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Abstract—Software-Defined Networking (SDN) improves net-
work management and flexibility by separating control and data
plane functions. However, the centralized architecture of SDN can
increase cybersecurity risks, such as an increased vulnerability to
Denial of Service (DoS) attacks. While integrating machine learn-
ing (ML) models into Intrusion Detection Systems (IDSs) achieves
high detection performance, these ML models must demonstrate
strong generalization capabilities across new, previously unseen
network traffic patterns, which is crucial for networks with
dynamic traffic behavior. In our previously published work,
Collaborative ML-based IDS (CML-IDS), different ML models
are deployed in both the control and data plane to enhance
detection performance while reducing network load and detection
time. However, CML-IDS operates as an offline model, where ML
models are trained once on a specific network traffic pattern,
potentially limiting CML-IDS ability to generalize across diverse
and new network traffic patterns effectively. To address this issue,
we introduce COML-IDS, an online learning framework that
automatically updates the ML model in the data plane when
the detection performance degrades. Our results demonstrate
that COML-IDS achieves an average increase of at least 25% in
detection performance when encountering new network traffic
patterns while reducing the need to forward the necessary flow
feature data to the control plane compared to the CML-IDS.

Index Terms—Intrusion Detection Systems, Machine Learning,
Software-Defined Networking

I. INTRODUCTION

Software-Defined Networking (SDN) is a network archi-
tecture paradigm that separates the control plane from the
data plane to enhance network management and provide a
comprehensive view of network traffic behavior. However,
SDN is susceptible to cyberattacks such as DoS and DDoS
attacks, especially when the control plane operates in a reactive
configuration [1]. These attacks can target either the control
plane, overwhelming it with a large number of new packets in
a short period, or the data plane, saturating it with numerous
new flow rules. Consequently, an accurate Intrusion Detection
System (IDS) is essential for detecting these threats.

IDSs can be categorized into two main types: signature-
based and anomaly-based IDS [2]. Signature-based approaches
detect known intrusions whose signatures are available in

databases, whereas anomaly-based approaches can learn sta-
tistical traffic features to detect previously unseen intrusions.

The machine learning (ML)-based IDS is a suitable candi-
date for the anomaly-based approaches, which can be deployed
in the SDN control plane. However, this deployment increases
the detection delay and traffic load, potentially overloading
the controller. While deploying lightweight ML models in
programmable switches can accelerate network attack detec-
tion, it may decrease detection performance due to the limited
computational resources available in these switches. Our recent
work CML-IDS [3] introduced a collaborative framework that
balances the strengths of ML-based IDS in both planes. The
lightweight ML model in the data plane (DP-IDS) provides
a preliminary traffic classification, whereas an ensemble ML
model with higher learning capacity is deployed in the control
plane (CP-IDS) that targets the classification of the traffic
classified by DP-IDS with low confidence.

However, the DP-IDS is pre-trained once and installed in the
programmable switch, which can reduce its model confidence
for detecting new traffic patterns. This limits generalization
performance, which refers to the ML model’s ability to ac-
curately classify new network traffic patterns, regardless of
whether they share the same distribution as the training data.
This capability is crucial because network traffic behavior is
dynamic and can change due to concept drifts like modifi-
cations in network architecture and management rules [4],
[5]. Additionally, the emergence of new types of network
intrusions (i.e., zero-day attacks) can present patterns that
differ from those in the training data. Therefore, it is essential
to continuously adapt the deployed DP-IDS to maintain its
effectiveness in detecting both known and unknown attacks.

In this work, we integrate an online learning approach into
CML-IDS, naming it COML-IDS. The principal objective is to
improve the generalization of the CML-IDS, making it adapt-
able to new network traffic patterns while maintaining high
detection performance. Our designed framework addresses the
key questions: 1) What conditions should trigger the retraining
of an ML-based IDS? 2) How can we mitigate catastrophic
forgetting in online learning, where the model prioritizes new

https://orcid.org/0000-0002-8686-113X
https://orcid.org/0009-0004-6826-2178
https://orcid.org/0009-0003-8085-5526
https://orcid.org/0000-0002-1133-1775
https://orcid.org/0000-0003-1711-5990
https://orcid.org/0000-0002-6839-9359


Pegah Golchin, Chengbo Zhou, Hengyu Liu, Björn Scheuermann, Ralf Kundel, Tobias Meuser. Integrating Online Learning with
Collaborative Machine Learning for Continuous Intrusion Detection in SDN. To appear in Proceedings of the IEEE Conference on Network

Function Virtualization and Software Defined Networks, 2024.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors

or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may

not be reposted without the explicit permission of the copyright holder.

