
Florian Raskob, Wilton Arthur Poth, Tobias Meuser, Björn Scheuermann. Monitoring 6G UPFs: A Software-based Network Tomography
Framework. Proceedings of the 3rd IOCRCI Workshop: Impact of IT/OT Convergence on the Resilience of Critical Infrastructures at the
24th edition of the International Federation for Information Processing (IFIP) Networking 2025 Conference. Corrected author’s version

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or

by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be

reposted without the explicit permission of the copyright holder.

Monitoring 6G UPFs: A Software-based Network
Tomography Framework

Florian Raskob1 , Wilton Arthur Poth2 , Tobias Meuser1 , Björn Scheuermann1

1Communication Networks Lab, Technical University of Darmstadt
2Department of Computer Science, ETH Zürich

E-Mail: {florian.raskob, tobias.meuser, scheuermann}@kom.tu-darmstadt.de, uni@wilton-poth.de

Abstract—The architecture of 6G networks comprises many
software-based Network Functions (NFs) that can run on and
migrate between different devices. To make future 6G networks
resilient, a flexible framework is needed to detect failures in in-
dividual NFs. In this work, we present a software-based Network
Tomography (NT) monitoring framework for 6G NFs, enabling
flexible real-time monitoring. As a case study, we measured
the performance of the User Plane Function (UPF), which is
responsible for forwarding user traffic in the core network. To
determine packet loss and latency, the framework matches ingress
and egress packets of UPFs while it monitors packet and data
rates by analyzing only the egress packets. In our evaluation, we
demonstrated the framework’s accuracy of a Mean Percentage
Error (MPE) of 0.2% for packet rates, 0.13% for packet loss, and
0.05% for data rates. Latencies were measured with 1.86 µs pre-
cision. Our findings demonstrate that software-based monitoring
can achieve high-precision performance measurements, which is
fundamental for enabling resilience in future 6G networks.

Index Terms—6G, mobile networks, resilience, monitoring,
network tomography

I. INTRODUCTION

As future 6G networks will play a critical role in our
society, they must be resilient, i.e., autonomously deal with
challenges like failures and attacks while enhancing them-
selves by learning from preceding challenges [1]. The 6G core
network adopts a Service-based Architecture (SBA) consisting
of multiple software-based NFs and can be distributed by
placing different NFs on different devices [2]. NFs should be
monitored to detect failures and ensure their correct operation.
For this purpose, the 6G standard defines mechanisms enabling
NFs to provide status information. However, during a failure,
the functionality of an NF might be impaired, making this
information unreliable. This raises the need for a flexible
software-based monitoring framework that can be deployed in
parallel to individual NFs. While integrating this monitoring in
the NF themselves is possible, in this work, we propose a NF
monitoring framework based on the concept of NT [3], i.e.,
without any modification to the original NF. Based on these
considerations, we aim to answer the following questions.

1) How can we measure the performance of 6G NFs in
real-time using a software-based approach that considers
only ingress and egress data?

2) What is the impact of such an approach on resource
utilization?

3) What accuracy can be achieved when measuring the
performance of NFs?

To answer these questions, we developed a software-based
framework to measure the performance of 6G UPFs in real-
time. The UPF is central for forwarding packets and, therefore,
highly related to the overall 6G network’s functionality and
performance. The framework measures the packet loss rate
and latency of UPFs by matching ingress and egress packets
and data rate and packet rate by only considering the egress
packets. The framework is lightweight, fully software-based,
and flexible, as it can be easily hot-plugged into any UPF’s
execution environment. Although we focus only on UPFs,
the concepts can be easily adapted to monitor any NF. Our
framework enables the network to detect potential failures and
attacks by continuously monitoring the functionality of NFs.
This is a fundamental enabler for overall resilience [4].

We structure the rest of this paper as follows. We present
related work in Section II. We introduce our framework’s
design and implementation in Section III. We describe how we
evaluated the framework’s accuracy and present and discuss
the results in Section IV. Finally, we conclude this work and
present future directions in Section V.

