
Modular Energy-Aware Simulation
Environment for Wireless Sensor
Network Evaluation
Bachelor-Thesis
Lukas Wehrstein
KOM-B-0710

Fachbereich Elektrotechnik
und Informationstechnik

Fachbereich Informatik (Zweitmitglied)

Fachgebiet Multimedia Kommunikation
Prof. Dr.-Ing. Ralf Steinmetz

Modular Energy-Aware Simulation Environment for Wireless Sensor Network Evaluation
Modulare Energiesensitive Simulationsumgebung zur Evaluation Drahtloser Sensornetzwerke

Bachelor-Thesis
Studiengang: Elektrotechnik und Informationstechnik
KOM-B-0710

Eingereicht von Lukas Wehrstein
Tag der Einreichung: 11. April 2022

Gutachter: Prof. Dr.-Ing. Ralf Steinmetz
Betreuer: Julian Zobel

Technische Universität Darmstadt
Fachbereich Elektrotechnik und Informationstechnik
Fachbereich Informatik (Zweitmitglied)

Fachgebiet Multimedia Kommunikation (KOM)
Prof. Dr.-Ing. Ralf Steinmetz

Erklärung zur Abschlussarbeit gemäß § 22 Abs. 7 und § 23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Lukas Wehrstein, die vorliegende Bachelor-Thesis gemäß § 22 Abs. 7 APB der
TU Darmstadt ohne Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu
haben. Alle Stellen, die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese
Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs.2 APB) ein Täuschungsversuch vorliegt, der dazu
führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht wird. Abschlussarbei-
ten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte elektronische
Fassung gemäß § 23 Abs. 7 APB überein.

Darmstadt, den 11. April 2022

Lukas Wehrstein

i

Contents

1 Introduction 3
1.1 Problem Statement and Contribution . 3
1.2 Outline . 4

2 Background 5
2.1 Requirements and Structure of Wireless Sensor Networks . 5
2.2 Applications of Wireless Sensor Networks . 6
2.3 Wireless Transmission Technologies for Wireless Sensor Network 6
2.4 Summary . 7

3 Related Work 9
3.1 Energy Models and Battery Lifetime Prediction . 9

3.1.1 Influence of Non-Ideal Battery Behaviour . 9
3.1.2 Battery Models . 9
3.1.3 Battery Lifetime Prediction . 10
3.1.4 Energy consumption of typical sensor node modules, activities and protocols 12
3.1.5 Energy Measurement of Hardware Modules . 12

3.2 Structures of Energy-Aware Simulations . 13
3.3 Analysis of Related Work . 14
3.4 Summary . 14

4 Design 15
4.1 Requirements and Assumptions . 15
4.2 System Overview . 15

4.2.1 Sensor Node and Energy Components . 17
4.2.2 Energy Model . 17
4.2.3 Battery . 19
4.2.4 Application . 20

4.3 Acquiring Real-World Data for parameterised Simulation Models 20
4.4 Summary . 21

5 Implementation 23
5.1 Design Decisions . 23

5.1.1 The Simonstrator Simulation Environment . 23
5.1.2 Implementation-Specific Design Decisions . 24

5.2 Architecture . 26
5.2.1 Interfaces . 27
5.2.2 Classes . 28

5.3 Interaction of Components . 33
5.4 Limitations of the Implementation . 34
5.5 Summary . 34

iii

6 Evaluation 35
6.1 Goal and Methodology . 35
6.2 Evaluation Setup . 36

6.2.1 Acquiring Real-World Power Consumption Values for the Used Hardware Modules 36
6.2.2 Evaluation Setup for Real-World Sensor Node Lifetime Measurements 36
6.2.3 Sensor Node Configurations for the Simulation Execution 37

6.3 Evaluation Results . 39
6.3.1 Measured Power Consumptions for Precise Sensor Node Component Configuration 39
6.3.2 Collected Real-World Sensor Node Lifetime Data . 40
6.3.3 Simulated Sensor Node Lifetime Results . 42

6.4 Analysis of Results . 42

7 Conclusions 45
7.1 Summary . 45
7.2 Contributions . 46
7.3 Future Work . 46

Bibliography 47

iv Contents

Abstract

Wireless Sensor Networks (WSNs) are part of the Internet of Things and are particularly useful for
analysing data from physically distributed sensors in remote locations. Most of these sensors are battery-
powered which together with the wireless data transmission makes them very flexible and mobile. Thus,
there is a wide range of different applications for WSNs. Due to the energy supply of the sensor nodes
by batteries, there is a strong dependence of the network on the energy-related lifetime of the individual
sensor nodes. To be able to evaluate new possibilities and their applicability in advance, simulations are
necessary.

