64× filter and
64× window aggregate, leading to an incredible amount
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of 4096 edges for neural message passing. This leads to a
highly complex neural model with hardly any new infor-
mation per operator instance node. Therefore, instead, we
opt for the second (2) approach to encode a parallel operator
individually as a graph node with their corresponding logical
and physical transferable features due to its simplicity and
limited information gain in method (1) in comparison to
its complexity. To encode transferable features of multiple
instances in a single graph we aggregate information such as
individual selectivities as average selectivities of all instances.
For this, we conducted a microbenchmark where we analyzed
individual selectivities of parallel instances for different par-
titioning schemes that resulted in very similar that support
our decision.

Another challenge is to capture the resource mapping for
each operator instance when we aggregate their transferable
feature characteristics into a single graph node as discussed
above. Although we aggregate information like selectivity, we
maintain edge information for each parallel operator instance
(e.g., ωi

σ , here i=op. instance) as shown in the table on the
operator-resource mapping in Figure 4 step 2©. This is done
to ensure that the model can reason about the cost overhead
of each resource and instance type during the inference.
3) Parallelism tuning with ZeroTune: ZeroTune cost

model can be combined with an optimizer as described in
this section to determine parallelism such that the overall
costs of query execution are minimal. In the following, we
formally define the optimizer in a combinatorial optimization
problem with the combined cost objective.

The goal of ZeroTune is to find a set of parallelism degrees
Pi for each operator ωi ∈ Ω in a given parallel query plan
PQP where the inferred costs C for query execution on a
selected set of resources R are minimum. For enumerating
parallelism degrees, we propose a novel OptiSample strategy
as discussed in Section IV. We define the combined objective
function for the parallelism tuning problem considering the
two cost metrics (1) latency (CL) and (2) throughput (CT ).
Here, CL and CT are the normalized latency and throughput
costs within the range [0, 1], with 0 being the best and 1
being the worst. In normalization, we negate throughput
because we want to maximize it, and the weight factor wt
determines the relative importance of the two costs. Thus,
in the parallelism tuning problem, we aim to minimize a
weighted sum of latency and throughput costs to allow the
selection of parallelism degrees with the lowest cost on the
given hardware resources:

C = argmin
CL,CT

[wt · CL + (1− wt) · CT ] (1)

s.t. for each operator ωi, the parallelism degree Pi is always
an integer Pi ∈ Z and must be more than equal to 1, i.e., Pi ≥
1, as well as maximum parallelism degree cannot exceed the
total number of cores ncore of all the given physical resources
R, i.e., Pmaxp

≤ ncore.
IV. Data-efficient Training

A key aspect for generalization is that we train Ze-
roTune cost model with a broad spectrum of workload

and physical resource characteristics to ensure that it can
generalize to unseen workload and resources. This leads to the
question how to enumerate different PQP and its assignment
on resources for generalization. Prior work has shown that
random sampling of training range leads to generalization for
workloads and resources [15]. However, random enumeration
of parallelism degrees will result in noisy query plans that
the learned model may not benefit from. For instance, setting
parallelism degrees lower for upstream operators and higher
for operators downstream in the query graph could lead to
backpressure, adversely impacting query performance.

Moreover, exhaustive enumeration, even for a single query
like a 2-way join, is impractical due to a vast number
of combinations. For instance, when we use N physical
resources to place the query for the 2-way join with 9
operators with arbitrary parallelism degrees P = {p1, . . . ,
pmaxP

} will result into N · |p|ω|
maxP | combinations, i.e., with

nine operators and parallelism degrees: 1, 2, . . . , 20 results
into 512 bn combinations of queries with N = 1 resource. To
address this challenge, we propose OptiSample, an optimized
sampling method that efficiently balances exploratory diver-
sity (related to parallel query workload and resources) as well
as analytical precision of parallelism degrees to generate a
representative and manageable subset of these combinations.
OptiSample Training Strategy. Unlike the random ap-

proach [20], the OptiSample strategy offers a systematic
way to determine the right number of processing instances
(parallelism degree P ) for each operator in the operator
graph G to collect realistic training data. To achieve this, the
strategy utilizes the characteristics of workload (query and
data stream) and physical resources, such as input event rate
(InER), operator selectivity (sel), output rate (OutER) and
the number of cores (ncore) to enumerate parallelism degrees
for both upstream (ωi) and downstream (ωj ) operators in the
operator graph. The main intuition is that higher input rates
and selectivities require higher parallelism degrees because of
the computation required to process the input rate of events
leading to better handling of backpressure. This is inspired
by existing scaling controllers of known data-parallel DSP
systems [12, 19] that select parallelism degrees based on these
parameters.