II. RELATED WORK

In the following, we present work that is related to ours.
Khaloopour et al. introduced the Resilience-by-Design frame-
work, emphasizing the importance of embedding resilience
into the design phase of future 6G networks [1]. This includes
all layers provided by the network, from electronics to ser-
vices. In their work, they embrace the conceptual framework
of Sterbenz et al. [4] to make communication networks re-
silient. Sterbenz et al. define a resilient system as one that
can autonomously detect threats, defend itself against them,
remediate itself to get on an acceptable level of functionality,
and finally refine itself to increase its capability to cope
with future challenges like failures and attacks. Regarding
this definition, our work contributes to the detect phase by
providing a framework to monitor the performance of UPFs
in real time.

In the context of monitoring 5G networks, Mamushiane et
al. performed stress testing on the open5gs’s UPF and analyzed
its CPU utilization [5]. They used UERANSIM for Radio
Access Network (RAN) and User Equipments (UEs) simu-
lation and generated traffic using the ping utility. However,
they could not generate enough traffic to push the UPF’s CPU
utilization to maximum due to limitations by UERANSIM.

https://orcid.org/0009-0000-8571-8828
https://orcid.org/0009-0003-6774-3204
https://orcid.org/0000-0002-2008-5932
https://orcid.org/0000-0002-1133-1775


Florian Raskob, Wilton Arthur Poth, Tobias Meuser, Björn Scheuermann. Monitoring 6G UPFs: A Software-based Network Tomography
Framework. Proceedings of the 3rd IOCRCI Workshop: Impact of IT/OT Convergence on the Resilience of Critical Infrastructures at the
24th edition of the International Federation for Information Processing (IFIP) Networking 2025 Conference. Corrected author’s version

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or

by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be

reposted without the explicit permission of the copyright holder.

To circumvent this limitation, we used PacketRusher in our
experiments. Soos et al. measured the end-to-end throughput,
latency, jitter, and packet error rate of a full non-standalone
5G testbed using iPerf3 and Coscos’s TRex [6]. While their
experiments assess the overall network performance, they do
not offer insights into the performance of individual network
components.

In previous works, latency and packet loss of data plane
traffic were often measured using timestamping [7], [8].
Therefore, two timestamps are added to a packet: one at the
ingress and one at the egress point of the device under test
(DUT). The forwarding time of the DUT can then be evaluated
by calculating the difference between the two timestamps.
Rischke et al. measured latency, inter-packet delays, packet
rate and data loss in a full 5G testbed [9]. Therefore, they
added timestamps and sequence numbers into the packets’
payload utilizing a Network Interface Card (NIC) with Data
Plane Development Kit (DPDK) support. The timestamps had
a precision of less than 1 µs by using the clock_gettime()
method. When using timestamps, the main challenge is to
create the timestamps with high precision, which can be
effectively achieved through hardware. To achieve this in a
software-based setup, Orosz et al. [7] altered libpcap, which
is used by, e.g., Wireshark or tcpdump. They point out that
for this high precision, the clock source, the NIC driver
architecture, and the OS kernel play a central role. They also
showed that the overhead of creating the timestamps increases
for lower-frequency CPUs.

Although hardware-based timestamping provides high-
accuracy measurements, deploying specialized hardware to
measure the performance of 6G NFs is not always feasible
due to its distributed and flexible architecture. Furthermore,
it is not possible to write timestamps into the payload of
packets without corrupting them. In 2002, Coates et al. in-
troduced the concept of NT to cope with the heterogeneous
and unregulated structure of the internet [3]. The main idea is
to infer internal network characteristics, such as delay and
packet loss, using end-to-end measurements without direct
access to intermediate nodes. More recently, Kakkavas et
al. emphasize that NT can effectively adapt to the dynamic
nature of 5G networks, addressing the limitations of hardware-
based monitoring techniques [10]. They examine existing NT
techniques and highlight their ability to provide efficient, low-
overhead monitoring. In this work, we provide a monitoring
framework to measure the performance of 6G UPFs utilizing
the concepts of passive NT, i.e., without using any test packets
or probes for measurements.