In this work, a model is presented that enables the simulation of sensor nodes with modular structure
concerning their energy-related lifetime. The modular approach is particularly interesting, as it allows
sensor nodes to be quickly and flexibly assembled from various components. For the simulation, sensor
nodes are therefore modelled as individual components. This enormously simplifies the process of simu-
lation configuration since consumption data for individual components are partly available in datasheets
or can easily be determined. In addition, already modelled components can be reused for further sensor
node configurations.

The model presented in this work is implemented in the Simonstrator network simulator. Related to
real-world measurements the simulation using a highly simplified battery model achieves an accuracy
with an average deviation of 30 %. Using non-linear extended battery models, an improvement of the
accuracy down to 5 % deviation would be possible. Thus, the model shown in this work enables the
simulation of individually configured modular sensor nodes in WSNs with regard to their energy-related
lifetime.

1

1 Introduction

This work presents a model for modular energy-aware simulation for Wireless Sensor Networks (WSNs).
These WSNs are systems that enable the wireless collection and aggregation of sensor data from dis-
tributed sources. They consist of multiple sensor nodes, that are mostly self-powered and often dis-
tributed over large distances of sometimes up to several kilometres. From there, the individual sensor
nodes are able to communicate using wireless transmission technologies like LoRa, Sigfox, WiFi and
others. As these sensor nodes are often battery-powered, they are very versatile and can be used in
remote areas without electricity infrastructure. Accordingly, components that consume little energy are
usually installed in such sensor nodes, so that the lifetime of the sensor nodes can be increased. In
this work, a model is presented that enables modular energy-aware simulation for flexible sensor node
configurations.

The fact that the sensor nodes in a WSN are autonomous, brings many advantages, such as that they
can be used flexible and everywhere, independent of the given infrastructure. But on the other hand,
these nodes are thus strongly dependent on their energy supply, which in most cases is implemented
via a battery. Even if these sensor nodes are designed to have low energy consumption, the batteries
discharge over time. Based on the application and the connected hardware, sensor nodes can reach up
to several years of battery life. In some WSN applications, energy harvesting modules like solar panels
or small wind turbines are used to recharge the batteries [AAT+18, HGL+21]. But in general, there is
a great dependency of a WSN on the batteries and energy components of the individual sensor nodes.
Therefore, after a certain time, sensor nodes within a WSN may no longer work properly, due to energy
deficiency. This means that the central sensor data collection unit, for example a server, is no longer
supplied with new sensor data.

Depending on the application, missing out on data or complete network failures due to discharged
sensor nodes can cause great damage or even endanger human life. To prevent this, the batteries of
the sensor nodes must be replaced or recharged regularly. Since these sensor nodes can also be used
in rough terrain, the replacement of batteries in the sensor nodes is elaborate and charges high costs,
especially when WSNs consist of a high number of distributed sensor nodes.

Therefore, it is important, both economically and to ensure the function of the network, to know as
precisely as possible how long the battery lifetime is for individual sensor nodes. With this knowledge,
batteries can then be replaced in time without causing energy-related sensor node failures.

In addition to live operation, where the current battery status could at least be evaluated via battery
sensors, it is also interesting for the development and design of WSNs to be able to know the energy-
related lifetimes of individual sensor nodes as precisely as possible. This also enables an improvement in
the development process for devices in WSNs [MWHA09].

To enable the simulation to easily cover as many different scenarios as possible, the goal of this work
is to develop a model, that supports the energy-aware simulation for modular configured sensor nodes.
This means that the sensor nodes can be composed of several different components with a specified or
configurable energy consumption. Further, the division of a sensor node into individual components also
has the advantage that components or hardware modules that have already been specified can be reused
for other configurations. This enables fast use of energy-aware simulations for a wide range of different
WSN applications and beyond.

1.1 Problem Statement and Contribution

There are already simulators that are suitable or even designed for the simulation of WSNs. However,
the focus is often on the simulation of data traffic within the network. Since the energy state of the
sensor nodes has an impact on the functionality of the WSN, the consideration of energy consumption

3

in the sensor nodes is essential for a good WSN simulation. To simulate the energy consumption of
sensor nodes, they must first be analysed in terms of their consumption. This is elaborate and requires
measurements with a prototype sensor node.

Therefore, in this work, a modular approach for simulating sensor node lifetimes based on the in-
dividual components of a sensor node is developed. This simplifies the simulation configuration, as
sensor nodes are a composition of several components with respective energy consumption. Instead of
analysing the whole node, information about the used components is sufficient to configure the here pre-
sented model. Based on the consumption of the individual components, which may be provided by the
corresponding manufacturers, the model creates an energy model for the entire sensor node, which is
then used for the simulation of sensor node lifetimes. The modular structure of the model also supports
the implementation and configuration of any sensor node workloads. This means that components of
the sensor nodes can be dynamically switched on and off during the simulation depending on the task
and state of the sensor node’s workload, which is essential for energy-based lifetime simulation.