In Algorithm 1: Lines 1–12, we provide an explanation
of the OptiSample strategy that assigns parallelism degrees
to operators in a bottom-up fashion. The OptiSample strat-
egy takes the input event rate InER(ωSo) of the source
operator ωSo as an input and returns parallelism degrees
of downstream operators as an output. The source operator
(ωSo) has no upstream operator, and the algorithm will finish
traversing when the downstream operator (ωj ) of the current
(upstream) operator (ωi) is data sink (SI ). The parallelism for
the source operator is based on the event rate specified by
the application, so we assume it is known and assign the
parallelism for the downstream operators. For each operator
ω ∈ Ω, we use estimated selectivities [27] (Lines 3-4 and
Equations (3) to (5) defined below) and in the next step
estimate the output rate of the current operator based on this
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Algorithm 1: OptiSample Strategy for Training.
Input : Input source event rate (InER(ωSo))

Set of operators (ω ∈ Ω)
Output: Parallelism degree for each operator P (ω)

1 forall ωi ∈ Ω do
2 if ωi is not ωSo then
3 ωj = ωi.downstream()
4 CurSel(ωi) = EstSel(ωi) . Definitions 4 to 6
5 OutER(ωi) = CurSel(ωi) · InER(ωi) . Definition 3
6 InER(ωj) = OutER(ωi)

7 if ωi.upstream() is ωSo then
8 P (ωi) = EstPar(ωi, InER(ωSo)) . Definition 7

9 else
10 P (ωi) = EstPar(ωi, InER(ωi)) . Definition 8

11 else
12 InER(ωSo) = ComputeSrcER(ωSo)

selectivity (Line 5). The output rate of the current operator
is the input rate of the downstream operator (Line 6).

Later, based on the input rate and hence the selectivity of
the upstream operator, the parallelism of the current operator
is computed (Lines 8–10). In case the current operator is
a source operator (Line 11), then its input rate will be
equivalent to that of the source (Line 12) which is used
in assigning parallelism of an operator whose predecessor
is a source operator (Line 7). In the following, we formally
present the definitions required for the above algorithm.
Definition 3: Output rate of an arbitrary operator ω: The

output rate OutER(ω) is determined based on the input rate
it receives from the upstream operator (OutER(ωi)) or source
(InER(ωSo)) when there is no operator together with the
selectivity. Formally, given an upstream ωi and downstream
operator ωj the output rates are:

OutER(ωi) = InER(ωi) · sel(ωi), where ωi = (ωσ, ωon, ωξ), (2)

OutER(ωj) =

{
OutER(ωi) · sel(ωj) , if ωi = (ωσ, ωon, ωξ)

InER(ωSo) · sel(ωj) , if ωi = ωSo.

Definition 4: Selectivity of filter operator ωσ : The selectivity
sel(ωσ) of the filter operator ωσ is determined as the fraction
of the number of filtered tuples |fωσ

(DIn)| that satisfy the
filter function to the total number of input tuples |DIn| from
input data stream D, as given by the equation:

sel(ωσ) =
|fωσ (DIn)|

|DIn|
, with 0 ≤ sel(ωσ) ≤ 1. (3)

Definition 5: Selectivity of join operator ωon: The selectivity
sel(ωon) of the join operator ωon is determined based on the
resulting join partners by joining tuples from two windows
|WD1In on WD2In | on the cartesian product of all the
resulting join tuples in the input windows |WD1In | and
|WD2In | of the join input relations from windows WD1In

and WD2In from two input streams D1 and D2, formally:

sel(ωon) =
|WD1In on WD2In |
|WD1In | × |WD2In |

, with 0 ≤ sel(ωon) ≤ 1. (4)

Definition 6: Selectivity of aggregation operator ωξ : The
selectivity sel(ωξ) of the window aggregate operator ωξ is
determined based on the number of distinct group-by tuples

in the window of the input stream WDIn
on the total number

of tuples in the window |WDIn
|, as given by the equation:

sel(ωξ) =
|group-by (WDIn)|

|WDIn |
, with 0 ≤ sel(ωξ) ≤ 1. (5)

Based on the estimated selectivities, input and output rates,
we define how we select parallelism degrees for training.
Definition 7: Parallelism degree of an arbitrary upstream

operator ωi: The parallelism of the upstream operator P (ωi)
is estimated based on a scaling factor3 (sf ) and the input
rate to the upstream operator InER(ωi), given as follows:

