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Abstract—Federated Averaging (FedAvg) is the most common
aggregation method used in Federated learning, which performs
a weighted averaging of the updates based on the sizes of
the individual datasets of each client. A raising discussion in
the research community suggests that FedAvg might not be
the optimal method since, for instance, it does not fully take
into account the variety of the client data distributions. In this
paper, we propose a label-aware aggregation method FedLA, that
addresses the biased models issue by considering the variety of
labels in the weighted averaging. It combines two main properties
of the client data, namely data size and label distribution.
Through extensive experiments, we demonstrate that FedLA is
particularly effective in several heterogeneous data distribution
scenarios. Especially when only a small group of the clients is
participating in the Federated Learning process. Furthermore, we
argue that accurately describing the data distribution is crucial
in selecting the appropriate aggregation method. In this regard,
we discuss various properties that can be used to describe data
distribution and illustrate how these properties can guide the
choice of an aggregation method for specific data distributions.

Index Terms—Federated learning, Heterogeneous data distri-
bution, non-IID

I. INTRODUCTION

Federated Learning (FL) has gained significant attention in
recent years due to its ability to address two critical issues
in distributed learning: 1) data privacy and 2) communication
efficiency. Unlike traditional machine learning approaches that
require centralizing the training data on a single central server,
FL allows the clients to train the model locally and share only
their model updates with the central server, thereby reducing
significantly the amount of data exchanged between the clients
and the server. Moreover, as the user data is maintained locally,
FL provides enhanced user privacy – although recent research
has highlighted potential information leakages in FL [5], [13],
[16].

To aggregate the updates obtained from the clients, the
server uses an aggregation operation that is crucial for the
convergence of the model. McMahan et al. [12], the founders
of FL, proposed the Federated Averaging (FedAvg) algorithm
to aggregate the updates. FedAvg has been widely adopted

and serves as a fundamental building block for many FL
algorithms. FedAvg assigns weights to client updates solely
based on the size of their local data, making it suitable for
Independent and Identically Distributed (IID) data. However,
for non-Independent and Identically Distributed (non-IID)
data, FedAvg may require a large number of communication
rounds to converge [12].

In fact, in real FL scenarios, data is typically heterogeneous:
non-IID and imbalanced [12]. Ignoring this heterogeneity can
lead to biased models and unfairness [8]. Recent studies
indicate that FedAvg can lead to low accuracy in some
cases [14] and may not be optimal [18]. To address these
issues, various approaches [11], [17] have been proposed to
improve the aggregation process. For instance, FedProx [11]
includes a proximal term in the objective function to encourage
client models to stay close to the global model. On its hand,
FedNova [17] uses a second-order optimization method to
estimate the curvature of the loss surface and adjust the step
size of the updates accordingly. While these approaches have
shown promise, they offer limited improvements over FedAvg,
and their conditions to be effective are not always clear.

Hence, the data distribution is a major factor when measur-
ing the effectiveness of aggregation methods. Despite this, the
existing literature on aggregation methods primarily focuses on
scenarios where data is IID, while the complexities of non-IID
data distributions remain relatively unexplored. Consequently,
two major issues arise. Firstly, it is unclear which aggregation
methods perform better under which non-IID distribution.
Secondly, it is challenging to compare different aggregation
methods against each other. In light of these limitations, further
research is needed to explore the potential of aggregation
methods in non-IID settings and to develop evaluation metrics
that account for the variability of non-IID data distributions.

The following outlines the contributions presented in our
paper:

• We propose Federated Learning with Label Awareness
(FedLA), an aggregation method that addresses the non-
IID data distribution by considering the distribution
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of classification labels in the weighted averaging. Our
method is simple, yet effective in several scenarios (we
discuss them in more detail in Section IV). FedLA com-
putes a weighted average of the models trained on each
client, where the weights are proportional to the number
of instances of each label in the local dataset. Moreover,
FedLA outperforms FedAvg, especially in cases where
clients’ participation is considerably small.

• In addition, we argue that the key point for selecting a
proper aggregation method is describing the data distri-
bution (e.g., non-IID) as precisely as possible. Therefore,
we elaborate on the different properties to describe data
distribution. We demonstrate how these properties can be
used to decide which aggregation method is more suitable
for a particular data distribution.

