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Boris Koldehofe ‡, Björn Scheuermann ∗, Ralf Kundel ∗
∗Technical University of Darmstadt, Germany, {firstname.lastname}@tu-darmstadt.de

¶University of Duisburg-Essen, Germany, amr.rizk@uni-due.de
‡Technical University of Ilmenau, Germany, boris.koldehofe@tu-ilmenau.de

Abstract—Time-Sensitive Networking (TSN) enables determin-
istic and low-latency communication for real-time applications
over Ethernet. That is accomplished by leveraging scheduling
and shaping techniques configured for each egress port within
the network switches. Although Time Aware Shaper (TAS)
is a promising solution for TSN, its adoption often involves
substantial complexity. In this work, we propose Residence Delay
Aggregation (RDA), a novel asynchronous TSN mechanism that
offers dynamic traffic scheduling adapted to the traffic load.
Specifically, the proposed RDA mechanism provides upper bound
delays similar to other asynchronous TSN mechanisms while
improving the flexibility of traffic scheduling and reducing the
deployment complexity.

Index Terms—Time-Sensitive Networking (TSN), Scheduling,
ATS, P4

I. INTRODUCTION

Time-Sensitive Networking (TSN) is a collection of stan-
dard extensions for the IEEE 802.1Q [1] Ethernet standard.
TSN introduces multiple mechanisms that enable guaranteed
QoS based on standard Ethernet. Different TSN mechanisms
are able to offer different kinds of guarantees, ranging from
token bucket traffic shaping to deterministic scheduled traffic
with zero jitter. Without TSN mechanisms, the sole use of
basic static priority mechanisms is known to suffer from star-
vation problems for the best-effort traffic class. For example,
the Credit-based Shaper (CBS) restricts the flow rate, and the
Time-Aware Shaper (TAS) may close higher priority queues
for a certain time period [2].

TSN mechanisms are deployed on network switches, where
scheduling and shaping decisions are made according to the
used QoS mechanism and its configuration for egress ports.
To integrate known TSN schedulers into a switch, the egress
port scheduler needs to be capable of the intended mechanism
at the design phase or capable of such a configuration later.

The domain-specific language P4 [3] enables the pro-
grammability of the data plane behavior on nowadays available
network devices. However, P4 is constrained in its ability to
program the behavior of a device’s egress queue scheduling.
Nevertheless, P4 devices can be programmed to run or emulate
some stateful scheduling techniques, including variations of
the priority queuing PIFO-mechanism [4] or Active Queue
Management (AQM) algorithms [5].

§Equal contribution

A. Problem Statement
Typically, TSN configuration deployments are considered

static. The network is not dynamically adjusting to current load
situations. While critical traffic flow behavior and requirements
may change over time, the deployed configuration does not
adapt automatically. Furthermore, mechanisms with static re-
source reservations waste resources unnecessarily when flows
change dynamically. We seek to find a resource-sharing mech-
anism that can be deployed on off-the-shelf programmable
network devices like P4 switches.

In this paper, we analyze the Residence Delay Aggrega-
tion (RDA) approach, specifically designed for implementation
on P4 switches. Unlike the traditional Least Slack Time First
(LSTF) scheduling strategy, which prioritizes packets based
on the remaining time to their deadline and necessitates a
priority queue, RDA provides a solution for real-time dynamic
scheduling on current P4 switches. Importantly, RDA dynam-
ically determines when critical traffic should be prioritized.

II. RESIDENCE DELAY AGGREGATION

The core concept of RDA, similar to LSTF, is that the
priorities of deadline-carrying packets are determined by the
total residence delay of packets as they travel through the net-
work. The residence delay represents the cumulative time that
a packet spends on switches while traversing the network. In
a nutshell, packets with deadlines specified by the application
are given a time allowance, encoded in the header of each
packet, during which they can traverse between switches in
best-effort queues (BEQ) without special handling. Upon the
arrival of a deadline-carrying packet in a switch, the allowance
time is checked before enqueuing the packet. If the allowance
time does not suffice to meet the packet’s deadline, the packet
will instead be enqueued at a high-priority urgent queue (UQ).

A. Network Delays
TSN mechanisms achieve deterministic communication by

providing upper bounds on the end-to-end delay. Figure 1 illus-
trates a simple network with two P4 programmable switches.
The sender generates a packet (p) which is delivered to the
receiver through switches sw1 and sw2. In addition to the link
propagation delay (Tprop), each switch comprises a processing
delay (Tproc) which we describe here as

Tproc = tparser + tingress + tq + tegress + tdeparser (1)
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Fig. 1: Time-consumption along the transmission path. Tprop
indicates propagation delay. Tproc indicates processing time
within the switch.