P (ωi) = sf · InER(ωi). (6)

Definition 8: Parallelism degree of an arbitrary downstream
operator ωj after ωi: The parallelism of the downstream
operator P (ωj) is determined based on a scaling factor and
the output rate OutER(ωi) of the previous upstream operator
ωi, as given by the following equation:

P (ωj) = sf · InER(ωj)

= sf ·OutER(ωi)

= sf · InER(ωi) · sel(ωi). (By Equation (2))
(7)

Following constraints hold true for Equation (6) and (7), for
each up- and downstream operator ωj , ωi ≤ maxP and
maximum parallelism maxP cannot exceed the number of
cores ncore in a physical resource it runs on i.e., maxP ≤
ncore. Also, note that the selection of parallelism degree
for the training data is based on estimated selectivities and
output rates, and does not take actual observed values into
account, so the estimations are not perfect. This is to maintain
a better trade-off between exploration and exploitation in
the training data, such that the model also learns about in-
efficient PQP when the estimations are off.

V. Experimental Evaluation
In this section, we present the evaluation results of Zero-

Tune with an aim to assess its efficiency and generalization
capabilities on unseen workloads and resources. In the fol-
lowing, we specify the evaluation questions.

• Exp. 1: Accuracy on seen-unseen workloads. How
accurate are ZeroTune’s cost predictions for seen and
unseen parallel query structures and benchmarks?

• Exp. 2: Generalization performance on fine-grained
parallelism. How does the ZeroTune perform for the
different parallelism degree ranges?

• Exp. 3: Generalization for unseen parameters. How
does the ZeroTune predict the cost for unseen param-
eters such as tuple width?

• Exp. 4: Data-efficient training. Is OptiSample training
procedure data- and resource-efficient?

• Exp. 5: Optimizer for parallelism. Is the ZeroTune,
in combination with the optimizer, able to determine the
set of parallelism degrees that minimize cost?

• Exp. 6: Feature ablation study. Finally, if the trans-
ferable features selected by ZeroTune contributes to
generalization?

3determined by empirically analyzing when and how the given streaming
operators are backpressured.
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Cluster
Type Clusters Nodes CPU RAM

(GB)
Disk
(GB)

Intel
Processor

Speed
(Ghz) S/U

Ho m510 270 8 64 256 Xeon D 2.0 S
Ho c6420 72 32 384 1024 Skylake 2.6 U
He rs620 38 8-10 128-384 900 Xeon 2.2 S
He c8220x 4 20 256 4096 Ivy Bridge 2.2 U
He c8220 96 20 256 2048 Ivy Bridge 2.2 U
He dss7500 2 12 128 120 Haswell 2.4 U
He c6320 84 28 256 1024 Haswell 2.0 U
He rs6525 32 64 256 1600 AMD EPYC 2.8 U

TABLE II: Cluster of resources utilized on CloudLab tested to
perform evaluations. Here, “Ho” and “He” are homogeneous and
heterogeneous; “S” and “U” are seen and unseen, respectively. We
used a combination of these resources for data generation, training
(S), and inference (S and U) on the model.

Evaluation Setup and Implementation: As DSP system
we used Apache Flink v.1.16 and collected the training and
testing benchmark by implementing a PQP query generator
on top of it for various parameters summarized in Table III,
focusing on the training range using the seen cluster nodes
in Table II. We used the CloudLab research testbed [28] to
perform all our experiments as it provided the necessary
distributed infrastructure for configuring and deploying an
Apache Flink [26] cluster, enabling us to conduct experiments
and assess the performance of ZeroTune. We used Opti-
Sample as a training strategy for ZeroTune and compare
it with random wherever explicitly specified (cf. Section IV).
For cluster management and task placement, we used Apache
Flink’s task manager with Kubernetes for orchestration.
Moreover, we used Apache Flink’s fairness policy and job
distribution capabilities to ensure efficient resource allocation
and optimized performance.
Training and Testing Parameters: Table III presents the

train and test ranges for evaluating ZeroTune model for
the above questions, featuring a dataset of 24,000 synthetic
queries (linear, 2-, and 3-way joins) with 8,000 queries for
each query type. This dataset is split into train (80%), test
(10%), and validation (10%) sets. We use the Q-error metric
q(c, c′) where q ≥ 1, a well-established metric [29] to
measure the relative deviation of the true cost c (latency
and throughput) and its prediction c′, to assess ZeroTune’s
accuracy and generalization. The model’s accuracy is evalu-
ated in terms of q-error for latency and throughput, using
OptiSample training procedure. Our experiments show q-
error being mostly close to 1, indicating ZeroTune model’s
accuracy in cost predictions and its generalizability across
unseen scenarios. For the evaluation of the optimizer, we used
weighted cost (cf. Equation (1)) and mean speed-up calculated
as a fraction of improvement in latency or throughput in
comparison to the baselines.
Baselines: Due to the lack of baselines that can provide