Wernet et al. present a mechanism to mirror one 5G UPF’s
session state to a second failover instance [11]. During their
evaluation, they trigger failovers based on heartbeat messages
sent between the UPF and SMF. However, the RTT and vari-
ance of these heartbeats are system-dependent, and relying on
them comes with a risk of false positive failovers. Therefore,
more reliable frameworks to monitor the state of UPFs are
needed.

III. SYSTEM DESIGN & IMPLEMENTATION

In the following, we present our design of a software-
based framework to monitor UPF performance, which is
optimized for deployment in distributed 6G networks. Running
in parallel to the UPF, as shown in Fig. 1, the framework
can be hot-plugged into the UPF’s execution environment.
It runs independently from the Control Plane (CP) and can
be executed with the UPF on the same machine or on a
separate machine. The framework utilizes an NT approach,
treating the UPF as a black box and operating independently
of any information it provides. By matching incoming with
outgoing packets, the framework transparently measures key
performance metrics such as packet rate, packet loss, data
rate, and latency. In this work, we focused on measuring the
performance of UPFs, but all concepts can be directly applied
to any other Network Function utilizing appropriate matching
functions.

CP

UE RAN UPF DN

MonF

Fig. 1. Our monitoring framework (MonF) operates in parallel to the 6G user
plane, sniffing the UPF’s ingress and egress packets.

A. Sniffing Packets

Our framework sniffs all packets entering and leaving the
UPF using two POSIX Raw-Sockets combined with the poll()
interface to simultaneously receive packets from both UPF
interfaces. Packets can enter and leave the UPF on both UPF
interfaces, as they can be sent to the Data Network (DN)
(uplink) or the RAN (downlink). Packets captured between
the RAN and the UPF are sent uplink if their destination port
matches the UPF’s GTP-U server port and downlink if their
destination port matches the data interface port of the Next
Generation Node B (gNB). Packets captured between the UPF
and the DN are sent uplink if their source IP address is in the
UE’s subnet and downlink if their destination address is in the
UE’s subnet.

B. Mapping Incoming and Outgoing Packets

Incoming and outgoing packets must be mapped to de-
termine if the UPF forwarded or dropped a packet and to
calculate the time a packet needed to pass the UPF. Our
framework stores incoming packets and some metadata in a
hash table, allowing outgoing packets to be mapped to them
later. Therefore, we must consider that some headers can
change while traversing the UPF. For example, the TTL is
decremented by one, and the IPv4 source address might be
changed for packets sent to the DN due to NAT. We overcome
this problem by decrementing the TTL before storing the



Florian Raskob, Wilton Arthur Poth, Tobias Meuser, Björn Scheuermann. Monitoring 6G UPFs: A Software-based Network Tomography
Framework. Proceedings of the 3rd IOCRCI Workshop: Impact of IT/OT Convergence on the Resilience of Critical Infrastructures at the
24th edition of the International Federation for Information Processing (IFIP) Networking 2025 Conference. Corrected author’s version

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or

by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be

reposted without the explicit permission of the copyright holder.

packet and zero headers for which it is unknown if and how the
UPF changes them. Thus, outgoing packets that are looked up
have the same contents as their equivalent previously stored
in the hash table. GTP-U headers are always ignored when
mapping packets.

We calculate the 64-bit hashes for the hash table based on
the sum of the first and last eight bytes of the IP packets’
payload. The hash is calculated similarly to map an outgoing
packet to its incoming counterpart. Then, the framework
performs a lookup in the hash table and compares the entry
with the outgoing packet. If the framework finds a matching
entry, the UPF has forwarded the packet; however, the UPF
can also drop packets. To detect this, we select a threshold, and
if a packet resides in the hash table longer than that threshold,
we delete it from the hash table and assume it was dropped
by the UPF either intentionally or not. The threshold must be
selected based on the highest expected latency of the UPF, as
the framework considers packets erroneously lost if forwarding
them takes longer than the threshold. If the threshold is too
big, packets reside longer in the hash table, increasing the
probability of hash collisions and delaying the detection of lost
packets. This also reduces the time granularity with which lost
packets are detected. A packet might be considered lost if the
UPF did not process it correctly and unintentionally changed it
while forwarding it. In this case, our framework cannot match
the egress to the ingress packet. To determine how long a
packet resides in the hash table, we store a timestamp with
each entry. We continuously sweep the hash table’s buckets
and check if timestamps have exceeded the given threshold.
In addition, we sweep all buckets every threshold’s duration
unless all of them were swept in the last second. When an
entry is matched or has timed out, we delete it from the hash
table.