Programmable Data Plane

Control Plane

MA (n)

DP-IDSPreprocessing Post-Processing

Sub-Flow
Aggregation

Feature
Extraction

DP-IDS
Confidence

Alert Module

Collection
Module

Low Confidence

OOD Model
Update Module

P4 Generator
Module

In-
Distribution

Out-of-
Distribution

Updated
DP-IDS

fn

MA (1)

f1

Expert Knowledge

Active Learning-
based Annotation

CP-IDS

New Packet 
Arrival

Fig. 1: COML-IDS architecture. Various modules are designed
to continually adapt the DP-IDS. The contributions of COML-
IDS are highlighted in green boxes.

patterns at the expense of previously learned ones? 3) How
should new network traffic patterns be annotated?

As shown in Figure 1, the DP-IDS classification results are
used to trigger the Alert module when they meet the retraining
conditions. To prevent catastrophic forgetting, new network
traffic patterns are merged with the baseline traffic dataset
within the Collection module. An active learning approach
is employed to annotate new, previously unseen patterns.
Using an Out-of-Distribution (OOD) model, these patterns
are classified as either in-distribution or out-of-distribution.
If a pattern is in-distribution, CP-IDS is used for annotation;
otherwise, expert knowledge is required. The effectiveness of
COML-IDS is evaluated using three different publicly available
network traffic datasets, showing that COML-IDS increases
detection performance and achieves better generalization than
CML-IDS.

The paper is structured as follows: Section II explains
related works. The COML-IDS architecture is presented in
Section III. In Section IV, evaluation results are presented and
discussed. Finally, Section V provides a short summary.

II. RELATED WORK

This section provides an overview of deploying ML-based
IDS within the SDN architecture and explores the integration
of online learning approaches into IDSs.

A. Deploying the ML-based IDS in SDN

Many researchers have deployed various ML models in
the SDN control plane to classify network flows due to
its sufficient computational resources [6]–[8] Although these
models can achieve high detection performance, their detection
speed does not match the line rate. Additionally, transmitting
flow features to the control plane results in more traffic, which
can overwhelm the controller.

To increase detection speed and prevent overwhelming the
control plane, researchers have investigated deploying ML
models in the programmable data plane [9]–[12]. Given the
limited computational resources in P4 switches, some ap-
proaches use the P4 switch solely as a flow feature extractor,
where the ML-based IDS is deployed on a separate server [9],

[13]. Others utilize lightweight ML models structured similarly
to the match-action pipeline of the P4 switch [10]–[12].
However, lightweight ML models often have lower detection
performance compared to more complex models. To address
this issue, CML-IDS [3] combines a lightweight model in
the DP and an ensemble ML model in the CP based on the
confidence level of the DP model. While CML-IDS balances
detection performance, flow transmission, and detection speed,
it is trained only once on a specific network traffic pattern. This
limitation reduces its adaptability to new, previously unseen
network traffic patterns.

B. Online ML-based IDS

To make the ML-based IDS adaptable to dynamic network
architectures and concept drift, one effective approach is to use
online learning [4], which involves retraining the ML model
to continuously adapt to new network conditions. Authors
in [14] and [15] proposed an in-network ML model, which was
updated regularly.However, updating the model without any
conditions can increase network latency and packet transmis-
sion. In [16], the authors proposed adaptive flow measurement
rules using weighted linear prediction and a strategy from
multi-armed bandit problems. However, their focus was not
on network intrusion detection.

In our work, we extend the CML-IDS approach by updating
the DP-IDS based on specific criteria. These criteria include
detecting out-of-distribution flow patterns and monitoring the
number of flows classified by the DP-IDS with low confidence.
This improves system adaptability and detection performance
when encountering dynamic network behavior.

III. COML-IDS DESIGN

In this study, we introduce COML-IDS, integrating online
learning to augment the generalization capability of CML-
IDS [3]. As depicted in Figure 1, COML-IDS comprises
several ”Baseline Modules” inherited from CML-IDS, along
with new modules that enable online functionality, which are
explained in the following sections.