For this approach, this work presents a conceptual design of this modular sensor node model. Further,
a sample implementation of this design is implemented in the Simonstrator [RSRS15] simulation frame-
work. A proof-of-concept evaluation of this implementation is also done. For this purpose, the simulated
lifetimes are also compared to real-world measurements and evaluated with regard to the precision of
the simulation model. It turns out that this model is quite suitable for the lifetime simulation of sensor
nodes in WSNs. However, the precision of the simulation depends significantly on the quality of the bat-
tery model used. Using a simple ideal linear battery model, the simulation is only able to deliver results
with a deviation of about 30% from the real-world measurement. With more accurate battery models,
on the other hand, results with up to 5% deviation are possible.

1.2 Outline

This work is structured in several chapters. Chapter 2 gives background information on which this work
is based. Related work and work that affects parts of this thesis is explained in Chapter 3. Chapter 4
then presents the design developed in this work. An exemplary implementation of this design is then
shown in Chapter 5. Chapter 6 provides an evaluation and analysis of the approach. Finally, Chapter 7
summarises the achievements of this work and provides an outlook for potential future work based on
this work.

4 1 Introduction

2 Background

This chapter gives information about the background of this work. In Section 2.1, requirements and
the typical structure of Wireless Sensor Networks (WSNs) are described. Common areas of application
for WSNs are shown in Section 2.2. As specific transmission technologies are key elements in WSNs,
different typical WSN transmission technologies are presented and compared in Section 2.3. Finally,
Section 2.4 summarizes the background information given in this chapter.

2.1 Requirements and Structure of Wireless Sensor Networks

Since the spread of the internet, it has been possible to transmit data easily and worldwide for example
to control and monitor other devices and systems remotely. Internet of Things (IoT) therefore means the
networking of a wide variety of devices and is used for example in the industrial, research and consumer
sectors. For this purpose, over 26 billion IoT devices were active in 2020 and 75 billion connected IoT
devices are estimated for 2025 [Lou21]. Having access to devices and information from all over the
world, some even with real-time access makes the field of application for IoT large and inhomogeneous.
These reach from smart homes in the consumer segment to global climate surveillance with distributed
sensor networks.

WSNs are a sub-area of IoT where the main purpose is to enable sensors that are physically distributed
over large distances to communicate with each other and wirelessly transmit their collected data to a
central remote server unit. This makes it possible to access, analyse and react to various sensor data fully
automatically and from anywhere. Therefore, WSNs are also widely used in agriculture and industry to
further automate processes and thus increase for example the efficiency level and safety of production.

On the other hand, the use of WSNs further increases the dependence on the global network infrastruc-
ture and generated data traffic and server applications increase the global power consumption. However,
depending on the application, the use of IoT or WSNs enables the power consumption for example in
industrial plants can be reduced, due to further optimised processes. Especially the feature of complete
wireless sensor nodes with low energy consumption, long transmission ranges and battery lifetimes of
several months up to years, enables many new fields of application and promotes innovation [KPKK19].

To enable remote access on nodes in a WSN, most applications rely on the same concept. As illustrated
in Figure 2.1, the key element of a WSN is the wireless transmission technology used for communication.
Thereby, the used technology is mostly optimized for the application needs of low power and long-range
transmissions. However, this also means, that the available data rate is mostly in the kilobit area. Since
every sensor node is equipped with a wireless transceiver, the sensor nodes are able to communicate
with each other. This is required for example for connected smoke detectors or other applications with
a decentralized approach. For applications that require central access to the data from all nodes, mostly
a gateway is used to transfer data from the local wireless network via these special low power long-
range transmission technologies to a server on the internet. Such gateways can be developed by the
user himself, but there are also companies and organisations that provide a gateway infrastructure for
a specific transmission technology. The availability of such gateway providers differs greatly depending
on the location. Instead of building many new gateways and connecting them to the internet, some
technologies are able to use and adapt the existing mobile radio infrastructure. However, this option is
usually associated with higher costs and shorter battery lifetimes [MBCM18]. A basic structure of a WSN
with multiple sensors nodes and a server with a connected gateway is shown in Figure 2.1.

Even if the communication directly from the sensor node to the server is usually used, it is also possible
to set up communication between the nodes themselves and from the server to the nodes. However,
due to more frequent wake-up times in order to be able to receive incoming messages, the energy
consumption of the sensor nodes also increases.

5

Figure 2.1: General structure of a unidirectional WSN. Several sensor nodes collect and send data to a central
server via a wireless transmission medium. To enable the server to receive the data from the sensors a
gateway is used to forward data from the wireless medium to the server / local computer.

2.2 Applications of Wireless Sensor Networks

WSNs respective the corresponding individual sensor nodes are able to be used in any conceivable
environment, for example in rough terrain, areas without energy infrastructure, buildings, industrial
plants, hospitals, disaster areas, forests, fields or even in exceptional cases like underwater or in space
[AA11, AAIS14, KGT09, ASM+11, RAA+14]. Therefore, WSNs are suitable solutions for IoT applica-
tions for indoor and outdoor environmental monitoring, agriculture, logistics, health, smart home, smart
cities, military, security or robotics [ALM05, KNVK20]. This usually involves making sensor data such
as weather, position, heart frequency, or electricity measurements from different locations accessible for
monitoring and optimisation.