• Finally, the complete source code, encompassing the
data distribution scenarios and the full corresponding
experimental outcomes considering different performance
metrics, are openly available at 1

II. LITERATURE REVIEW

The proper specification of data distribution is crucial for
designing and implementing machine learning models, espe-
cially in the context of FL. In FL, the IID data distribution
is commonly used as a standard, where each client’s data
follows the same distribution as the population, and the clients’
distributions are independent of each other. Implementing this
scenario in empirical experiments is straightforward. However,
dealing with non-IID data distribution is challenging due to
various potential sources of heterogeneity. Kairouz et al. [8]
identified five distinct ways in which data can deviate from
the IID case:

• Feature distribution skew: the feature distribution varies
across clients.

• Label distribution skew: the label distribution varies
across clients.

• Feature-label mapping skew: different features across
clients yield the same label.

• Label-feature mapping skew: different labels across
clients are mapped with the same features.

• Quantity skew: different clients possess significantly dif-
ferent amounts of data.

To consider the heterogeneity of the data and non-IID dis-
tributions, numerous approaches have been proposed in the
literature. Broadly speaking, these approaches can be classified
into two main categories: (1) data-based and (2) parameter-
based approaches.
Data-based approaches. These approaches elicit properties
of the data and incorporate these properties into the aggre-
gation method. One of the most common approaches in this
category is FedAvg [12], where the data size of the clients
is used as a property into the weighted averaging process.
However, FedAvg is mainly addressing the quantity skew

1https : / / github . com / AhmadMkhalil / Label - Aware - Aggregation - in -
Federated-Learning

issue, while overlooking the other non-IID cases leading to
underestimation of the full extent of data heterogeneity in
FL. Empirical evidence demonstrates that combining data
from different sources without considering the diversity of the
sources can yield a misleading interpretation of results [15].
Xiao et al. [18] studied the behavior of the model parameters
of different clients and demonstrated that, with the increase of
training iterations, the model parameters of different clients
become more correlated but not necessarily closer in value.
This indicates that the commonly used averaging technique
may not be the most effective approach for parameter aggre-
gation. Anelli et al. [1] studied clients’ contributions in FL
and proposed criteria to measure their quality. They focused
on dataset properties for image classification and identified
key factors: dataset size, label diversity, model divergence,
class balance, and image sharpness. The authors showed that
these criteria influenced the overall FL training process and
the resulting model’s performance, with certain factors being
more impactful than others.
Parameter-based approaches. These approaches optimize
model parameters to enhance accuracy, without modifying
the data distribution to suit the model. The core idea is that
training a machine learning model on non-IID data reflects
the statistical properties of the model parameters. Reyes et
al. [15] proposed an averaging algorithm that incorporates
estimated parameter variances. They penalized model uncer-
tainty at the client level by using inverse variance as weights
during averaging. However, their study mainly focused on a
specific non-IID scenario with two classes per client, limiting
the generalizability of their findings to other non-IID cases.
Hsu et al. [7] proposed two novel algorithms to improve
aggregation in FL. They focused on addressing two key issues:
label distribution skew and quantity skew. The first algorithm
incorporates importance weights into local optimization to
obtain an unbiased estimator of the loss. However, it requires
knowledge of the target distribution at the server. Nonetheless,
this approach greatly enhances FL model accuracy. The second
algorithm introduces virtual clients to tackle the quantity skew
problem, ensuring equal data contribution from all clients. This
helps minimize the impact of imbalanced data and results in
more robust and accurate models. Zhuo et al. [19] introduced
a novel approach to enhance the performance of FL models
by filtering and re-weighting client model parameters. This
approach is particularly useful for both IID and non-IID data
distributions. The method consists of two steps: weighting
the parameters of the client model’s final layer based on
class sample counts and removing nodes or kernels with high
variance in local client models during aggregation. While the
approach shows promising results, the study lacks a clear
and thorough description of non-IID data distributions, which
would provide better understanding of its practical applica-
bility. Oza et al. [14] proposed a novel method to train the
global model on the server side using statistical properties of
local model parameters. They utilized the mean and variance
of these parameters to train the global model. However, their
method is limited to scenarios where clients have an equal

https://github.com/AhmadMkhalil/Label-Aware-Aggregation-in-Federated-Learning
https://github.com/AhmadMkhalil/Label-Aware-Aggregation-in-Federated-Learning
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number of samples. Despite this limitation, their approach
demonstrates promising results in improving the accuracy of
image-based authentication models in FL settings.
Overall, the impact of different approaches described in the
literature has not been thoroughly analyzed yet to understand
their behavior under diverse data distributions. One of the
primary reasons for this gap is the inconsistent means used by
researchers to describe data distributions in their experiments.
Many researchers rely on vague terms like non-IID without
considering various factors related to data distribution men-
tioned earlier. Consequently, the interpretation of the results
obtained from such experiments remains a matter of debate.
To address this issue, our research paper takes a significant step
by providing a more precise description of the data distribu-
tion. This step will ultimately help researchers to accurately
evaluate the effectiveness of various proposed approaches.