C. Measuring Performance

Our implementation considers four events. (1) inpkt: an
incoming packet was received, (2) outpkt: an outgoing packet
was received, (3) matched: an outgoing packet was success-
fully mapped to an incoming packet, and (4) lost: a packet is
considered lost. The following will discuss each performance
metric our framework measures and how we assess it using
these events. Each of the metrics is measured for uplink and
downlink separately.

1) Packet Rate / Loss: The packet rate describes how
many packets are forwarded by the UPF. We determine it by
incrementing a counter on each occurrence of the outpkt event.
Packet loss is determined similarly considering the occurrence
of lost events. The loss ratio is calculated by dividing the
packet loss by the sum of both values.

2) Data Rate: For each occurrence of an outpkt event, we
increase a value by the length of the outgoing packet.

3) Latency: All incoming packets are stored along with a
timestamp in the hash table. We determine the latency on a
matched event by calculating the delta between this timestamp
and when the corresponding outgoing packet was received.

D. Performance Considerations

Taking all packets entering and leaving the UPF into account
can result in high resource utilization, especially at high
packet rates. This is a problem as our framework should not
interfere with the UPF’s operation even when running on the
same machine. To address this issue, we use subsampling
and sample every nth ingress packet, reducing the number of
packets that have to be handled by our framework. We then
approximate the actual number of lost packets by multiplying
the measured number of packets lost by n.

Sampling egress packets would complicate determining
packet loss and latency. If we do not find a matching egress
packet for an ingress packet, we cannot tell if the packet
was lost or not sampled. Determining the latency for a
packet is only possible on a match event; however, if we
independently sample every nth ingress and egress packet,
the probability of finding two matching packets is quite low.
Applying subsampling to the ingress packets does not affect
the framework’s measurement of packet and data rates, as
we determine these metrics based only on egress packets.
We decided to sample every nth packet instead of taking
time-based periodic samples as this was shown to create
more accurate measurements by Drobisz et al. [12]. Higher
sampling rates (smaller n) lead to greater accuracy at the
expense of increased resource utilization. Therefore, n should
be chosen based on the expected packet rates, such that
the framework provides sufficient accuracy while keeping its
resource utilization as low as possible.

IV. EVALUATION

The evaluation aims to determine the accuracy of our
proposed framework. Therefore, we measured the UPF’s per-
formance using our monitoring framework in parallel to iPerf3
and a hardware-based packet stamper for reference. In the
following, we present our experimental setups and results for
each metric.

Regarding packet rate, packet loss, and data rate, we
evaluated our framework using two machines connected by
a 100 Gbit/s optical fiber cable, as shown in Fig. 2. Both
machines have an AMD Ryzen Threadripper PRO 5955WX,
128 GB of memory, and run Ubuntu 22.04. Regarding the 5G
network, we run PacketRusher 1 simulating a UE and gNB on
Machine 1 and an open5gs 2 core network on Machine 2. We
use iPerf3 for traffic generation and run its client and server
on Machine 1 to avoid time synchronization problems. Our
monitoring framework is deployed on Machine 2 along with
the core network. It sniffs packets on the Ethernet interface
connected to Machine 1 via the optical fiber cable and the
UPF’s tun interface.

To evaluate the accuracy of our framework, we generated
UDP traffic of different data rates ranging from 1 Mbit/s to
2 Gbit/s using iPerf3 and sent it through our test setup. We
increased the data rates in steps of 25 Mbit/s and ran the

1https://github.com/HewlettPackard/PacketRusher
2https://open5gs.org/



Florian Raskob, Wilton Arthur Poth, Tobias Meuser, Björn Scheuermann. Monitoring 6G UPFs: A Software-based Network Tomography
Framework. Proceedings of the 3rd IOCRCI Workshop: Impact of IT/OT Convergence on the Resilience of Critical Infrastructures at the
24th edition of the International Federation for Information Processing (IFIP) Networking 2025 Conference. Corrected author’s version

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or

by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be

reposted without the explicit permission of the copyright holder.

