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ABSTRACT
We investigate the application of a recently published metric for
flexibility in the context of combined port queue schedules of net-
work paths in Time-Sensitive Networks (TSN). TSN comprises a set
of specifications for deterministic networking, including support for
scheduled traffic with guaranteed deterministic end-to-end delays.
Typically, scheduler resource allocation in TSN disregards flexibility
of scheduler configurations. Essentially, the notion of flexibility of
paths comprising multiple concatenated ports having each a TSN
configuration is based on the number of possible embeddings, i.e.,
resource allocations, for a new flow of a given specification (size
and delay deadline) along that path. This demonstration allows
the user to define TSN schedules along network paths and, hence,
illustrates the behavior and benefit of performing flexibility-aware
TSN configuration.

CCS CONCEPTS
• Networks → Network performance modeling; Network
management; Bridges and switches; Network servers; Network
resources allocation; Packet scheduling; • General and refer-
ence → Metrics.
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Figure 1: A controller ensures that the deterministic QoS
requirements of data flows are met in a network of TSN-
capable devices and switches.

1 INTRODUCTION
The Time-Sensitive Networking (TSN) extension of switched Eth-
ernet brings new possibilities for deterministic networking to a
number of challenging use cases such as critical in-vehicle com-
munication, industrial or machine environments [1]. In scenarios
involving strict traffic guarantees, the TSN Time Aware Shaper
(802.1Qbv) enables a priori deterministic, jitter-free and isochronous
traffic scheduling. Here, a logically centralized TSN controller can
collect application requirements (cf. Figure 1) and configure the
TSN network switches accordingly by encompassing a global view
of all schedules at all network switch ports in addition to the QoS
requirements of requested flows. To create this network config-
uration, TSN schedules are often computed using time-intensive
constraint-based approaches, such as [3, 4].

Dynamic environments that entail frequent changes in deployed
scheduled traffic flows are often disregarded in the planning phase
of TSN networks. A number of approaches that aim to adapt to flow
changes by featuring incremental flow admissions are given in [2,
5, 8]. However, in general, TSN systems and the correspondingly
deployed schedulers do not actively consider these highly dynamic
environments in the dynamic resource planning and optimization,
for example, when choosing network paths for newly admitted
flows. To maximize future network configuration possibilities, we
propose the use of flexibility metrics as a key utility for network
configuration planning before deploying individual flows. To this
end, we describe and demonstrate the use of a flexibility notion for
flow admission in a dynamic TSN environment.

The approach is designed for highly dynamic environments, like
automated factories, where the network environment can facilitate
a central controller to deploy switch configurations.
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Figure 2: The selected path of interest consists of three
switches with given egress ports (𝐴) with another path (𝐵)
sharing the middle port.

2 FLEXIBILITY NOTION
To successfully introduce time dynamics to TSN configurations,
particularly with deployments that handle scheduled traffic, a TSN
controller requires a notion of the current scheduling context, in-
stead of solely aiming to satisfy current application requirements.
In [6, 7] a flexibility notion, named flexcurve, for TSN scheduled
traffic is proposed, which we adopt and investigate in this demon-
stration. In a nutshell, given the time schedules for all switch ports
along a given path, the flexcurve captures the number of possible
flow embeddings for a flow to be admitted along that network path
for flows of different sizes. Applying the flexcurve to a pre-selected
path yields a value of possible future arrangements of new flows
given their size and delay deadlines at an automatically identi-
fied bottleneck. Therefore, higher flexcurve values at the selected
path grant more flexibility with the embedding, i.e. admission, of
future flows. Additionally, by considering the flexcurve value on
an incremental flow admission request basis, the computation of
the flexcurve can also be used to provide flexibility-aware flow
admissions and routing between two network end points.
3 DEMONSTRATION
We visualize the mentioned aspects of the flexcurve by isolating
the view on a simple flow-path (𝐴) consisting of three switches,
within a larger topology. This view results in three affected egress
ports and is sketched in Figure 2 from left to right. At the center
hop at port 4, cross-traffic can be introduced to mix traffic of path
𝐵 with 𝐴. Flows introduced with 𝐵 leave the view at the last switch
using port 2, which is not selected.

The user-facing demo-interface consists of a single-page web
application, that accesses our TSN controller. The controller is re-
sponsible for scheduling all incoming flow requests and computing
the necessary flexcurve values. For each flow request received we
use three different strategies to embed a flow within each sched-
ule. To achieve a very high schedule utilization across all three
strategies, the number of available queues has been increased to
16. Therefore, to visualize this for the demo, the controller keeps a
separate configuration state for each embedding strategy:

(1) Flexibility Aware Strategy (approximated): The flexcurve is
used to select the position of new flows in the schedules along
a network path. To achieve faster runtimes, the selection is
based on the approximate approach from [6].

(2) Greedy Strategy: Uses a first-fit approach to select the posi-
tion of a flow to achieve fast results, but without considera-
tion of flexibility.

(3) Random Strategy: Randomly chooses the position of a flow.
This strategy also disregards the requested flow end-to-end
delay deadline.
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Figure 3: Example heatmap of flow assignments: The current
schedule is visualized using a heatmap from 0–100%. This
allows the comparison of assignments between incremental
changes and strategies, e.g., from top (initialization) to bot-
tom (240 changes).

Figure 4: Visualization of the evolving fragmentation display-
ing the total number of gaps for each strategy after changes
are introduced. Here, the flexibility-aware strategy produces
the least fragmentation.

The goal of the demo is to show the behavior and benefit of
flexibility-aware scheduling, and the ability to analyze flexibility
regardless of scheduling strategy or algorithm in a dynamic and
incremental flow scenario.

Using the web interface, schedules can be randomly initialized
to continue if desired, from a non-empty state. Time is slotted
and the user can start to request flow embeddings using either
path 𝐴 or 𝐵 with random flow sizes (from 100 up to 250 slots).
Flow periods and deadlines are set to 15000 slots. Furthermore,
flows can also be randomly evicted from each schedule to increase
the dynamicity further. Admitted flows sustain their specific slots
without modification until their eviction.

After a successful flow admission, the interface displays the cur-
rent aggregated flexcurve value of multiple possible flow sizes and
also the current schedule fragmentation as a count of gaps (cf. Fig-
ure 4). Additionally, a heatmap of each schedule’s flow allocation
(cf. Figure 3) is displayed to visualize the different flow allocations
between strategies. In the displayed example session, scheduling
using a flexibility aware strategy resulted in less fragmentation and
higher flexcurve values.
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