III. METHOD

In this Section, we introduce our approach to addressing
label distribution skew in FL. We propose a straightforward ag-
gregation method called FedLA, which utilizes weighted aver-
aging. Additionally, we present three properties for describing
label distribution skew in non-IID data. These contributions
aim to improve model performance and mitigate bias in FL
systems.

A. FedLA
The weights used in our method are based on a combination

of the data size and the variety of labels per client. It is crucial
to note that in this context, we assume that the central server,
responsible for the averaging process, possesses knowledge
about the label distribution information of all clients partici-
pating in the communication round. To achieve this, during
each communication round, every client shares additional
information (metadata) with the server, which includes the
label distribution of the data used to train the local model,
along with the model update.
As depicted in Algorithm 1, let k denote the number of clients
participating in one communication round, and n denote the
number of labels, and S(ci) denote the number of samples held
by each client i participating in the communication round. For
the label with index j (namely, lj), let S(lj) denote the number
of samples with label lj , and S(ci, lj) the number of samples
with label lj at client ci. To calculate the weights for FedLA,
we take three steps as follows:

1) Client weight per label: To compute the weights, we first
calculate the client weight per label lj . To do so, we sum
all the samples of the label, S(lj), as follows

S(lj) =

k∑
i=1

S(ci, lj).

Then, we divide the number of samples of client ci with
label lj by this number to obtain its weight with respect
to (w.r.t.) the label,

W (ci, lj) =
S(ci, lj)

S(lj)
.

This step ensures that clients with a higher number of
labeled samples for a particular label have a higher weight
for that label, thereby improving the overall performance
of the model.

2) Client weight w.r.t. all labels: Next, we calculate the client
weight for each client ci with respect to all labels by
summing all the weights computed in the previous step.

W (ci) =

n∑
j=1

W (ci, lj)

This step ensures that clients with a higher overall number
of labeled samples have a higher weight, regardless of the
label.

3) Client update weight: Finally, we compute the client
update weight, which is the ratio of a client’s weight to
the sum of all clients’ weights. This weight is used in a
weighted average to obtain the aggregate.

WFedLA(ci) =
W (ci)∑k

x=1 W (cx)

By using this weighted aggregation scheme, we can
improve the performance of the model on clients with
a smaller number of labeled samples or a more diverse
label distribution.

Algorithm 1 FedLA Weights Calculation in Each Communi-
cation Round

1: Initialize: k , S(ci, lj) (for all clients participating in the
communication round)

2: for each label lj do
3: Calculate label total samples S(lj) =

∑k
i=1 S(ci, lj)

4: for each client ci do
5: Compute client weight per label: W (ci, lj) =

S(ci, lj)

S(lj)

6: for each client ci do
7: Compute client weight w.r.t. all labels: W (ci) =∑n

j=1 W (ci, lj)
8: Compute client update weight: WFedLA(ci) =

W (ci)∑k
x=1 W (cx)

This weighted aggregation ensures proportional representa-
tion of all existing labels in the aggregated model, regardless
of sample count. It mitigates bias towards frequently appearing
labels by considering each client’s contribution based on the
diversity of its local dataset. For example, a label that appears
at one user with 1000 samples will yield label weight of 1 for
that user. The same weight also 1 will be assigned to a label
that appears in one user with 1 sample.