Machine 1

iperf3 client PacketRusher

iperf3 server
eth

100 Gbit/s

Machine 2

UPF tun

MonF
eth

Fig. 2. We used two Linux machines in our experimental setup to evaluate our monitoring framework’s accuracy in measuring packet rates, packet loss rates,
and data rates. We ran iPerf3’s client and server alongside PacketRusher on Machine 1 and the core network with our monitoring function on Machine 2.
Both machines were connected via a 100 Gbit/s fiber link.

experiment for 5 min for each data rate. We conducted the
same experiments for uplink and downlink; however, in the
following, we will mainly focus on uplink, as the results
did not differ significantly. We set the sampling rate such
that the framework samples every 1000th packet during all
experiments. As iPerf3 provides one measurement point per
second, we repeatedly calculate the average of all data points
within the last second for each metric, leading to a 1 s
resolution.

A. Packet Rate / Loss

Fig. 3 shows the packet and packet loss rates measured by
iPerf3 and our monitoring function. It also shows the CPU
utilization of our framework and the UPF under test during
each experiment. We calculated the averages of the 5 min
experiments for each target data rate. One can see that up to
1 Gbit/s, the measured packet rate increases linearly with the
target data rate. This is expected, as all UDP packets generated
by iPerf3 are the same size. For target data rates higher than
1 Gbit/s, the packet rate converges against 120,000 pps, and
the packet loss increases. The reason for this can be seen in
the CPU utilization of the UPF. As the single-threaded UPF
implementation reaches 80% CPU utilization, it can no longer
process all incoming packets and begins to drop them. When
the UPF’s CPU utilization reaches 100% in our experiment,
the packet loss is about 30%. Our monitoring framework’s
CPU utilization remains lower than that of the UPF. Across

1
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00

Mbit/s

0
40

00
0

80
00

012
00

00

p
p
s

MonF

iperf3 server

1
40

0
80

0
12

00
16

00
20

00

target Mbit/s

0
20
40
60
80

cp
u

%

MonF

UPF

0

10

20

30 lo
ss

%

MonF

iperf3 server

Fig. 3. For each target data rate generated with iPerf3, the upper plot shows
the packet rates measured by our framework as dots and those measured by
iPerf3’s server as crosses, while the bars show the respective packet loss. The
lower subplot shows the average CPU utilization of both our framework and
the UPF.

all experiments, it reaches a maximum of 80%. When we
compared the measurements provided by iPerf3 with the ones
provided by our framework, we observed an average mean
percentage error (MPE) of 0.2% for the packet rate and an
MPE of 0.13% for packet loss. Even for the higher target data
rates, the errors did not increase.

The results show that our monitoring framework can accu-
rately measure UPFs’ packet rates and packet loss and that
our framework can monitor the UPF even on high network
loads. When the UPF’s CPU utilization reaches 100% during
our experiments the framework was at 80% and therefore not
impaired by CPU limitations. However, this might not be the
case for more efficient UPF implementations or under different
circumstances, e.g, in virtual environments or when using
different hardware. However, we leave a detailed analysis of
resource utilization to future work, as this work focuses on
assessing the accuracy of our framework.

B. Data Rate

Fig. 5 shows the data rates measured by our framework
and by iPerf3. Each point’s x-value represents the data rate
measured by the iPerf3 server. The y-value represents the
data rate measured by our framework. If a point lies on the
diagonal, the iPerf3 server measured the same data rate as our
framework. Up to 1 Gbit/s, the data rates measured by our
framework align with the ones measured by iPerf3 and the
MPE is 0.05%. For target data rates higher than 1 Gbit/s, the
measured data rates start spreading, and we observed an MPE
of 0.49%. We also did not measure data rates much higher than
1.5 Gbit/s even if we generated data rates of up to 2 Gbit/s. The
reason for the spread and the limited data rate is that the UPF
reaches its CPU utilization limit, as discussed in the previous
section. The MPE over the whole data rate measurements is
0.27%.