generalizable cost predictions for DSP, we compared the
ZeroTune to other non-transferable architectures like flat
vector representation from DBMS. The idea of this baseline
is to represent features like the number of different operator
types, their selectivity, and parallelism degree (our addition)
as a flat vector and train a linear model inspired by [4].
We represent this linear model as Linear Regression and the
extension to deep neural network with MLPs that learn from
the flat vector as Flat Vector MLP. Finally, we train a random

Parameters Unit Training Range Testing Range
(Seen) (Unseen)

Event rate ev/sec.
100, 200, 400, 500, 700,
1k, 2k, 3k, 5k, 10k, 20k,
50k, 100k, 250k, 500k, 1m

50, 75, 150, 300, 450, 600, 850,
1.5k, 4k, 7.5k, 15k, 35k, 175k,
375k, 750k, 1.5m, 2m, 3m, 4m

Tuple width
and data type values [1 - 5] x [str., doubles, int] [6 - 15] x [str., double, int]

Window length tuples 5, 10, 25, 50, 75, 100 2, 3, 4, 7, 17, 37, 62, 82,
150, 200, 250, 300, 350, 400

Window duration ms 250, 500, 1k, 2k, 3k 50, 100, 150, 200, 325, 750, 1.5k,
2.5k, 4k, 5k, 6k, 7k, 8k, 9k, 10k

Sliding length ratio [0.3, 0.4, 0.5, 0.6, 0.7] x Window length

Cluster type - ms510, rs620 c6420, c8220x, c8220,
dss7500, c6320, rs625

Network link speed Gbps 1, 10
Number of workers - 2, 4, 6 3, 8, 10

Parallel query structures - Linear, 2-way join,
3-way join

2-chained filters,
3-chained filters, 4-way join,

5-way join, 6-way join

Benchmark queries - - Spike detection, Smart-grid
(local), Smart-grid (global)

Operator type - Source, Filter, Window-join, Window-Aggregation
Parallelism degree

categories - 1 ≤ XS < 8, 8 ≤ S < 16, 16 ≤ M < 32,
32 ≤ L < 64, 64 ≤ XL < 128

TABLE III: Training and testing range for data generation and
inference, respectively. The seen range is used to evaluate model
performance in general with a classical training-test split, while
the unseen range is used for testing the model’s generalizability.
Here, extrapolation parameters are underlined while the remaining
unseen are interpolation parameters.

forest model with the flat vector. Moreover, we compare
against a greedy approach [20] and Dhalion [19], which
incorporates analytical derivation of parallelism degrees, in
terms of mean speed-ups, and weighted sum (Equation (1)).
A. Exp. 1: Accuracy on Seen-Unseen Workload

In the first experiment, we evaluate the ZeroTune model’s
prediction accuracy on seen query structures, i.e., within
the range, followed by its generalization on unseen query
structures and benchmarks as presented in Table III. We
focused on measuring errors in estimating both latency and
throughput using the median and 95th percentile q-errors as
performance metrics, with 1.0 being a perfect estimate. We
trained and evaluated our ZeroTune model in this experi-
ment using the proposed OptiSample enumeration strategy
to set the parallelism degrees and compared with different
model architectures using flat vector [4] in Figure 5. In later
experiments, we compare the two training strategies, random
and OptiSample in Section V-D. In the following, we discuss
the performance of ZeroTune on seen-unseen workloads.
1) Seen Workload: Table IV: 1© presents the study for the

PQP having query structure - linear, 2-way, and 3-way joins
that are within the range of the seen test set (cf. Table III).
In addition, we included the “overall” accuracy across all
query structures. As, we can observe consistently highly
accurate cost predictions both for latency and throughput,
showing the efficiency of ZeroTune trained using the pro-
posed data-efficient OptiSample training strategy. Moreover,
ZeroTune consistently outperformed all model architecture
baselines incorporating flat vector representation, which do
not learn from the structural information of the query graph
that ZeroTune learns from (cf. Figure 5). In the remaining
evaluations, we use the “overall” model training on all query
types unless otherwise specified.
2) Unseen Workloads: To evaluate generalizability, we

increased the complexity of the parallel query structures to
ones that are not encountered during the training phase,
e.g., 2-4 chained filters, 4-6 way joins, as shown in Table III,
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Trained Model
ZeroTune-OptiSample