We demonstrate the effectiveness of our proposed approach
with the following example in Table I. We assume three clients
ci : i ∈ {1, 2, 3} and three labels lj : j ∈ {a, b, c}. The weight
of client c1 w.r.t. label la is W (c1, la) = 700/1000 = 0.7.
Then the client weight for all labels W (c1) =

∑n
j W (c1, lj) =



Ahmad Khalil, Aidmar Wainakh, Ephraim Zimmer, Javier Parra-Arnau, Antonio Fernández Anta, Ralf Steinmetz. IEEE International
Conference on Fog and Mobile Edge Computing (2023)

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

Labels Client c1 Client c2 Client c3 S(lj)
S(c1, lj) W (c1, lj) S(c2, lj) W (c2, lj) S(c3, lj) W (c3, lj)

a 700 0.7 200 0.2 100 0.1 1000
b 0 0 100 1 0 0 100
c 0 0 25 0.5 25 0.5 50
S(ci) 700 0.7 325 1.7 125 0.6
FedAvg 0.61 0.28 0.11
FedLA 0.23 0.56 0.20

TABLE I: Example of client weights calculated using classical FedAvg and FedLA. S refers to sample size, and W refers to
weight. S(ci) =

∑n
j=1 S(ci, lj). Client c1, Client c2, and Client c3 are participating in the FL communication round.

0.7. Finally, the weight WFedLA(c1) = W (c1)/
∑k

x W (cx) =
0.7/(0.7 + 1.7 + 0.6) = 0.23.
When comparing FedAvg and our proposed method, we notice
a significant difference in the weight assigned to Client c1.
While FedAvg gives it a weight of 0.61, our method assigns
a lower weight of 0.23. This adjustment aims to balance the
contributions of different clients, considering factors such as
label diversity. For instance, Client c2 is assigned a weight of
0.56 due to its more varied labels.
It is pertinent to acknowledge that FedLA operates under
the premise that the central server is endowed with com-
prehensive insights into the distribution of labels across all
participating clients during each communication round. How-
ever, it’s essential to consider that this assumption may prove
impractical within certain FL applications. Instances where
privacy considerations restrict clients from divulging this par-
ticular information are noteworthy. Thus, to render FedLA
applicable in scenarios characterized by stringent privacy con-
straints, novel approaches are requisite. Implementing privacy-
preserving strategies like secure multi-party computation [3]
could be pivotal in aligning modified FedLA with privacy
mandates. On the other hand, in the context of FL within
some vehicular applications, which revolves around training
object detection models [9], FedLA could be applied without
unduly compromising privacy. In this application, when the
clients (e.g., cars) share lightweight anonymized label informa-
tion (such as cars, vegetation, etc.) alongside their respective
frequencies, this might not inherently pose significant privacy
risks.

In order to substantiate the effectiveness of our method, we
thoroughly present and analyze the complete set of experi-
ments in the subsequent Section IV. We encompasse diverse
scenarios and datasets, ensuring a comprehensive evaluation of
FedLA. By doing so, we aim to foster a deeper comprehension
of our findings and facilitate a more precise interpretation of
the obtained results.

B. Describing Label Distribution Skew

Our second contribution in this work is to focus on de-
scribing non-IID data, specifically the label distribution skew.
To better understand this phenomenon, we propose three
properties to consider.

1) Firstly, the label distribution of client data, which reflects
the diversity of labels per client. We use a histogram as
shown in Figure 1 to depict this property, where the x-
axis represents the labels, and the y-axis represents the
number of samples per label. When the client has all
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Fig. 1: Two examples of label distributions, corresponding to
two different clients.

labels with a uniform distribution, this represents one
example of the IID. Conversely, when the client possesses
a solitary label, it deviates significantly from the principle
of IID data and leans towards the realm of non-IID data.
Conversely, in case where the client has only one label,
this considered to be far from IID and near to non-IID

2) Secondly, we introduce the concept of client distribution
consistency, which refers to the consistency of the label
distribution between clients (see Figure 2). We measure
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Fig. 2: Two examples of label distributions, corresponding to
two differents clients, that exhibit distribution consistency.

this property by calculating the distance between client
distributions, regardless of the labels’ IDs. We consider
two clients to have similar distributions if they have the
same mean and variance but with different labels. The
optimal case of this property happens when all clients
have the same distribution. Several metrics, such as
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Earthmover’s distance and Hellinger distance, can be
used to measure the distance.

3) Finally, we explore the inter-client distribution, which
indicates the extent to which clients share the same labels,
i.e., the overlap between the labels belonging to different
clients. As we can see in Figure 3, we use a histogram
to depict this property, where the x-axis represents the
clients, and the y-axis represents the number of samples
with shared labels. Thus, the data distribution scenarios
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Fig. 3: Two examples of label distributions, corresponding to
two differents clients, that do not overlap each other.

can range from a situation where all clients possess the
same n labels to the cases where there is no overlap,
implying that each client has a unique set of labels that
are not shared by any other client.