A. Baseline Modules in the Programmable Data Plane

1) Preprocessing Module: Upon the arrival of a packet,
a flow identifier is computed using the CRC32 hash function
applied to the packet 5-tuple values (source and destination
IP addresses, port numbers, and transport protocol). To avoid
detection delays caused by waiting for complete flows, the
concept of sub-flow is utilized, where the features of the first
N packets of a flow are collected and fed to the DP-IDS for
traffic classification. Based on the previous findings [12] [3],
N = 8 achieves the optimal balance between informativeness
and detection speed. The subsequent packets of the classified
sub-flows are handled according to the classification result
(e.g., forward if the flow is classified as Benign; drop if it is
classified as Attack). A total of 59 features are extracted from
sub-flows, referred to complete feature set. From these, 20
features are identified as the most relevant to the classification
using an ensemble feature importance algorithm [6]. These
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selected features constitute the reduced feature set. These
features are thoroughly explained in [3].

2) DP-IDS Model: The ML model for DP-IDS must be
tailored to suit the programmable switch architecture. Tree-
based ML models are suitable for deployment in DP-IDS
because their structure shares similarities with the match-
action pipeline of switches and does not require complex
mathematical computations. In this paper, DP-IDS is imple-
mented using a lightweight Random Forest (RF) comprising
three Decision Trees (DTs) with five layers for prototyping.
The number of DTs and layers are determined through cross-
validation, considering the computational resource constraints
of the switch. The RF model is trained with the reduced feature
set (§III-A1) to balance computational cost and detection per-
formance. Note that any feasible model for the programmable
switch can be used for DP-IDS in COML-IDS.

3) Post-Processing Module: This module accepts the DP-
IDS output (Benign or Attack) along with the associated model
confidence (MC), which reflects the certainty of the detection
result. MC is computed within the programmable switch by
averaging the Gini impurities over the reached leaves of the
three DTs, resulting in MC values ranging from 0 to 0.5.
A lower MC indicates higher confidence in the detection.
Subsequently, the MC value is compared to a predefined
threshold (MCthr) to determine whether to trust the DP-
IDS detection result (MC ≤ MCthr) or trigger CP-IDS for
further processing (MC > MCthr). The latter requires that
the switch generates a packet (denoted by Pflow) carrying the
extracted sub-flow features and sends it to CP-IDS. MCthr

serves as a factor to adjust the sensitivity for trusting the DP-
IDS result. Higher MCthr introduces a less stringent threshold
for trust, resulting in more sub-flows classified by DP-IDS
and, therefore, less traffic to the control plane. In contrast,
lower MCthr leads to relatively higher overall detection
performance, as more sub-flows are classified by CP-IDS.

B. Baseline Modules in the Control Plane

1) CP-IDS Model: CP-IDS is an ensemble ML model com-
prising an RF, XGBoost, and a Multi-Layer Perceptron (MLP).
The final detection result is derived by averaging the prediction
outputs of these individual models.

2) P4 Generator Module: This module is designed to
automatically convert the trained RF model for DP-IDS into
P4 code and match-action table entries.

(a) Missed alert in theory. (b) Optimization in theory.

(c) Missed alert in switch. (d) Optimization in switch.

Fig. 2: Alert misses and optimization. Upward-pointing ar-
rows: Pflow indexed from 1 to 10 along the time axis. CCn:
n-th counting cycle. Gray/Red box: triggered/missed alert.

C. Model Updating Pipeline in COML-IDS

To ensure the ML-based IDS can accurately detect various
network traffic patterns resulting from the dynamic behavior of
network traffic, the ML model should be updated whenever the
classification performance degrades. In COML-IDS, the per-
formance degradation is reflected in advance by the increase
of the sub-flows classified by DP-IDS with lower confidence.
That is equivalent to the increase of the Pflow (§III-A3)
generated within the switch.

1) Alert Module: An alert is triggered when the DP-
IDS performance degradation occurs, defined by the number
of Pflow exceeding a specific threshold (Thr) over a time
window (Tw). Following each alert, the subsequent mod-
ules (§III-C3, §III-C4) are activated for collecting data to
construct the training dataset used for retraining DP-IDS. After
each successful update, a new counting cycle is initialized to
monitor the next potential performance degradation.