While in some systems a failure of single sensor nodes is not particularly tragic, for other applications
it is important that every node functions reliably and fail-safe. Especially in health-care applications for
real-time monitoring of e.g. pulse and blood oxygen, failures of such a WSN system can be even critical
for survival [KTK15, KGT09]. It is therefore important that sensor nodes can be analysed and observed
in terms of their lifetime. This also shows how the specific application of a WSN has a great impact on
the specific implementation of the WSN. Especially when selecting a suitable transmission technology
for the sensor nodes and the gateways, there are major differences between the various options.

2.3 Wireless Transmission Technologies for Wireless Sensor Network

There are multiple different wireless transmission technologies, which are commonly used for WSN
applications. Depending on the specific structure and requirements of the application, different tech-
nologies are best suited. In general, these can be specified in terms of transmission range, data rate,
cost, energy consumption and quality of service. However, these specifications are often not indepen-
dent of each other. For example, a long transmission range with low power consumption automatically
implies a lower data rate. On the other hand, other technologies provide higher data rates but with
shorter transmission ranges or higher energy consumption. Figure 2.2 gives an overview of the trans-
mission range and energy consumption of different wireless transmission technologies. LoRa and Sigfox
in particular stand out, as they provide long transmission ranges of up to several kilometres and low
power consumption. However, the proprietary technology by Sigfox can only be used with their associ-
ated network and gateway infrastructure. LoRa is also a proprietary modulation technique, but it can
be used either in its own local networks or within a global network using the open LoRaWAN protocol,

6 2 Background

which is developed and specified by the LoRa Alliance organisation. On the downside, the data rates of
LoRaWAN and Sigfox are very restricted to 0.3− 50 kbit and 0.1 kbit. Other technologies like WiFi and
cellular approaches are suitable for applications that do not require these extreme low power consump-
tion and long ranges, but a higher data rate. Even if these provide low energy consumption, NFC and
other RFID technologies and Bluetooth are typically not used for WSNs because their transmission range
is too short for taking advantage of wireless transmission.

transmission range

WiFiBluetooth

NFC
RFID

LoRa
Sigfox

NB-IoT
Cellular

en
er

gy
 c

on
su

m
pt

io
n

Figure 2.2: Qualitative classification of different wireless transmission technologies in terms of transmission range
and energy consumption.

Further, there are generally two options for WSNs in terms of the network structure. There are global
networks like Sigfox, LoRaWAN or the cellular network which can be used as gateways, eventually
making the data available all over the world. Another option is to set up an own local network with an
own gateway and sort of local server, to save and proceed the transmitted data. With some technologies
it is also possible to build a mixture of local and global networks. The Things Network (TTN) for example
gives the opportunity to add own LoRaWAN gateways to their public network.

Overall, both in terms of power consumption and due to the different ranges and network topologies,
transmission technology is a decisive factor in designing a WSN. It is therefore important that a simu-
lation takes different transmission technologies into account and delivers results that are as accurate as
possible.

2.4 Summary

This chapter gives background information that further explains the structure and applications of WSNs.
These represent a sub-area of the field IoT. With the spread of the internet and the availability of vari-
ous low power, long-range transmission technologies, WSNs are currently popular and a growing sector.
Depending on the specific application, the implementation of WSNs may differ, however, the base struc-
ture mostly remains the same. Sensors and other hardware modules are equipped with a transmission
module that is able to communicate over a certain distance with other sensor nodes or a gateway. Gate-
ways are interfaces that provide a transfer from the local wireless network to the internet. The use
of such gateways in combination with long-range transmission technologies makes it possible to cover
large areas and forward data from distributed wireless sensor nodes to a server on the internet. This
makes WSNs especially interesting for areas with no electrical infrastructure. Different wireless trans-
mission technologies and networks come with different specifications, which are suitable for different
WSN scenarios, depending on their actual application.

2.4 Summary 7

3 Related Work

There is already work that addresses specific components of this work. Section 3.1 is split into five
subsections and discusses what progress has already been made in the field of energy models for batteries
and Wireless Sensor Network (WSN)-node components, how a battery lifetime prediction can be made
from this and how WSN modules can be analysed in terms of measuring power consumption. Section
3.2 examines the structure of existing energy-aware simulations. In Section 3.3 an analysis of the related
work is done. Finally, Section 3.4 summarizes this chapter.