Query
Structure

Q-error (Latency) Q-error (Tpt)
Median 95th Median 95th

1© Seen
workload

Linear 1.21 2.51 1.24 2.31
2-way-join 1.37 3.84 1.82 8.05
3-way-join 1.38 3.35 1.89 7.20
Overall 1.30 3.35 1.57 6.82

2© Unseen
workload

2-filter-chained 1.22 2.15 1.40 3.50
3-filter-chained 1.24 2.55 1.57 3.96
4-filter-chained 1.24 2.90 1.64 5.31

4-way-join 1.34 2.92 1.92 6.55
5-way-join 1.56 3.6 2.93 16.82
6-way-join 1.95 6.8 6.19 36.29

3© Unseen
benchmark

Spike Detection 1.29 2.40 2.73 5.99
Smart-grid (local) 1.33 1.50 2.30 4.44
Smart-grid (global) 1.44 1.60 1.52 2.40

TABLE IV: Q-errors (median, and 95th) of cost prediction of seen
and unseen parallel query structures with synthetic dataset and
public benchmarks. The proposed ZeroTune model trained data
efficiently provides very accurate costs both within the range and
across unseen workloads and public benchmarks.
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Fig. 5: ZeroTune model offers robust and generalized cost predic-
tion for seen (white) and unseen (shaded) parallel query plans in
contrast to other model architectures.

generating 200 test queries per query type for assessment.
The results in Table IV: 2© show that ZeroTune’s accuracy
and adaptability in predicting accurate cost both median
and tail errors (95th percentile) for unseen parallel query
structures. While the model excels in simple structures, e.g.,
filter chains, we see an increasing trend in q-errors as the
complexity of the unseen parallel query structures increases
(e.g., for 6-way joins), especially for throughput prediction,
as throughput increases dramatically, especially with the
combinations of high parallelism degrees.

Few-shot: To further improve q-errors for such complex
unseen parallel query plans, we used an ML technique called
few-shot learning [30], where ZeroTune is trained using a
500 training examples of complex join structures. Figure 6
reaffirms that the model remains robust to essential attributes
by coping with the dynamic nature of DSP.

Furthermore, ZeroTune consistently outperformed flat
vector representation baselines also for unseen query struc-
tures due to the parallel graph-encoding method that effec-
tively captures query complexities, demonstrating superior
performance even with novel query structures (cf. Figure 5).
3) Unseen Queries from Public Benchmarks: In ad-

dition to synthetic queries, we evaluated ZeroTune model
using two public streaming benchmark queries: spike detec-
tion and smart-grid [24, 31, 32]. The spike detection bench-
mark [32] analyzes sensor data stream to identify spikes
against a 2s moving average value. The smart grid benchmark
aims to predict energy consumption loads using data from
smart plugs in private households. Here, energy consumption
is calculated at local and global levels using two queries and
a 10s sliding window with a 3s slide.
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Fig. 6: Few-shot learning using only 500 training queries of unseen
joins (all 4-, 5- and 6-way) improves the throughput prediction in
ZeroTune by almost 6× (for 6-way join). Red line shows the perfect
estimate.

Table IV: 3© shows the accuracy of ZeroTune model on
these benchmarks in predicting latency and throughput for
unseen parallel query structures. Overall, while estimations
for both metrics are highly accurate, the results indicate that
latency estimates are better than throughput, which is a
general trend in all models. This is because throughput is
directly affected by the incoming data distribution, while la-
tency is influenced by indirect factors such as overall system
utilization or varying durations for filling count windows.
B. Exp. 2: Fine-grained Parallelism Analysis

We further examined the accuracy of the ZeroTune for
different parallelism degrees, which is important for the opti-
mizer (see Exp. 6) to select an optimal degree. We categorized
parallelism into five classes: XS, S, M, L, and XL, which state
how much the average parallelism degree is for a query per
operator. For example, 64 ≤ XL < 128 cores are used by
an operator on average in a query (refer to Table III). In
the following, we again show how ZeroTune generalizes
for seen and unseen query types and public benchmarks for
each of these parallelism categories.
Seen Workloads In Figure 7a, we illustrate the accuracy