By considering these properties, we can better design algo-
rithms that can handle non-IID data effectively (label dis-
tribution skew), leading to improved model performance and
better overall results. In the following Section IV, we conduct a
thorough investigation into how our model aggregation method
performs concerning the variations in label distribution skew
properties.

IV. EXPERIMENTS

In order to comprehensively address the label distribution
skew properties mentioned earlier (Section III), we construct
diverse data distribution scenarios. We investigate how these
different data distribution scenarios influence the performance
of the FL with classical FedAvg. On the other hand, we
show different scenarios where our proposed FedLA algorithm
outperforms FedAvg. To achieve this goal, we conduct a series
of experiments to evaluate the performance of our proposed
method.

A. Experimental Setup

To evaluate our approach, we adopt two simple classification
tasks.
Classification of handwritten letters and digits: For this
task, we use the EMNIST-balanced dataset [4]. This dataset
is balanced, thus, each class has the same number of samples.
The total number of classes is 47, so that j ∈ {1, ..., 47} ,
and for each class there are 2400 samples.
We conducted the experiment for this task using the FL
implementation found on Github [2], where we employed
the CNNMnist architecture for the purpose of classification,

which consists of two convolutional, one dropout, and two
linear layers. We selected the learning rate lr = 0.01, with
a batch size b = 256. We used Stochastic Gradient Descent
(SGD) for optimization.
Classification of multi-class images: For this task, we use
the CIFAR-100 [10] dataset. This dataset contains 100 classes
j ∈ {1, ..., 100}, with 600 samples each.
When developing the model, we were inspired by the design
proposed by He et al. [6], which encompasses 5 convolutional
blocks and 3 residual blocks. We selected the learning rate
lr = 0.001, with a batch size b = 256. We used SGD for
optimization.

Federated Learning settings: we assume that the total number
of clients is 10, i ∈ {1, ..., 10}. For the first classification task
where the EMNIST-balanced dataset is used, each client has
2400 samples S(ci) = 2400. On the other hand, for the second
classification task where the CIFAR-100 dataset is used, each
client has 1000 samples, meaning we have no quantity skew
in both tasks. We train the models for 100 communication
rounds ge = 100. Between communication rounds, each of
the participating clients performs 10 local epochs, le = 10.
Finally, we trained the models using the hardware RTX3090
TI GPU. We repeated each experiment 10 times and reported
the average model test accuracy.
Data distribution scenarios: As depicted in Figure 4, we divide
the clients into two groups; in the first group the data is IID,
while the second group has non-IID data.

Internal

Controlled by 𝒏𝒐𝒏𝒊𝒊𝒅𝒔 variable

IID Clients non-IID Clients

label-a
label-b
label-c

Controlled by 
𝒖𝒏𝒊𝒒𝒖𝒆𝒄 variable

label-d
label-e
label-f

Fig. 4: Dummy example of clients data distribution in two
IID and non-IID with six different labels. The size of each
clients group is determined by the variable noniids, while the
variable uniquec determines the number of distinct classes
(labels) held by each client within the non-IID group.

We provide more details on the data distribution in the
following.

To control the data distribution we define three variables:
• uniquec refers to the number of unique classes (la-

bels) held by each non-IID client. For EMNIST-balanced
dataset, we define five possible values for this variable
uniquec ∈ {1, 2, 3, 4, 6}. On the other hand, for CIFAR-
100 dataset, we define three possible values for this
variable uniquec ∈ {2, 5, 10}. This is applied to all
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non-IID clients, thus, having uniquec=1 means that all
non-IID clients have all S(ci) samples of a unique class,
and there is no other client that possesses this class in
both non-IID and IID clients groups.

• noniids refers to the non-IID group size ratio w.r.t. the
total number of the participants. We define four possible
values for this variable noniids ∈ {0.1, 0.3, 0.5, 0.7},
where noniids = 1 indicates that all the clients belong
to the non-IID group.

• kr refers to the participation ratio in the current commu-
nication round. We define four different values control the
number of the participants in each communication round,
such that kr ∈ {0.1, 0.3, 0.5, 0.7}.