In this paper, we let Tproc comprise the internal operations
taking place within the programmable switches such as queu-
ing and pipeline operations, as illustrated in Figure 2. Further
elaboration of this figure is presented in Section II-B.

Upon the arrival of a packet in a switch, it is initially parsed
by the parser and subsequently proceeds through the ingress
pipeline until reaching the traffic manager. The time consumed
by parsing and ingress processing is denoted by tparser and
tingress, respectively. The packet is then enqueued in the traffic
manager and waiting to be dequeued. This queuing delay,
denoted by tq , depends on the total amount of traffic pushed in
the queues and on the applied traffic shaping and scheduling
algorithms. After the packet is dequeued from the traffic
manager, it proceeds through the egress pipeline (assuming the
switch offers an egress pipeline for packet processing) and the
deparser to reach the egress port. The time consumed by the
egress pipeline and deparser is denoted by tegress and tdeparser,
respectively. We assume that the factors tparser, tingress, tegress,
and tdeparser are almost constant. Therefore, tq stands as the
sole factor that can affect Tproc and, consequently, impact the
overall end-to-end latency.

B. Queuing Model

The existing TSN mechanisms prioritize traffic based on
their types. According to the Class of Service in IEEE 802.1 Q
standard, a 3-bit field Priority Code Point is presented in the
VLAN header to indicate eight different classes of traffic.
Therefore, a minimum of eight queues associated with fixed
priority levels for each egress port are needed to isolate distinct
traffic if the switch is required to support the complete set
of traffic classes. Strict priority transmission selection ensures
that higher-priority traffic is dequeued before lower-priority
traffic, hence, the time-critical sessions running on the end
devices can be accomplished in a timely manner.

One goal of TSN is to guarantee that packets reach their
destination before a deadline. The urgency of reaching the
deadline is the most critical factor for prioritizing traffic. The
urgent traffic, which has an imminent deadline, should be
assigned with higher priority than the non-urgent traffic, which
still has a loose gap until the deadline.

In RDA, each switch dynamically sets traffic priorities based
on two factors: the remaining time to meet the deadline and the
current fill level of queues in the switch. Traffic may become
more or less urgent in subsequent switches, depending on the
queuing delay in the current switch. This dynamic priority
assignment enables balancing traffic load while providing time
guarantees for deadline-carrying packets.

RDA uses two separate queues for each egress port to
buffer three types of traffic, as shown in the traffic manager
in Fig. 2. An urgent queue (UQ) assigned with high priority
is designated for buffering the urgent traffic, whereas a best-
effort queue (BEQ) assigned with low priority is used for
buffering the best-effort and non-urgent traffic. With strict
priority transmission selection, the urgent traffic in the UQ
is ensured to be transmitted before any traffic in the BEQ.
A meter (also called policer) is applied for UQ to limit
the urgent traffic rate. The meter has the burst and rate
parameters (Bmeter, rmeter) that denote the maximum burst size
and the maximum long-term rate allowed for the UQ flows,
respectively [6].

Note that, similar to existing TSN mechanisms, the deadline
for packets can be guaranteed when the packet passes through
the UQs of all switches along the path. In order to determine
whether a packet is urgent or non-urgent, the switch should
answer the question: Can the deadline of the incoming packet
still be guaranteed when buffering the packet in the BEQ
of this switch and in the UQs of all subsequent switches?
Therefore, RDA prescribes that the packet header of each
deadline-carrying packet contains a field called time allowance
denoted as A, which specifies how long this packet can be
buffered in the BEQ over the transmission path for switches
i ∈ {1, ..., k}. The i-th switch is denoted by swi. The sender
sets the initial value of A as

A = D −
∑
l

T l
prop −

∑
i

T i
pipe −

∑
i

diUQ,max (2)

where D is the deadline for reaching the destination. Here, l
indicates the index of links along the transmission path; T i

pipe
represents the time consumed in swi except for the queuing
delay in the traffic manager. The variable

diUQ,max =
Bi

UQ,meter

riline
(3)

for swi indicates the maximum queuing delay for the UQ, i.e.,
the maximum time until packets are served when assigned to
this queue. Bi

UQ,meter is the burst size for the meter assigned
to the UQ in swi. The line rate for the egress port in swi is
given by riline. The maximum queuing delay for transmitting
packets exclusively through the UQ in all switches is denoted
as

∑
i d

i
UQ,max. This value, propagation and pipeline delays

are then subtracted from the given deadline to establish the
allowance time A for buffering in the BEQ.

The initial value of A is given by the sender, or the network
controller which needs awareness of the delay values (2)
along the path. A is initialized to be ≥ 0 to ensure on-time
delivery because worst-case delays for subsequent UQs are
accounted for during the initialization of A. Specifically, if no
time remains for enqueuing the packet into BEQs, UQs are
exclusively used to ensure an on-time packet delivery.