Challenge 1: Theoretically, an alert should be triggered
whenever the condition is fulfilled using a sliding window.
However, implementing a sliding window for online packet
counting requires enormous counting cycles depending on the
granularity of time measurement and the window size. An
intuitive solution is to start counting cycles periodically after
completing the previous one. Unfortunately, this solution could
lead to alert misses due to the cycle’s reset if a significant
number of Pflow are sent to CP-IDS near the end of a counting
cycle. An example is illustrated in Figure 2a. Ten Pflow are
observed within four counting cycles (CCs). Tw and Thr are
set to 1 and 4, respectively. Assume CC1 starts at time 0 and
there is no Pflow after the last Pflow. We can observe that
an alert is triggered within CC1 since the first four Pflow are
detected within a single counting cycle. The last four Pflow

occur within a Tw but spread over CC3 and CC4. That leads
to a missed alert for them.

Solution: To tackle this challenge, the alert module adopts
a two-phase strategy within each counting cycle: the normal
phase, which is identical to Tw explained above, and the
tolerance phase, which allows Tw to be exceeded with a
specific amount of time (denoted by Tp) while counting the
number of Pflow. Figure 2b depicts the optimized alert trigger
leveraging this two-phase strategy. The tolerance phase is
marked with dotted lines. Note that a new counting cycle
is initialized after Tw instead of (Tw + Tp) if no alert is
triggered in the previous counting cycle (e.g., CC3 starts at
time 2 instead of (2 + Tp)). We observe that the last two
Pflow are counted in the Tp of CC3, which reaches the
Thr within (Tw + Tp), and thus the alert for the last four
Pflow is successfully triggered. CC4 starts at the timestamp
(2+Tw+Tp) which is the end of Tp in CC3, as an alert in
the previous counting cycle CC3 is triggered.

Challenge 2: Initializing the normal and tolerance phases
requires retrieving the current clock of the programmable
switch at any time. However, the packet processing logic is
only triggered when a packet arrives at the switch. This implies
that the clock value is only known upon the arrival of a packet.
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Solution: Recall that the packet Pflow is generated when
a sub-flow is classified by DP-IDS with lower confidence. In
other words, Pflow is created and sent to CP-IDS when the
8th packet of a low MC sub-flow enters the programmable
switch and triggers the classification process executed in the
ingress pipeline. Therefore, the creation time of Pflow can be
approximated by the value of the metadata ingress timestamp
of the 8th packet of a sub-flow. Figure 2c illustrates the
amended start and end of counting cycles for the same traffic
pattern without the two-phase strategy. In contrast to the
theoretical case in Figure 2a, the duration of a counting cycle
becomes elastic instead of being equal to Tw. It is compressed
when an alert is triggered (e.g., CC1), as Thr is reached before
the end of Tw, and stretched when no alert is present (e.g.,
CC2 and CC3), since Tw is already exceeded when the last
Pflow is generated. The counting cycle lasts Tw only when
the last Pflow is created exactly at the end of the cycle, which
happens extremely rarely with nanosecond granularity.

Note that the 4th Pflow initializes CC2 due to the alert
trigger, whereas CC3 and CC4 are initialized due to the end of
the previous counting cycles. Therefore, the 6th and 8th Pflow

are counted in CC3 and CC4, respectively, as they are the first
seen Pflow in these two cycles. Similarly, the alert for the last
four Pflow is also missed, the same as the theoretical case.
Figure 2d demonstrates the correct triggering by applying the
two-phase strategy in the programmable switch. CC1 starts at
timestamp 0, at which time the first Pflow is created. An alert
is triggered before the end of Tw. Hence, the tolerance phase
Tp is not needed for CC1, and CC2 is directly initialized
subsequently. At the creation time of the 6th Pflow, the elapsed
time in CC2 is between Tw and (Tw+Tp). That indicates the
tolerance phase is not complete, and CC3 may be initialized
potentially if Thr is not reached in the remaining time of
CC2. Therefore, the switch generates a virtual counting cycle
for CC3 and starts counting the number of Pflow. The end of
CC2 is determined at the creation time of the 7th Pflow, at
which point the elapsed time is larger than (Tw + Tp), and
only two Pflow are captured. Therefore, no alert in CC2 is
triggered, and the virtual CC3 becomes a real counting cycle
with the state: two Pflow are captured, and the elapsed time
is equal to the interval between the 6th and 7th Pflow. An
alert is triggered within CC3 when the 9th Pflow is created
in the tolerance phase of CC3. The alert-triggering procedure
with the two-phase strategy for the programmable switch is
formulated in Algorithm 1. Note that nvir is initialized with
1, as entering the tolerance phase is triggered by a Pflow.