3.1 Energy Models and Battery Lifetime Prediction

Sensor nodes in WSNs are mostly battery-based. This means, even with connected energy harvesting
modules the available energy of a wireless sensor node is limited. Since WSN nodes typically contain
one energy store like a battery and several energy consumers like Microcontrollers (MCs), radio modules
or sensors the precision of the battery model is one of the most important factors to achieve realistically
energy-based lifetime predictions [RMB+17, KCZ07].

3.1.1 Influence of Non-Ideal Battery Behaviour

The accuracy of the simulated lifetime depends heavily on the battery model, as it plays a central role
in the sensor node [RSKN05]. Unlike an ideal battery, real batteries do not behave in a linear and ideal
way. Common non-idealities are Rate-Capacity-Effect, Recovery-Effect, temperature, cycle number and
self-discharge.

The Rate-Capacity-Effect, based on Peukert’s Law [Peu97], describes a non-linear behaviour in batter-
ies in which the maximum usable energy from the battery is lower at high current drains than at lower
current drains. The Recovery-Effect describes the partially increasing of the battery output voltage when
the battery is not in use.

Due to different types of batteries using different chemical elements and technologies, the influence of
these parameters on the battery behaviour varies. According to Chen et al. [CR06] the most important
effects on low power polymer Li-ion batteries are the Rate-Capacity-Effect and the Recovery-Effect, which
is why the authors neglect the other effects named above. On the other hand Kerasiotis et al. [KPA+10]
also neglects the Recovery-Effect for WSN scenarios, where the current drains are comparatively low.
There are also further works about other non-ideal battery characteristics [KK16, HD13, OROR18].

3.1.2 Battery Models

The most common models for non-ideal batteries typically used in Embedded Systems are the Kinetic
Battery Model (KiBaM) and the Stochastic Battery Model (StBaM).

The KiBaM represents a battery as two wells of charges: the available-charge well and the bound-
charge well. Charges from the bound-charge well only flow to the available-charge well. Representing the
current drain, charges from the available-charge well flow to the load. After taking charges out of the
available-charge well, a charge current from the bound-charge balances the two wells again. Referring
to Rao et al. [RSKN05], the KiBaM is well suited to understand the Recovery-Effect but needs a few
modifications for battery types used for mobile applications.

The StBaM is based on a Markov process. Using several parameters and probabilities, the StBaM
defines different states and transitions. The behaviour of the battery can be analysed by observing the

9

maximal-available capacity T and the nominal capacity N . T defines the absolute maximum of energy
a load can obtain from the battery. N is the actual available capacity. Due to the Recovery-Effect, the
battery’s nominal capacity N may increase in non-discharging idle states. The battery is considered to be
fully discharged if the maximal-available capacity T is depleted or if the nominal capacity N equals zero
[RSKN05].

An in-depth look and comparison of different battery models is provided by Kaj and Konané [KK16].
There is also a variety of different extended, adapted and combined battery models [RSKN05, OROR18,
KPMB08, HD13].

3.1.3 Battery Lifetime Prediction

There are different approaches to battery lifetime prediction. Wang et al. [WXVS14] develop a model for
reliability and lifetime prediction of wireless sensor nodes. The authors equate the probability of failure
of a sensor node with the depletion of the battery, which once again shows the importance of a realistic
battery model for WSN-node lifetime prediction. In addition, they determine a threshold capacity Cmin,
which represents the amount of battery capacity that can not be used due to non-idealities. Using
Peukert’s Law [Peu97] for calculating the remaining capacity C(t) in dependence of time t and a constant
current charge I , they achieve a concise but Rate-Capacity-Effect-sensitive formula for the sensor node
reliability R(t):

R(t) = Pr{C(t)≥ Cmin} (3.1)

C(t) = C0 − I k · t (3.2)

where Pr{X } returns the probability of event X, C0 is the initial capacity of the battery and k is the
Peukert constant with k = 1 for a linear battery model and k between 1.1 and 1.3 for different battery
types.

A similar approach to modelling battery lifetime was also taken by Kerasiotis et al. [KPA+10] by
considering the Rate-Capacity-Effect and neglecting the influence of temperature, self-discharge and
Recovery-Effect. Using equation 3.3, Kerasiotis et al. calculate the battery lifetime tmax from the cur-
rents Ii and the corresponding interval durations ∆t i respectively the overall average current Iav erage
and the offered capacity by the battery Eo f f ered in mAh:

Eo f f ered =

∫ t=tmax

t=0

I(t)d t =
i=N
∑

i=0

Ii∆t i = Iav erage tmax⇔ tmax =
Eo f f ered

Iav erage
(3.3)

where N represents the number of operations with different current consumption. In their work, they
also consider different duty cycles. For this purpose, Kerasiotis et al. adjust the average current accord-
ingly and set the sleep currents to zero. Finally, with their lifetime prediction model, Kerasiotis et al.
achieve an error rate of 2.7 %.