of the model for seen query types within our test range
(cf. Table IV 1©). ZeroTune model consistently performed
well, providing highly accurate cost predictions for different
parallelism degrees of seen query types, though the com-
plexity of PQP slightly affects the prediction accuracy. PQP
with increasing parallelism and complexity towards XL tend
to have slightly lower accuracy compared to simple parallel
query plans due to the increased computational overhead
and data dependencies. However, it is important to note that
the decrease in accuracy is relatively small, indicating that
ZeroTune exhibits reasonable performance in predicting the
cost for complex queries with high parallelism degrees.
Unseen Benchmark. We further extend our evaluations

to examine the accuracy and generalization of ZeroTune
model for unseen benchmark queries. We observed that the
OptiSample strategy deliberately selected low parallelism
degree categories XS and S due to the simplicity and
arbitrarily low incoming event rates of the benchmarks as
shown in in Figure 7b. From the results, it is evident that the
model can accurately predict the cost for different parallelism
categories in the context of benchmark queries as well.
However, in comparison to latency, the cost prediction errors
for throughput are slightly higher as the data distribution
for benchmarking queries differs from that of the synthetic
queries that are in line with the overall results (cf. Table IV
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Fig. 7: Q-errors of cost prediction of PQP for varying parallelism:
(a) seen plans, (b) unseen benchmark plans, (c) plans on unseen
homogeneous and heterogeneous hardware and (d) comparison of
zero-shot and few-shot for unseen plans for ZeroTune model based
on OptiSample training strategy.

3©). Still, fine-tuning the model can effectively improve
ZeroTune’s performance in these cases (shown later).
Unseen Resources. In addition, we evaluated the Zero-

Tune model’s generalization ability on unseen configurations
of heterogeneous and homogeneous resources and the impact
of parallelism categories (cf. type “U” in Table II). Figure 7c,
reveals that the ZeroTune model consistently delivers ac-
curate cost predictions also for unseen hardware resources
and their parallelism categories. In line with the other plots,
here, too, we see an increasing trend in q-errors with the
increasing parallelism degrees due to the complex trends
that may occur due to this increase, like load imbalance,
parallelism granularity, or resource contention. Nevertheless,
the relatively low q-errors demonstrate the model’s capability
to learn from diverse hardware configurations and effectively
correlate them with parallelism degrees due to the resource-
related transferable features learned by the model.
Unseen Workload. Next, in Figure 7d, we assess Zero-

Tune’s accuracy for unseen and complex parallel query plans

across varying parallelism categories. Notably, the ZeroTune
model again exhibits reasonably accurate predictions across
all parallelism categories with relatively small variations,
suggesting that the model can effectively capture the per-
formance patterns and generalize well to unseen query plans
within this template structure. However, a slight decrease
is noted for more complex parallel query plans, especially
in throughput for 5-way, and 6-way join, as per the q-
error trends observed in Table IV 2©. To address this, we
enhanced performance using an additional dataset of joins
(500 queries). Using few-shot learning as shown in Figure 7d,
it significantly amplifies the prediction accuracy in both
median and tail errors in comparison to zero-shot learning
and adapts more effectively to each parallelism category XS
and XL, aligned with the overall results (cf. Figure 6).
C. Exp. 3: Generalization for Unseen Parameters

In this section, we evaluate the generalization ability of
ZeroTune model to predict cost across various workload
parameters. To achieve this, we interpolate and extrapolate in
the range presented in Table III. Figure 8 illustrates the impact
of several key parameters, including tuple width, window
configurations, and amount of available workers in a cluster,
which are selected, because of their direct relation to the
parallelism degrees and the costs. For instance, the event rate
is a natural fit due to the backpressure effect, but also window
configurations because of the parallel processing of data
stream comprising different key-based windows. We use the
model trained on linear, 2-, and 3-way join query structures
to evaluate model on inter- and extrapolation ranges.
Tuple Widths. To evaluate the model’s accuracy, we

extrapolate the impact of tuple widths, potentially benefiting
from higher parallelism degrees, and tested the ZeroTune
model from 6−15 tuple widths. We used at least 165 queries
per tuple width, ensuring an equal distribution between
linear queries, 2- and 3-way join queries. In Section V-B, the
model demonstrates stable performance and generalization
to unseen tuple widths (shaded), suggesting its effective
learning of the correlations between tuple width and cost
in parallel query structures.
Event Rates. In Section V-B (log scale on the x-axis), we

analyzed the ZeroTune model’s ability to inter- and extrap-
olate event rates beyond the training range (cf Table III). The
model shows high accuracy in predicting costs for varying
event rates, both low and high event rates within (white) and
outside (shaded) the training range. Its proficiency in han-
dling higher event rates is due to its learned understanding of
the system’s processing limitations and backpressure effects
at full hardware capacity. However, at very low event rates,
the q-error values slightly increase, likely due to the model’s
limited exposure to such low-utilization scenarios, where less
data processing leads to resource under-utilization. Overall,
the ZeroTune demonstrates very good performance and
generalization for both seen and unseen event rates in terms
of predicting latency and throughput.
Window Durations (Time-based). Section V-B (log scale