2) Annotation Module: Once Pflow carrying sub-flow
features are forwarded to the control plane for updating DP-
IDS, their labels (Attack/Benign) need to be identified to
construct the training dataset that is used to retrain the DP-
IDS. We consider two scenarios in this work:
Expert Knowledge: In this scenario, the ground-truth label of
the sub-flow is used, which means each sub-flow is correctly
labeled based on human knowledge. However, it is impractical
as human intervention for labeling all sub-flows is required.
Active Learning: To make the system more practical and

Algorithm 1 Alert-triggering procedure.

Input: 8th packet of a low MC sub-flow f .
1: Generate a Pflow

2: Crf ← ingress timestamp
3: t← Crf − CC.st ▷ CC.st: start time of a CC
4: if t ≤ Tw then
5: n← n+ 1
6: if n ≥ Thr then
7: Trigger an alert
8: CC.st← Crf ▷ new CC
9: t← 0; n← 0; nvir ← 1

10: else
11: CCvir.st← Crf ▷ CCvir: virtual CC
12: end if
13: else if t ≤ (Tw + Tp) then ▷ tolerance phase
14: n← n+ 1
15: nvir ← nvir + 1
16: if n ≥ Thr then
17: Trigger an alert
18: CC.st← Crf ▷ new CC
19: t← 0; n← 0; nvir ← 1
20: end if
21: else
22: CC.st← CCvir.st ▷ virtual CC to real CC
23: n← nvir + 1; nvir ← 1;
24: end if

efficient, we implement an active learning approach [17]. Here,
human knowledge is only used for sub-flows that exhibit pat-
terns different from those on which the CP-IDS was originally
trained. To assess the distinctiveness of a sub-flow’s pattern,
we implement an Isolation Forest as an Out-of-Distribution
(OOD) model. This method partitions data points randomly
and constructs decision trees, effectively isolating anomalies
by requiring fewer splits compared to normal data. The OOD
model is trained with the same network traffic patterns for
training CP-IDS and detects whether a sub-flow is OOD or in-
distribution (ID) relative to the training data. Human experts
provide ground-truth labels only for the OOD sub-flows, which
are uncertain data points. For ID sub-flows, the labels are
determined using the output of the CP-IDS. Compared to the
Expert Knowledge scenario, the need for human intervention
is reduced in this scenario, though it may increase noise within
training data by annotating the sub-flow incorrectly.

3) Collection Module: In this module, the annotated sub-
flow entries are collected as new network traffic datasets.
The training dataset for retraining DP-IDS is built with three
segments: 1) the sampled base dataset used for training the
original DP-IDS, 2) the sub-flow entries that trigger the alert
due to a sudden change in traffic behavior, and 3) a certain
amount of sub-flows collected after the alert, as these sub-
flows reflect the changes in the traffic pattern and thus provide
up-to-date data for updating DP-IDS.

4) Update Module: This module is responsible for retrain-
ing the deployed RF model using the network traffic dataset
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created by the Collection Module. The updated RF model
will then be sent to the P4 Generator module to generate
compatible match-action table entries and embed the new
model in the programmable data plane.

IV. EVALUATION AND DISCUSSION

This section presents the evaluation results of COML-IDS on
diverse network traffic patterns sourced from various datasets,
including CICIDS17 [18], CICDDoS19 [19], and Botnet [20].
The initial training was conducted using 70% of CICIDS17,
while the remaining 30% of CICIDS17 and the other datasets
were used for testing. For training and updating the DP-IDS
and CP-IDS, we use an Ubuntu server with 128GB RAM and
4 CPUs (Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz). The
macro-average F1 score reflects the detection performance of
COML-IDS. The value of MCthr is set to 0.3, as suggested
by CML-IDS, that it achieves the best balance between the
detection performance and speed.

A. Detection Performance Evaluation

This section highlights the improvement in detection per-
formance and the reduction in sub-flows classified by CP-IDS
using the proposed COML-IDS, compared with CML-IDS.
Figure 3 illustrates these results across three different network
traffic patterns. Network traffic patterns from CICIDS17 are
considered similar since the model is trained on a portion of
CICIDS17. In contrast, the other two datasets represent new,
previously unseen network traffic patterns.