One can see that the single data points per second align
with the target diagonal up to 1 Gbit/s. This indicates that the
deviation of our results from the ones provided by iPerf3 is
negligibly small, even for the single data points. Regarding
data rates higher than 1 Gbit/s, most of the points still lie on
the diagonal. However, some outliers also indicate a deviation
of up to 500 Mbit/s between the data rate measured by our
framework and the one measured by iPerf3. This is because
each point represents the average over all samples within one
second, but packet loss does not occur equally distributed.



Florian Raskob, Wilton Arthur Poth, Tobias Meuser, Björn Scheuermann. Monitoring 6G UPFs: A Software-based Network Tomography
Framework. Proceedings of the 3rd IOCRCI Workshop: Impact of IT/OT Convergence on the Resilience of Critical Infrastructures at the
24th edition of the International Federation for Information Processing (IFIP) Networking 2025 Conference. Corrected author’s version

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or

by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be

reposted without the explicit permission of the copyright holder.

Intel Barefoot Tofino

x86

Traffic Gen. P4 Packet
Stamper

p0

p1t0

t1

100 Gbit/s

100 Gbit/s

Machine 2

IFB UPF tun

MonFeth1

eth0

Fig. 4. To evaluate how accurately our framework measures latency, we used an Intel Barefoot Tofino and a Linux Machine (Machine 2). On Machine 2,
we ran open5gs along with our framework and added an Intermediate Functional Block (IFB) between eth0 and the UPF to emulate latencies. We deployed
P4STA on the Tofino and used it to generate GTP-U traffic, which was sent to Machine 2 via a 100 Gbit/s fiber, first passing the IFB and then the UPF. Then,
the traffic was sent back to the Tofino via a second 100 Gbit/s fiber.

1
25

0
50

0
75

0
10

00
12

50
15

00

iperf3 (Mbit/s)

1

25
0

50
0

75
0

10
00

12
50

15
00

M
o
n
F

(M
b
it

/
s)

data rate

target

Fig. 5. Each point’s x-value represents the data rate measured by our
framework, while its y-value represents the one measured by iPerf3. If we
measured the same data rate as iPerf3, the respective point lays on the
diagonal.

Therefore, within some of the one-second intervalls, there are
not enough samples to accurately determine the data rate.

C. Latency

To evaluate how accurately our framework measures the
UPF’s latency, we compared its results with those provided by
P4STA [8], which is a framework leveraging hardware-based
packet stamping to measure the latency of network devices.
To use P4STA, we had to rebuild the test setup as outlined
in Fig. 4. P4STA is executed on an Intel Barefoot Tofino,
comprising an x86 unit and a P4 programmable switch ASIC,
which runs the packet stamper. The packet stamper writes
a timestamp t0 into each leaving packet and a timestamp
t1 into each entering packet. The Tofino then calculates the
delta between both timestamps in each packet to determine
the latency. The Tofino has two external ports p0 and p1, both
connected via an 100 Gbit/s fiber to an Ethernet interface eth0
and eth1 of Machine 2. We used the x86 unit on the Tofino
to generate GTP-U encapsulated UDP traffic. All traffic is

then sent through the packet stamper and via p0 to eth0 of
Machine 2. Machine 2 routes incoming GTP-U traffic through
an intermediate functional block device (IFB) before it is
decapsulated by the UPF. Our monitoring framework runs in
parallel to the IFB and the UPF. Thus, we can artificially
set the IFB’s latency using traffic control emulation (tc-em)
to simulate the UPF’s latency. The encapsulated IP packets
leaving the UPF are returned to the Tofino’s p1 via eth1.