on the x-axis), shows the ZeroTune’s ability to accurately
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Fig. 8: Median q-errors for cost prediction of PQP for unseen parameters - (a) tuple widths (per data type of source), (b) event rate, (c)
window duration, (d) window length, and (e) amount of workers. The white area represents the training range, while the grey area shows
the unseen range of these parameters. ZeroTune generalizes very accurately across all these unseen parameters also where extrapolation
ranges are higher.

predict costs over a range of window durations (cf. Table III).
The model initially shows slightly high median q-errors for
smaller unseen windows but overall, it exhibits comparable
good performance as the duration increases. As small win-
dows lead to rapid data processing and high data turnover, it
challenges the model to accurately capture the performance
characteristics and predict the associated costs when the
model has not seen smaller windows at all (the first seen
range is 250ms). In contrast, longer windows allow more
data accumulation before processing, aiding the models to
better understand the patterns of the system, thereby higher
accuracy in estimating costs for longer windows. However,
as the window increases towards the end of the unseen
range, variations in the accuracy of the model are observed,
possibly due to fewer training examples. Overall, the model
generalizes very well for longer windows in particular and
provides reasonably well predictions for small windows.
Window Lengths (Count-based). Like window duration,

window length also influences the cost of PQP, with dis-
tinct impacts for time-based and count-based windows on
throughput. Time-based windows typically maintain constant
throughput, unaffected by incoming event rates, while count-
based windows’ throughput is directly related to the input
rate of the operator. For instance, a tumbling count-based
window with a window length of 10 will reduce the outgo-
ing event rate to 10% of the incoming event rate, making
throughput prediction harder for unseen window sizes for
count-based windows. Section V-B (note log scale on the x-
axis) shows the ZeroTune model’s accuracy and generaliza-
tion predicting costs for seen and unseen window lengths.
However, extremely low and higher unseen window length
shows a slight increase in q-error (but only for throughput)
due to the reasons mentioned before.
Amount of Workers. The number of workers or nodes

in the DSP system plays a critical influence on cost. For
instance, smaller cluster sizes may have limited parallelism
due to fewer available workers, while larger cluster sizes
can handle a higher number of parallel tasks. In the eval-
uation results shown in Section V-B, we show that the
model consistently gives accurate cost predictions for varying
cluster sizes, allowing it to generate parallel query plans with
increased parallelism as the cluster size grows.

D. Exp. 4: Data-efficient Training

In Figure 9a, we compare the accuracy of our ZeroTune
models trained with random data: ZT-Random and Opti-
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Fig. 9: (a) Median q-errors for models trained with varying num-
bers of seen (left) and unseen (middle) queries, and (b) training
times required to achieve efficiency for ZeroTune using random
(ZT-Random) and OptiSample-based data. The OptiSample-based
strategy achieves the same accuracy with half the data and time.

Sample strategy against the increasing number of queries
(note log scale in x-axis). For both seen and unseen data, the
OptiSample-based model converges rapidly, i.e., as low as 5k
queries, whereas the random model requires over 18k queries
for similar accuracy, demonstrating the superior performance
of OptiSample in terms of data efficiency.

We further analyze in Figure 9b (linear scale in x-axis)
the training time required with an increasing number of
queries. The OptiSample model achieves higher accuracy
in approximately half the time, taking around 4.6 hours,
compared to the random model, which takes approximately
10.3 hours. This validates our hypothesis that our data-
efficient OptiSample strategy can achieve equal or better ac-
curacy with fewer queries and less training time, addressing
a significant bottleneck in training zero-shot models.