Another approach by Rao et al. [RSKN05] is to combine the KiBaM with the StBaM. With their
proposed "Stochastic Modified KiBaM", Rao et al. achieve a precise battery lifetime prediction model
with an error rate lower than 2.65 % for constant and pulsed current consumption. In their evaluation
setup, for constant load and high states of pulsed loads, Rao et al. work with a current drain of 960 mA,
which is set via a load resistor RC . For the low phases of the pulsed load sequence, the current drain is set
to 0 mA. Due to a lower current consumption per time interval, the lifetime values for pulsed loads are
higher than for constant loads. But also the overall delivered charges increase with longer low phases.
Using two 1.2 V AAA Ni-MH batteries with a charge of 1000 mA h each, the authors measured 1440 mA h
(predicted: 1445.8 mA h) with a constant current load. With a pulse consisting of 2 s high and 3.5 s low,
the delivered charge was 1844.5 mA h (predicted: 1830.5 mA h). However, it is questionable whether
the Recovery-Effect shown here also has a comparable influence for currents significantly below 960 mA.

10 3 Related Work

In another work, Barboni et al. [BV08] show the importance of precise information about cutoff
voltages of the used components in the WSN node. Due to the decreasing voltage of non-ideal batteries,
some hardware components will no longer function properly once the supply voltage falls below a certain
cutoff. These cutoff voltages can sometimes be found in datasheets. In the author’s case, these values
were not reliable and the used Atmega128L operates with a voltage supply down to 2.1 V instead of
2.7 V as specified in the datasheet. This deviation causes the predicted node lifetime of 15 d to differ
significantly from the actually measured lifetime of 35 d. Otherwise, the authors developed certain WSN-
specific benchmarks based on which they determine the power consumption for common tasks of a WSN
node. When considering the impact of transmit power on the energy consumption, Barboni et al. found
that due to the other processes like MC wake-up, Radio Transceiver Wake-Up, Radio setup, calibration
and listening to incoming answers, the energy savings from lower transmit powers can be neglected. The
authors also neglect the power consumption of the MC while it is in deep sleep mode.

Another interesting work is done by Chen et al. [CR06]. Based on an extensive series of measure-
ments, they set up various mathematical functions for NiMH and polymer Li-ion batteries that allow the
calculation of different parameters depending on the battery State of Charge (SoC). Of particular interest
is equation 3.4 for calculating the open-circuit voltage VOC of a polymer Li-ion battery with a nominal
output voltage of 4.1 V as a function of the SoC. Figure 3.1 shows 3.4 as a function of SoC.

VOC(SoC) = −1.031 · e−35·SoC + 3.685+ 0.2156 · SoC − 0.1178 · SOC2 + 0.3201 · SoC3 (3.4)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
SoC

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

V O
C
 [V

]

Figure 3.1: Plot of Chen et al. [CR06] proposed battery output voltage function 3.4 for a 4.1 V polymer Li-ion bat-
tery. SoC represents the available charges of the battery from 1 (fully charged) to 0 (fully discharged).

To validate the proposed mathematical model, Chen et al. use three different discharge scenarios
to represent realistic scenarios. First, a constant load current of 80 mA. The second scenario consists

3.1 Energy Models and Battery Lifetime Prediction 11

of different pulsed charge and discharge current profiles. The third scenario covers a periodical dis-
charge current profile by alternating periodically between 0, 400, 160 and 640 mA. For all scenarios, the
absolute voltage errors are under 30 mV and the relative battery lifetime errors are lower than 0.4 %.
However, these data are only validated for a specific polymer Li-ion battery type.

3.1.4 Energy consumption of typical sensor node modules, activities and protocols

Besides the energy storage side, the consumer side of a sensor node is also important for a good energy
model. Due to different hardware modules and configurations such as duty cycles and sampling rates,
the individual energy consumptions of different sensor nodes may differ significantly.

Examining MCs, internal flash storage operations, timers, LEDs and a radio module Antonopou-
los et al. [APS+09] measure the impact of some specific hardware components on the overall node
power consumption. Using the TelosB platform, there are great differences in power consumption by
switching between the six Low Power Mode (LPM)-states, including the active mode (LPM 0). In active
mode, the MC consumes maximum 2.25 mA, but in the LPMs one to five, the MC reduces the current to
180 µA down to 15 µA. Operations on the internal flash-storage are mostly negligible, as they only last
under 24 ms with a current consumption of 2.4 mA for writing 90 B of data. The consumption is even
lower when reading data. The examined timer module is dependent on the CPU clock but has a current
consumption of 90 µA to 180 µA. The LEDs come with a relatively high current consumption. Depending
on the model and colour, the LEDs consume between 3.3 mA and 5.3 mA. Therefore, Antonopoulos et
al. also advise against using LEDs whenever possible or letting LEDs blink instead of switching them on
permanently. Finally, the radio module is the most significant one regarding power consumption with
up to 20 mA. The authors investigate different modes of transmit power in terms of node energy con-
sumption. However, since the radio module is used together with the MC, the savings from the reduced
transmit power are not as high as expected compared to switching on the radio module in idle mode.
Similar currents were also measured for comparable modules by [LWG05].