According to the results in Figure 3 (left), COML-IDS
achieves higher detection performance across all network
traffic patterns. Although the improvement in detection perfor-
mance for the similar pattern (i.e., CICIDS17) is modest (3%),
the gains for the new patterns are significant: 33% for CICD-
DoS19 and 31% for the Botnet dataset. This demonstrates that
COML-IDS can achieve higher generalization and detection
performance when encountering new network traffic patterns.
Additionally, Figure 3 (right) reveals the percentage of sub-
flows classified by CP-IDS among all classified sub-flows in
COML-IDS. Recall that classifying sub-flows using CP-IDS
requires sending Pflow (§III-B) to the control plane, which
increases the network load. Compared to CML-IDS, COML-
IDS consumes less network bandwidth for sending Pflow,
particularly for the new traffic patterns. In other words, more
sub-flows are classified by DP-IDS with higher confidence
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Fig. 3: Comparison of detection performance (left) and net-
work load (right) of COML-IDS with CML-IDS across various
network traffic patterns.
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in COML-IDS, revealing that online learning can effectively
adapt to changes in network traffic.

B. Effectiveness of Online Learning

This section demonstrates the effectiveness of COML-IDS,
highlighting how online learning can gradually enhance detec-
tion performance through continual updates. As shown in Fig-
ure 4 (left), when receiving only 25% of the unseen network
traffic patterns (i.e., CICDDoS19), COML-IDS outperforms
CML-IDS by 13%. As the number of received flows increases
to 100% of the new traffic patterns, the performance gap
widens to a 33% improvement for COML-IDS.

According to results, when encountering new network traffic
patterns, COML-IDS improves by 8% as the volume of new,
previously unseen sub-flows increases. In contrast, CML-IDS
performance decreases by 12% with the same increase in new
sub-flows. Moreover, Figure 4 (right) shows that the sub-flows
classified by CP-IDS increase by 7.8% in CML-IDS, while for
COML-IDS, this increase is only 1.4%. It indicates that online
learning can efficiently adapt to changes in network traffic
and thus retains lower bandwidth consumption for forwarding
traffic features to the control plane.

C. Impact of Active Learning-based Annotation

In COML-IDS, annotating newly received network traffic
patterns (forwarded due to the alert trigger) is essential for
fully integrating our online learning approach. As detailed
in §III-C2, an active learning-based annotation mechanism is
developed to automate this process. While this mechanism
enhances automation, it may reduce annotation accuracy. The
out-of-distribution (OOD) model is trained with CICIDS17
network traffic patterns. Therefore, any received network traf-
fic patterns that differ from the training set are considered
out-of-distribution and annotated using expert knowledge. In
contrast, in-distribution patterns are annotated using CP-IDS.

However, among the sub-flows classified as in-distribution,
some may still originate from different distributions, leading to
potential incorrect annotations by the CP-IDS. Our evaluation
results indicate that for sub-flows with different distributions
(i.e., CICIDS19 and Botnet), the number of incorrectly anno-
tated sub-flows by CP-IDS increases by 24%, highlighting a
limitation of the active learning-based annotation approach.
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TABLE I: Detection performance for different scenarios

Scenarios CICIDS17 CICDDoS19 Botnet
COML-IDS with only
Expert knowledge annotation 96.3% 85.7% 83.9%

COML-IDS with Active
Learning-based annotation 96.1% 76.3% 78.6%

Baseline (CML-IDS) 93.6% 52.3% 52.2%

To assess the impact of this limitation on overall detec-
tion performance, we compare the detection capabilities of
COML-IDS under two conditions: one solely utilizing expert
knowledge for annotation and the other employing an active
learning-based approach. Results from CML-IDS are used as
a baseline for comparison.

According to the results presented in Table I, the overall
detection performance decreases when active learning is em-
ployed, as anticipated. However, relying exclusively on expert
knowledge for annotation is impractical due to the high cost
associated with the process. By integrating active learning,
COML-IDS maintains higher detection performance compared
to the baseline, CML-IDS. Specifically, for the CICDDoS19
dataset, COML-IDS with active learning outperforms CML-
IDS by 24%, and for the Botnet dataset, this improvement
reaches approximately 26%.