Note that, first, this proposal is conservative in the sense that
we assume worst-case delays at every UQ. Secondly, with this
method, we need to adjust A with the actual queuing delay at
each switch after the packet is dequeued to reflect the actual
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Fig. 2: System design of RDA. Packets in traffic manager: Navy blue: urgent traffic, Light blue: non-urgent traffic, Grey:
best-effort traffic. tenq: timestamp when packet is enqueued. tdeq: timestamp when packet is dequeued.

residence time. For an initial value of A < 0, the packet still
may arrive within its deadline due to not fully utilized UQs
along the path; however, no guarantees can be given.

Fig. 2 depicts the control flow when a packet (p) enters
the switch. If p is a deadline-carrying packet observed by the
parser, the decision-making process in the ingress pipeline is
triggered. The value of A is first increased by diUQ,max of this
switch swi. This adjustment allows reclaiming the subtracted
maximum queuing delay in the UQ from the packet deadline,
as the packet has not yet entered the UQ at swi. This ensures
the accurate representation of the packet’s deadline constraints
as it moves through the network.

The switch then compares the value of A with the threshold
di(BEQ) to decide which queue is eligible for p. The value
of di(BEQ) represents the queuing delay if p is buffered into
the BEQ. This delay encompasses the transmission time of
the current packets in the BEQ and UQ, as well as the upper
bound delay caused by any packets that will enter the UQ
in the future before p is eventually dequeued. Therefore, the
classical delay bound di(BEQ) at swi is given by

di(BEQ) =
qi(BEQ)

riline − riUQ,meter
+

Bi
UQ,meter

riline − riUQ,meter
(4)

where qi(BEQ) is the current depth of the BEQ, observed
by an arriving packet. Should a packet be in risk of being
dropped while being enqueued into the BEQ when BEQ is
full, di(BEQ) is assigned a value of∞, to force the deadline-
carrying packet into the UQ instead. The second term denotes
an upper bound on the busy period of the UQ. This is a worst-
case bound, as it assumes that the urgent packets are always
enqueued into UQ at the meter rate (riUQ,meter). The value of
this upper bound is determined leveraging network calculus
theory [6], as shown in Fig. 3. The arrival curve for UQ is
expressed by affine function γr,b(t) = rt + b, where r =
riUQ,meter and b = Bi

UQ,meter. The service curve for UQ is
represented by peak rate function λR(t) = Rt, where R =
rline. The busy period of UQ lasts until the backlog reaches
0, which is the value of the second term in (4).

If A ≥ di(BEQ), then the packet is eligible to be enqueued
in the BEQ, as the expected waiting time would not exceed
the packet’s deadline at swi. Otherwise, the UQ is selected.
Recall that the UQ should be metered to ensure an upper
bound of di(BEQ). The packet p is dropped if it is set to be
enqueued into UQ and UQ is currently full. This dropping
mechanism ensures that the packets transferred to UQ see at

Busy Period

Fig. 3: The arrival and service curves of UQ. The arrival curve
is colored in black, while the service curve is in red.

most the delay described in (3); however, such packet dropping
should never appear under normal circumstances. The meter
can also be applied to different traffic sources (e.g., based on
flows) to prevent UQ from being flooded by a specific source
with urgent traffic. Finally, after being deqeued, the value of
A in the packet header is decreased with the residence delay
(tideq−tienq) in the Egress pipeline of swi. The updated value of
A is utilized at the next switch to decide which queue would
be used for buffering this packet.

C. Limitations of Programmable Switches

The computation of di(BEQ) requires knowing the current
depth of the BEQ in the ingress pipeline, which is not
supported by all programmable switch architectures (e.g.,
Tofino). The Tofino2 switch architecture allows a ghost thread
to retrieve queue depths from the traffic manager to the ingress
pipeline [7]. To accommodate different programmable switch
architectures, the threshold di(BEQ) = diBEQ,max (compare
(4)) can be modified to the static

diBEQ,max =
qiBEQ,max +Bi

UQ,meter

riline − riUQ,meter
(5)

where qiBEQ, max is the maximum depth of the BEQ at swi.
Note that the P4 language lacks support for division oper-

ations [5]. Hence, one approach to approximate the division
operation is through performing bit shifting which requires
the denominator to be a power of 2 for exact results [8]. To
this end, the meter rate needs to be configured to a value that
ensures (riline − riUQ,meter) is a power of 2.