Based on the data from Antonopoulos et al [APS+09], Kerasiotis et al. [KPA+10] examine a scenario
using the same MC, radio module, LEDs and Analog to Digital Converter (ADC). With these hardware
modules, Kerasiotis et al. define four operating states with different activities in terms of radio transmis-
sion, receiving and LED state. Using the TelosB platform, with active CPU and ADC they achieve average
current values between 18 mA and 23 mA for the first three basic operations with active transmission
and 3.7 mA for the scenario without transmission but active LEDs. The authors also notice that down to
a certain threshold voltage, the current consumption of the radio module remains rather constant, while
the current consumption of the LEDs decreases proportionally to the falling voltage. Thus, different hard-
ware components differ not only in their general power consumption but also in their current-voltage
behaviour, which makes a general but precise power consumption model even more complicated.

Examining different MAC-Layer protocols (Traditional MAC, S-MAC and T-MAC), Wang et al. [WXVS14]
find out that different wake-up cycles from diverse MAC protocols have a huge impact on the node’s bat-
tery lifetime. Traditional MAC keeps the node in active mode all the time. S-MAC defines constant
periods for sleeping and being active. Using the T-MAC protocol, the duration of active and sleep-mode
are not fixed and stochastically distributed within certain limitations. T-MAC performs best with about
2.9 times longer lifetime than traditional MAC. S-Mac performs 1.8 times better than traditional MAC.
Overall, Wang et al. show the importance of knowing the individual activity cycles, especially the deep
sleep cycles, of the sensor nodes to accurately simulate their battery life.

3.1.5 Energy Measurement of Hardware Modules

The power consumption of a typical WSN-node differs greatly between active and sleep mode. With
sleep currents lower than 100 µA, the ratio between sleep and active current can for some modules be

12 3 Related Work

less than 1 %1. Di Nisio et al. [DNDNCS16] compare three different methods to measure currents of
MC-based applications with a high dynamic range. The three methods under consideration are: shunt
only, shunt with Instrumentation Amplifier (INA) and a setup with an INA with a feedback loop. In doing
so, they conclude that for measurements with such a large dynamic range, the method they presented
with a feedback loop is better suited than the methods with shunt only or shunt and INA. That means,
that for the shunt with INA and feedback loop setup the relative error is lower, the supply voltage more
constant and the dynamic response to current changes is faster. Due to the integrated feedback loop, the
falsification of the result by the measurement is reduced.

To avoid such measurement feedbacks, Antonopoulos et al. [APS+09] use a measurement setup with
a current mirror circuit. There, the measurement is made by integrating a shunt resistor into a mirrored
current so that no voltage drop across a shunt resistor occurs in the original circuit. Another more
specialised current mirror-based measurement setup is presented by Konstantakos et al. [KKNL06].

3.2 Structures of Energy-Aware Simulations

There are already several network simulators for WSNs. Merrett et al. [MWHA09] examine some
of them and identify which criteria are crucial for energy-aware simulations. A fundamental finding
of Merrett et al. is the importance of flexibility and adaptability of the simulation. To support the
simulation of a variety of different scenarios, the authors suggest that the simulation software must
be extensible so that new hardware modules can be easily integrated and specified. The hardware
components can be classified in three categories: Energy Sources, Energy Stores and Energy Consumers.
Energy Sources are for example solar cells, vibration harvesters or mains supply. By Energy Stores, Merrett
et al. mainly mean different types of batteries, supercapacitors and fuel cells. Energy Consumers are all
components of the WSN node which consume energy like microcontrollers, radio transceivers, sensors
or other peripherals. Besides precise hardware models, Merrett et al. find that an evaluation of the
node’s software is also important for precise energy modelling. Since different protocols and algorithms
require different active times of the node, this can result in large differences in the simulation of the
node’s lifetime. Compared to existing simulations, Merrett et al. provide environment interaction for the
sensor nodes. For example, the environment-aware Energy-Sources in the sensor nodes like photovoltaic
or wind harvesters are controlled by environment defined models. This also applies to some sensor
types like photodiodes. For the energy consumption, all connected modules are considered including
any periphery.

Their proposed structure for energy-aware simulations is shown in Figure 3.2. The Environment Model
contains a Network Model that defines the physical location of the nodes, a Channel Model that defines the
wireless data propagation and an Environmental Model that defines relevant physical parameters like sun,
wind or temperature. Each node has access to the Hardware Models corresponding to its configuration.
These Hardware Models contain Energy Models, Sensor Models and Timing Models which are able to
query the global Environment Model as described above. The node’s individual Shared Application Layer
interacts with the Communication Stack, the Energy Stack and the Sensing Stack. These are divided into
several sub-layers that represent the whole chain from physical data to processable information and
interaction interfaces. For example, the Energy-Stack is divided into three sub-layers. First, the Physical
Energy Layer (PHE) reads the current battery voltage of the Energy Model. The Energy Analysis Layer
(EAN) uses the specific battery and super-capacitor models to convert the voltage data into residual
energy and lifetime information. These two layers are called by the Energy Control Layer (ECO) which
controls the energy-aware operations of the WSN node. The Communications Stack and the Sensing Stack
work basically similar. Using these stacks with the Shared Application Layer and the specific models, each
node can be individually configured and simulated.