V. CONCLUSION

In this paper, we introduce COML-IDS, an online learning
approach designed to enhance the intrusion detection capa-
bilities of the existing collaborative ML-based IDS (CML-
IDS). COML-IDS addresses the issue of degraded detection
performance caused by the dynamic nature of network traf-
fic, effectively identifying new and previously unseen traffic
patterns. By incorporating various modules in both the data
plane and the control plane, we ensure the automatic update
of the model in the programmable data plane when the alert
module is triggered. Our results demonstrate that COML-IDS
achieves an average detection performance improvement of
32% across new, diverse network traffic patterns when using
expert knowledge for annotation and 25% when incorporating
an active learning-based annotation. While the active learning
approach enhances automation and practicality, it slightly
reduces overall detection performance. Additionally, COML-
IDS reduces the amount of traffic forwarded to the control
plane when encountering new, previously unseen network
traffic patterns. As this work is implemented on a software-
based P4 switch (BMv2), future work could involve deploying
this framework on hardware-based programmable switches.
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[10] B. M. Xavier, R. S. Guimarães, G. Comarela, and M. Martinello,
“Programmable Switches for in-networking Classification,” in IEEE IN-
FOCOM 2021-IEEE Conference on Computer Communications. IEEE,
2021, pp. 1–10.

[11] J.-H. Lee and K. Singh, “SwitchTree: In-network Computing and Traffic
Analyses with Random Forests,” Neural Computing and Applications,
pp. 1–12, 2020.

[12] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Vanbever,
“pforest: In-network Inference with Random Forests,” arXiv preprint
arXiv:1909.05680, 2019.

[13] R. N. Carvalho, L. R. Costa, J. L. Bordim, and E. A. Alchieri,
“Detecting DDoS Attacks on SDN Data Plane with Machine Learning,”
in 2021 Ninth International Symposium on Computing and Networking
Workshops (CANDARW). IEEE, 2021, pp. 138–144.

[14] M. Zang, C. Zheng, L. Dittmann, and N. Zilberman, “Towards Contin-
uous Threat Defense: In-network Traffic Analysis for IoT Gateways,”
IEEE Internet of Things Journal, 2023.

[15] C. Zheng, Z. Xiong, T. T. Bui, S. Kaupmees, R. Bensoussane, A. Bern-
abeu, S. Vargaftik, Y. Ben-Itzhak, and N. Zilberman, “IIsy: Hybrid
In-Network Classification Using Programmable Switches,” IEEE/ACM
Transactions on Networking, 2024.

[16] C. Liu, A. Malboubi, and C.-N. Chuah, “OpenMeasure: Adaptive Flow
Measurement & Inference with Online Learning in SDN,” in 2016
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2016, pp. 47–52.

[17] M. Hajizadeh, S. Barua, and P. Golchin, “FSA-IDS: A Flow-based Self-
Active Intrusion Detection System,” in NOMS 2023-2023 IEEE/IFIP
Network Operations and Management Symposium. IEEE, 2023.

[18] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward Generating
a New Intrusion Detection Dataset and Intrusion Traffic Characteriza-
tion.” ICISSp, vol. 1, pp. 108–116, 2018.

[19] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Devel-
oping Realistic Distributed Denial of Service (DDoS) Attack Dataset
and Taxonomy,” in 2019 international carnahan conference on security
technology (ICCST). IEEE, 2019, pp. 1–8.

[20] E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani, “Towards
Effective Feature Selection in Machine Learning-based Botnet Detec-
tion Approaches,” in 2014 IEEE Conference on Communications and
Network Security. IEEE, 2014, pp. 247–255.


	Introduction
	Related Work
	Deploying the ML-based IDS in SDN
	Online ML-based IDS

	COML-IDS Design
	Baseline Modules in the Programmable Data Plane
	Preprocessing Module
	DP-IDS Model
	Post-Processing Module

	Baseline Modules in the Control Plane
	CP-IDS Model
	P4 Generator Module

	Model Updating Pipeline in COML-IDS
	Alert Module
	Annotation Module
	Collection Module
	Update Module


	Evaluation and Discussion
	Detection Performance Evaluation
	Effectiveness of Online Learning
	Impact of Active Learning-based Annotation

	Conclusion
	References