E. Exp. 5: Optimizer for Parallelism Tuning

We evaluate how ZeroTune aids in selecting parallelism
degrees in combination with optimizer as detailed in Sec-
tion III-C3. First, in Figure 10a, we present the mean speed-
ups for the different query structures, including unseen. The
metric indicates the factor of speed-up induced by executing
queries using the selected parallelism degrees by ZeroTune
model in comparison to a greedy heuristic [20]. Here, we
randomly selected 100 query types with different param-
eters, which were kept deterministic, while we performed
inference for different parallelism degrees based on the
enumeration strategies. The speed-ups, compared to a greedy
heuristic [20], showed promising results, reaching up to 12×
for simple linear queries and about 3.04× for unseen and
more complex query types n−way joins. Additionally, we
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compared to a greedy heuristic [20], showing high speed-up in
latency and throughput. (b) Comparative performance of query
types with parallelism degrees determined by ZeroTune versus
Dhalion [19]. The plot shows weighted average runtimes, with
ZeroTune surpassing Dhalion in both seen and unseen queries.
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Fig. 11: Feature ablation when using only (1) operator-, (2)
parallelism- and resource-related features, and (3) all features for
latency cost prediction.

compared the performance of our model with Dhalion [19],
the well-known and widely used traditional (non-learned)
parallelism tuning algorithm for Heron [33]. Dhalion is a
state-of-the-art auto-scaling controller with wide acceptance
both in academia and industry (Twitter Heron), making it
a suitable comparison. Moreover, ZeroTune outperforming
the non-transferable representations like flat-vector in the
previous experiments encouraged us to look into these well-
established auto-scalers.

The results in Figure 10b, indicating the weighted average
cost (cf. Equation (1)), shows that Dhalion performs relatively
well for similar and simple query structures, which is the
design focus, its effectiveness declines with increasing com-
plexity of parallel queries. In contrast, our ZeroTune model
consistently determines cost-effective parallelism degrees for
both seen and unseen queries, regardless of the query com-
plexity, outperforming Dhalion’s tuning algorithm.
F. Exp. 6: Ablation Study

We perform a feature ablation to identify and quantify the
contribution of each transferable feature to the generalization
performance of the model.

Figure 11 shows that while operator-specific features such
as average selectivity, enrich the model’s understanding of
data processing, they do not alone significantly improve the
accuracy of predictions for parallel query plans. However,
integrating these with parallelism-specific features such as
parallelism degrees, enhances model performance by linking
data processing characteristics with parallel execution effi-
ciency and resource utilization, thereby significantly improv-
ing the model’s efficiency and generalization to predict costs
accurately for both seen and unseen parallel query plans.

VI. Related Work
We analyze previous work for parallelism tuning in DSP

systems as (1) non-learned and (2) learned approaches.

Non-learned Approaches: Modern DSP systems like
Apache Flink [26], Heron [33], Storm [34] and Spark [35]
offer parallelism degree as a manual knob to initially tune
based on the workload and quality requirements. However,
manual tuning is known to be unreliable and susceptible to
changes in the workload. To tackle this issue, researchers
have intensively applied various online analytical techniques
to monitor system performance [36, 37] and determine the
optimal parallelism degree. For instance, monitoring-based
heuristic approaches [12, 19, 38–41] extensively use param-
eters such as observed rate, processing rate, CPU utiliza-
tion, etc., to determine optimal parallelism degree. Similarly,
other mathematical optimization approaches like [42, 43],
ILP [25], game theory [44], queuing-theory [45–47] have
been proposed for parallelism tuning. Some works have
used analytical approaches for resource estimation [48, 49]
and parallelism adjustment [47, 50]. While these approaches
provide some level of semi-automation for parallelism tuning,
they cannot be used to determine initial optimal parallelism
because they rely on query runtime observations that make
them unsuitable. This results in sub-optimal decision-making
as well as high monitoring overhead in converging to an
optimal parallelism degree.
Learned Approaches: Recently, there has been interest in

developing more learned approaches for parallelism tuning in
DSP systems [5, 8–11, 51, 52]. For instance, some works have
explored parallelism using stream partitioning prediction [7]
that is an orthogonal direction. An alternative prominent
technique that has gained popularity is incorporating elas-
ticity into the DSP system by allocating or de-allocating
resources to accommodate accelerating workloads [5, 10].
There has been interest in automated parallelism tuning in
recent work [6, 53]. Although these studies have shown
substantial performance improvements using machine learn-
ing, they train on non-transferable features and hence lack
generalization across unseen workloads, as done in this work.

VII. Conclusion and Future Work
In this paper, we propose ZeroTune, a novel data-efficient

zero-shot learned approach for performance prediction of
PQP in DSP systems. We propose novel transferable fea-
tures related to PQP and a parallel graph representation to
enable generalization for unseen workloads and resources.
Our experiments show that ZeroTune achieves an average
speed-up of around 5× in recommending optimal parallelism
degrees compared to existing approaches and outperforms
analytical methods by accurately predicting query perfor-
mance for different parallelism degrees. Moreover, by training
ZeroTune using a novel data-efficient training strategy Op-
tiSample, we significantly reduce the training effort by 4×
for generalization.
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