D. Implement RDA in P4 Programmable Switches

The implementation of RDA relies on the programmable
switch architecture, as described in Section II-C. The pseu-
docodes interpreted in this section are based on the bmv2
switch, which is a programmable software switch and does
not support retrieving the current queue depth in the ingress
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1 if (meta.is_deadline_packet == 1) {
2 meter_uq.execute_meter(0, meta.meter_tag);
3 if (meta.meter_tag == 0) {
4 hdr.rda.at = hdr.rda.at + meta.uq_max_del;
5 q_dep = meta.beq_max_dep + meta.uq_bs;
6 del_thr = q_dep >> meta.rate_diff_power;
7 if (hdr.rda.at < del_thr) {
8 standard_metadata.priority = 1;
9 } else {

10 standard_metadata.priority = 0;
11 }
12 } else {
13 drop();
14 }
15 } else {
16 standard_metadata.priority = 0;
17 }

Listing 1: P4 pseudocode for decision-making, meter usage
and queue assignment.

pipeline. Therefore, equation (5) is leveraged as the delay
threshold for the decision-making procedure.

The P4 pseudocode for the ingress processing is presented
in Listing 1. The values of diUQ,max, qiBEQ,max, Bi

UQ,meter,
and the exponent n in (6) are stored in the metadata of
the programmable switch by uq_max_del, beq_max_dep,
uq_bs, and rate_diff_power, respectively. These values
are configured by the controller through the match-action
table. Upon the arrival of a deadline-carrying packet, which
is determined by the tag is_deadline_packet, the meter
for constraining the rate of entering UQ is triggered. Note,
that there is only one meter applied to UQ itself, not to each
individual flow. The execution of meter results in three colors,
as defined in RFC 2697 [9]. The meter_tag stores the result
of the meter execution (according to the meter rate riUQ,meter).
A green result is indicated by 0. Once the deadline-carrying
packet is allowed to be enqueued in UQ, the value of diUQ,max
is reclaimed to the allowance time carried in the packet header.
The value of delay threshold diBEQ,max is computed by shifting
q_dep to the right by n bits, computed in:

2n = riline − riUQ,meter (6)

The arrived deadline-carrying packet is assigned a queue ID
of 1 if the allowance time is less than the delay threshold. A
higher queue ID corresponds to a higher queue priority. Thus,
the queue with ID 1 indicates the UQ, whereas the BEQ is
represented by the queue with ID 0.

Updating the allowance time in the egress pipeline
is shown in Listing 2. The field deq_timedelta in
standard_metadata stores the value of the time con-
sumed by queuing in the traffic manager, which is then
deducted from the current value of the allowance time.

III. RELATED WORK

We briefly discuss related concepts in the following. The
Push-In-First-Out (PIFO) [10] priority queuing concept is a
promising approach to enable a flexible configuration of egress
port schedulers. It is capable of emulating schedulers like
Earliest Deadline First (EDF), Least Slack Time First (LSTF),

1 if (meta.is_deadline_packet == 1) {
2 hdr.rda.at = hdr.rda.at -

standard_metadata.deq_timedelta;
3 }

Listing 2: P4 pseudocode for updating the allowance time.

and TSN Time-Aware Shaper (TAS) [11]. However, support
for PIFO is unavailable on off-the-shelf devices and FPGAs
are needed. Similarly, for other queueing challenges the use
of FPGAs has proven to be a practical solution [12].

We also want to highlight one particular TSN mechanism
due to similar goals: Asynchronous Traffic Shaping (ATS) as
given by [13], [14]. Both RDA and ATS aim to provide end-
to-end delay bounds per flow without reservations but achieve
this through differing mechanisms. ATS employs multiple
queues for each egress port to separate ingress flows based on
ingress port and priority. Each queue calculates an eligibility
time for its topmost flow, retaining packets until this time is
met. Unlike RDA, there is no need for additional encoded
information (allowance time) in packets during transmission.
However, ATS necessitates a more complex hardware support
including queuing structure and queuing scheduling, leading to
increased resource overhead compared to RDA. Currently, no
off-the-shelf devices are available that support ATS with the
required queuing and scheduling strategies. In contrast, RDA
only requires priority queues and a strict priority transmission
selection algorithm, which is specified as the default algorithm
for selecting frame for transmission in IEEE 802.1Q [1]. RDA
is implementable on Tofino-based switches solely with the
availability of strict priority scheduling and FIFO-queues.

IV. CONCLUSION

We proposed a new dynamic scheduling mechanism called
Residence Delay Aggregation (RDA), which is designed to
provide time guarantees for time-critical traffic while only
utilizing priority queuing when necessary to deliver packets
timely. The presented approach is built on top of dynamic
traffic scheduling at each switch, prioritizing traffic based
on the urgency of meeting packet deadlines and the current
queue states. RDA is designed to be implementable on the
modern P4 programmable switches. In future work, we plan
to assess the performance of RDA across various hardware
platforms in different network topologies and traffic scenarios.
The impact on the performance due to the limitation imposed
by the P4 programming language and the underlying concepts
will be investigated. Additionally, we will extend RDA by
incorporating multiple urgent queues to enhance its flexibility
in prioritization.
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