It is important to mention that the values of noniids and
uniquec directly impact the number of classes within the
IID group; larger values of noniids and uniquec correspond
to a reduced number of classes in the IID group. Now and
after defining the different data distribution control variables,
in the following we provide an example of a possible data
distribution setup: Let uniquec = 4, noniids = 0.5, kr = 0.3.
Thus, each client in non-IID has four different unique classes,
25% of the clients’ samples belongs to one of the four
classes. There is no other client that has these four classes
in both non-IID and IID. Moreover, non-iid includes 50% of
the total number of the clients, and the rest of the clients are
in the IID group. kr = 0.3 means that 30% of clients will be
randomly selected to participate in each communication round.

In order to thoroughly explore the multitude of potential
data distribution scenarios, our experimental design encom-
passed a wide array of 80 distinct data distributions for the first
classification task and an additional 60 distributions for the
second task. By systematically varying the data distributions,
we aimed to capture a comprehensive representation of the
diverse patterns and characteristics that may arise in real-
world scenarios. To ensure robustness and account for potential
variations, we repeated each training iteration a total of 10
times. We calculated and reported the average values derived
from these repeated experiments. In the subsequent sections,
we present our analysis of the outcomes obtained from this
extensive experimentation. We critically examine and interpret
the results, striving to uncover key insights and patterns that
emerged across the diverse data distribution scenarios. Our
focus is not only on evaluating the performance of the novel
approach of FedLA but also on comparing it with the clas-
sical approach of FedAvg. We also show the performance of
FedAvg on fully IID dataset as a reference in our comparisons.

B. Results Discussion

In this section, we discuss the most interesting results of our
experiments. The complete set of the results can be found in
our Github repository. In the following, we delve into
selected significant experimental findings.

1) Individual Data Distribution Parameters: uniquec:
We observed a negative impact of increasing the value of the
parameter uniquec on the accuracy of FedAvg and FedLA
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Fig. 5: Comparison between FedAvg, FedLA, and IID baseline
when uniqueC changes.

on both datasets (when fixing the other data distribution
parameters). However, the results in Figure 5 show that the
FedAvg approach exhibits similar resilience to this increase
compared to FedLA. This is expected because the non-IID
nature of the data not only affects data distribution in non-
IID group, but also influences the data distribution of the IID
group. Increasing parameter uniquec yields two fundamental
outcomes: (1) an increase in the number of classes within
the non-IID group, coupled with a decrease in the number of
classes within the IID group, (2) considering the fixed number
of samples per client, a decrease in the number of training
samples available per unique class specifically within the non-
IID group.

In the case of FedAvg, an increase in the number of unique
classes assigned to each client leads to a proportional decrease
in the number of samples per unique class. Consequently, the
model’s performance deteriorates due to reduced training on
these classes. However, the class distribution imbalance results
in an increased number of samples per class in the IID group,
enhancing overall model stability. Conversely, FedLA assigns
significantly higher weights to clients in the non-IID group
compared to those in the IID group, disregarding the potential
positive impact from the IID group users’ data.
noniids: Increasing the value of the parameter noniids
results in two effects: (1) an increase in the number of classes
in the non-IID group, coupled with a decrease in the number
of classes in the IID group, and (2) a reduction in the size
of the IID group, leading to a decline in the positive effect
of IID group data. Typically, an increase in the value of
parameter noniids leads to a decrease in accuracy, indicating a
higher degree of non-iidness. However, our proposed approach
demonstrates enhanced resilience to variations in noniids
when the value of uniquec is small. This is clearly depicted in
Figure 6. This observation can be justified by considering the
impact of noniids in FedLA, where an increase in the value
of this paramter diminishes the influence of non-IID clients
relative to IID clients. In contrast, in the case of FedAvg, all
the clients are assigned equal weights because no quantity

https://github.com/AhmadMkhalil/Label-Aware-Aggregation-in-Federated-Learning
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Fig. 6: Comparison between FedAvg, FedLA, and IID baseline
when noniidS changes.
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Fig. 7: Comparison between FedAvg, FedLA, and IID baseline
when kr changes.

skew is considered, thereby magnifying the influence of non-
IID clients.
kr: In Figure 7, we observe that an increase in the value of
variable kr leads to greater stability of the accuracy chart
for both methods. However, our proposed method achieves
increased stability at a faster rate by effectively moderating
the instability caused by high non-IIDness using label-aware
crafted weights. FedLA enables rapid stabilization compared
to FedAvg. By leveraging label information, our method ef-
fectively counteracts the destabilizing effects of non-IID data,
resulting in enhanced stability.