For each experiment, we generated GTP-U encapsulated
UDP traffic with 1 Gbit/s for 5 min. We repeated this and
increased the delay of the IFB in steps of 5 µs starting from
0 µs up to 100 µs. Fig. 6 shows the averages for each of the
experiments. The latencies measured by our framework and
P4STA increase depending on the delay added by the IFB. As
the UPF also adds some latency by itself, the latency measured
by our framework is always higher than the delay added by
the IFB by an average offset of 80.1 µs. The minimal offset
is 76.72 µs and the maximal offset is 88.06 µs. The latencies
measured by P4STA are again higher by an average offset
of 41.47 µs than the ones measured by our framework with a
minimum offset of 36.89 µs and a maximum offset of 44.47 µs.
This is because the packets need some additional time to travel
between the Tofino and Machine 2. When subtracting the
average offset between the measurements between P4STA and
our framework, the Mean Average Error (MAE) is 1.86 µs. The
average standard deviation of the framework’s measurements
is 11.52 µs, indicating a high variation among the measured
latencies per second. We assume that varying latencies caused
by the UPF mainly cause this. In future work, we plan to
obtain additional insights into that behaviour using P4STA’s
per-packet latency measurements.

0 10 20 30 40 50 60 70 80 90 10
0

target µs

0

10
0

20
0

30
0

µ
s

P4STA MonF σ2 IFB

Fig. 6. We emulate UPF latencies of 0 µs to 100 µs and measure them
simultaneously with our framework and P4STA. The plot shows the average
measured latency for each emulated latency.



Florian Raskob, Wilton Arthur Poth, Tobias Meuser, Björn Scheuermann. Monitoring 6G UPFs: A Software-based Network Tomography
Framework. Proceedings of the 3rd IOCRCI Workshop: Impact of IT/OT Convergence on the Resilience of Critical Infrastructures at the
24th edition of the International Federation for Information Processing (IFIP) Networking 2025 Conference. Corrected author’s version

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or

by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be

reposted without the explicit permission of the copyright holder.

D. Limitations

Even if our approach yields all the concepts necessary to
measure the performance of UPFs, it comes with some limi-
tations that we will discuss in the following. We consciously
did not consider most of these limitations in our design as
they did not affect our evaluation. Currently, our framework
ignores fragmented IP packets, as it would have to reassemble
them to match them. This would add additional complexity
and potential resource overhead, but has to be addressed by
future work. Another problem arises when the same packet
passes the UPF multiple times as with TCP retransmits. In this
case, our framework cannot distinguish between these packets,
potentially resulting in faulty results. We could overcome this
by storing a counter with each ingress packet and increasing
it every time we receive the same packet again. If we receive
a matching egress packet and the counter is greater than one,
we decrement it. Otherwise, the packet is deleted from the
hash table. However, this approach must be further refined,
as a timestamp for each packet is needed to determine packet
loss. As the UPF does traffic policing, it might drop packets
intentionally. Our framework does not distinguish between
intentional drops and drops caused by overload. Therefore,
the operator using our framework must further interpret the
packet loss measurements it provides.

V. CONCLUSION

To enable resilience in future 6G networks, operators must
be able to monitor the functionality of individual NFs. In this
work, we presented a framework based on the NT concept
to measure the performance of 6G UPFs in real time. The
fully software-based framework can be easily hot-plugged
into the UPF’s execution environment. This enables a flexible
deployment suiting the distributed SBA of 6G networks. We
evaluated the accuracy of our framework by comparing its
measurements to those of iPerf3 and P4STA. We demonstrated
that our monitoring framework measures packet rates with an
MPE of 0.2%, packet loss with an MPE of 0.13%, data rates
with an MPE of 0.05%, and latency with 1.86 µs precision.
These results show that monitoring 6G NFs with high ac-
curacy is possible using a flexible and fully software-based
framework. Our framework assumes that the UPF decreases
the TTL of packets and that it adds or removes a GTP-U
header. This concept of predicting egress packets based on
ingress packets can be applied to other NFs in the CP to detect
potential anomalies.

In future work, two approaches can be leveraged to im-
prove the performance of our framework further. First, the
framework can be implemented using the DPDK, which is
optimized for building network applications by bypassing
the Linux kernel. In addition to that, we see enhancing the
way our framework samples packets as the most promising
direction. Future work should elaborate on setting the sampling
rate dynamically based on the packet rate; the higher the
packet rate, the lower the sampling rate. This is important
to prevent weak accuracy at lower packet rates and also to

prevent high resource utilization for high packet rates. In
this work, we measured the performance of UPFs, but our
framework can be extended to monitor any NF. Therefore, the
concept of matching egress with ingress packets to monitor the
functionality of NFs should be pursued further.