2) Investigating the Correlation between Different Data
Distribution Parameters: The increase in the values of both
parameters uniquec and noniids can lead to severe outcomes
when the value of parameter kr is considerably small (e.g.,
kr = 0.1). Figure 8 reveals a clear inverse relationship between
the rising values of the parameters uniquec and noniids,
and the attained accuracy, especially in cases where kr is
considerably small.
This can be attributed to the fact that minimizing the value

of kr leads to increased possibility of selecting only a small
number of clients from the non-IID group during certain

0 20 40 60 80 100
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

in
g 

Ac
cu

ra
cy

uniqueC = 3
noniidS = 0.3
kr = 0.1

0 20 40 60 80 100
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

in
g 

Ac
cu

ra
cy

uniqueC = 4
noniidS = 0.5
kr = 0.1

0 20 40 60 80 100
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

in
g 

Ac
cu

ra
cy

uniqueC = 6
noniidS = 0.7
kr = 0.1

(a) EMNIST-balanced

0 20 40 60 80 100
Communication Rounds

0.0

0.1

0.2

0.3

0.4

Te
st

in
g 

Ac
cu

ra
cy

uniqueC = 2
noniidS = 0.3
kr = 0.1

0 20 40 60 80 100
Communication Rounds

0.0

0.1

0.2

0.3

0.4

Te
st

in
g 

Ac
cu

ra
cy

uniqueC = 5
noniidS = 0.5
kr = 0.1

0 20 40 60 80 100
Communication Rounds

0.0

0.1

0.2

0.3

0.4

Te
st

in
g 

Ac
cu

ra
cy

uniqueC = 10
noniidS = 0.7
kr = 0.1

(b) CIFAR-100

Fig. 8: Comparison between FedAvg, FedLA, and IID base-
line. A clear inverse relationship between the rising values of
uniqueC and noniidS and the attained accuracy, especially
when kr is considerably small (e.g., kr = 0.1 in these figures).

training iterations. This will amplify their adverse impact on
the overall convergence of the model.
Concluding observation: Based on the aforementioned obser-
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Fig. 9: Comparison between FedAvg, FedLA, and IID base-
line. This shows one case in which FedLA outperforms
FedAvg.

vations, it can be concluded that FedLA demonstrates superior
performance compared to the conventional FedAvg method
in various non-IID data distribution scenarios, particularly in
cases where there is:

• A small number of unique classes (uniquec) per non-
IID clients. This can be seen in application where clients
are capturing highly personalized data as images of
themselves or their pets.

• A large number of non-IID group clients (noniids).
This could be the case in applications where clients are
collecting data infrequently, thus, their data starts as non-
IID and slowly transform to IID. Another example could
be in applications where a big number of clients belong
to highly diverse and distinct environments.
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• A small number of participating clients (kr). This can
be the case, e.g., in the initial phase of newly launched
applications, or when a big number of clients are offline
or do not meet the FL client selection criteria.

This can be clearly observed in Figure 9. Finally, it is
evident that FedLA exhibits superior performance in the first
classification task, where the EMNIST-balanced dataset with a
smaller number of classes and a higher number of samples per
class was utilized, as compared to the second task involving
the use of the CIFAR-100 dataset.

V. CONCLUSION

In this paper, we introduced FedLA as a label-aware ag-
gregation method that addresses biased models in Federated
Learning. Moreover, we presented extensive experimental
results highlighting the effectiveness of FedLA in various
scenarios, especially in cases where clients’ participation is
considerably small. Additionally, we emphasized the signifi-
cance of considering data distribution properties in selecting
aggregation methods, and we provided insights into how these
properties can guide the choice of aggregation methods for
specific data distributions. By scrutinizing the diverse factors
associated with data distribution, we aim to shed light on
the underlying aspects that contribute to either favorable or
unfavorable performance when utilizing either the traditional
FedAvg or the innovative FedLA. Through this comprehensive
investigation, we seek to deepen our understanding of the
interplay between data distribution and the performance of
FL methods, ultimately paving the way for more effective
and efficient strategies in future endeavors. As a future work,
further experimentation and investigation are required to fully
uncover the advantages of our method. Moreover, while this
paper primarily addresses label distribution skew, future stud-
ies should extend their focus to investigate other types of skew.
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