ACKNOWLEDGMENT

The authors acknowledge the financial support by the Fed-
eral Ministry of Education and Research of Germany in the
project “Open6GHub” (grant number: 16KISK014).

This work has been co-funded by the LOEWE ini-
tiative (Hessen, Germany) within the emergenCITY cen-
ter [LOEWE/1/12/519/03/05.001(0016)/72] and by the Fed-
eral Ministry of Education and Research of Germany
(BMBF) through the project “Open6GHub” (grant number:
16KISK014).

REFERENCES

[1] L. Khaloopour, Y. Su, F. Raskob, T. Meuser, R. Bless, L. Janzen,
K. Abedi, M. Andjelkovic, H. Chaari, P. Chakraborty, M. Kreutzer,
M. Hollick, T. Strufe, N. Franchi, and V. Jamali, “Resilience-by-design
in 6g networks: Literature review and novel enabling concepts,” IEEE
Access, vol. 12, pp. 155666–155695, 2024.

[2] “5G; System Architecture for the 5G System (3GPP TS 23.501 version
15.3.0 Release 15),” 2018.

[3] A. Coates, A. Hero III, R. Nowak, and B. Yu, “Internet tomography,”
IEEE Signal Process. Mag., vol. 19, no. 3, pp. 47–65, 2002.

[4] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith, “Resilience and survivability in communica-
tion networks: Strategies, principles, and survey of disciplines,” Comput.
Netw., vol. 54, no. 8, pp. 1245–1265, 2010.

[5] L. Mamushiane, A. A. Lysko, T. Makhosa, J. Mwangama, H. Kobo,
A. Mbanga, and R. Tshimange, “Towards stress testing open5gs core
(upf node) on a 5g standalone testbed,” in IEEE AFRICON, pp. 1–6,
2023.

[6] G. Soós, D. Ficzere, P. Varga, and Z. Szalay, “Practical 5g kpi mea-
surement results on a non-standalone architecture,” in IEEE/IFIP Netw.
Operations and Manage. Symp., pp. 1–5, 2020.

[7] P. Orosz and T. Skopko, “Performance evaluation of a high precision
software-based timestamping solution for network monitoring,” Int. J.
on Advances in Softw., vol. 4, no. 1, 2011.

[8] R. Kundel, F. Siegmund, J. Blendin, A. Rizk, and B. Koldehofe,
“P4sta: High performance packet timestamping with programmable
packet processors,” in IEEE/IFIP Netw. Operations and Manage. Symp.,
pp. 1–9, 2020.

[9] J. Rischke, P. Sossalla, S. Itting, F. H. P. Fitzek, and M. Reisslein, “5g
campus networks: A first measurement study,” IEEE Access, vol. 9,
pp. 121786–121803, 2021.

[10] G. Kakkavas, A. Stamou, V. Karyotis, and S. Papavassiliou, “Network
tomography for efficient monitoring in sdn-enabled 5g networks and
beyond: Challenges and opportunities,” IEEE Commun. Mag., vol. 59,
no. 3, pp. 70–76, 2021.

[11] L. Wernet, L.-M. Spang, F. Siegmund, and T. Meuser, “Resilient user
plane traffic redirection in cellular networks,” in IEEE Conference on
Netw. Function Virtualization and Softw. Defined Netw., pp. 1–6, 2024.

[12] J. Drobisz and K. Christensen, “Adaptive sampling methods to determine
network traffic statistics including the hurst parameter,” in IEEE Annu.
Conf. on Local Comput. Netw., pp. 238–247, 1998.


	Introduction
	Related Work
	System Design & Implementation
	Sniffing Packets
	Mapping Incoming and Outgoing Packets
	Measuring Performance
	Packet Rate / Loss
	Data Rate
	Latency

	Performance Considerations

	Evaluation
	Packet Rate / Loss
	Data Rate
	Latency
	Limitations

	Conclusion
	References