1 https://arduino-projekte.info/stromverbrauch-arduino-wemos-boards/

3.2 Structures of Energy-Aware Simulations 13

https://arduino-projekte.info/stromverbrauch-arduino-wemos-boards/

Figure 3.2: Merrett et al. proposed structure for energy-aware WSN simulations [MWHA09].

3.3 Analysis of Related Work

Since this work consists of many different fields, there is already a lot of related work in most of the
areas. Especially the area of battery models and energy consumption of WSN-nodes is well explored. As
some of the models are very detailed and include many non-ideal effects, simplification or compilation of
different models may be sufficient for this work. For example, some battery models cover the Recovery-
Effect, but this is sometimes neglected for WSN applications [KPA+10]. Current-voltage behaviour of
batteries also seems to be very individual, so that there are only a few works with generally valid data on
the voltage drop of batteries. Since a modular system is being developed in this work, a generic model
must be developed from the few existing data in terms of voltage drop.

Depending on the required precision, lifetime prediction for WSN-nodes needs in-depth information
on the used hardware modules. Due to the modularity aspect in this work, the approaches presented
here can only be used to a limited extent. The software or the activities of the node also play a major
role in energy consumption, which also requires individual consideration of the corresponding nodes in
terms of modularity.

Since Merrett et al. [MWHA09] already put an emphasis on extensibility, they present a useful tem-
plate for the structure of a good energy-aware simulation. Therefore, this structure can in principle be
transferred to this work, even if further adaptations are necessary.

3.4 Summary

In this chapter already existing related work on different areas of this work is presented. Section 3.1
deals with different energy models for batteries and power consumption of typical WSN-node hardware
modules. Covering non-idealities of batteries, different battery models, battery lifetime prediction, en-
ergy consumption of typical WSN-node components and energy measurement this area is well explored
and treated in a lot of other works. Regarding energy-aware simulation structure, there is only one but
good adaptable work in section 3.2.

However, most of the related work cannot be adopted directly. In particular, the analysis shows that a
precise prediction of the battery life is challenging, especially due to the aspect of modular construction.

14 3 Related Work

4 Design

This chapter describes a new model for modular energy-aware simulations of Wireless Sensor Networks
(WSNs). Thereby, the goal of this model is to enable a simulation to consider the energy consumption
of the sensor nodes, which are configured as a composition of different components. Due to most of
these sensor nodes being typically battery-powered, using this new model, an energy-based lifetime
prediction of the sensor nodes can be achieved. To ensure that this model can be used for a variety
of different WSN simulation applications, it is designed to be highly flexible and expandable. This is
provided by the completely modular structure of the sensor nodes, which are described as a composition
of different hardware components. Thus, the model does not describe a single closed systems, but
individual components which are assembled into a system as desired. Since sensor nodes in WSNs
usually consist of different hardware modules, this modular approach to modelling energy consumption
is particularly interesting for WSNs. This also allows hardware modules to be modelled only once but
used in different compositions in several individual sensor node configurations. The ability to reuse
hardware models in different sensor node configurations makes it possible to quickly, flexibly and easily
simulate new hardware compositions in terms of their energy consumption and battery lifetime. This
enables fast comparison of different hardware configurations in a simulation environment. Due to the
fully modular design, the presented model also offers the integration of new components that may have
functions that go beyond the typical tasks performed by sensor nodes in WSNs.

Section 4.1 discusses the requirements on this design and the assumptions made to meet these. Section
4.2 gives a detailed overview over the models system design. For evaluation purpose and creating
detailed hardware models, Section 4.3 shows a measurement setup design which meets the requirements
of the presented model. Finally, Section 4.4 summarizes this chapter.

4.1 Requirements and Assumptions

As the presented design should be highly flexible and extendible, it requires a modular and configurable
basic structure. Sensor nodes have to be freely composable from different hardware components. To
ensure the model to be extendible with a variety of different hardware, some simplifications have to be
done. For this reason the following assumptions are made:

• All WSN nodes can be configured individually and independently of each other.
• The supply voltage provided by the battery and the current consumption of individual tasks per-

formed by specific modules are considered as constant. This means that the use of model- and
task-specific U-I characteristics is not possible.

• Focusing on a modular approach, it is assumed that the set of connected hardware modules increase
the total energy consumption of the whole node, but not influence the energy consumption of other
connected hardware modules.

This improves the flexibility and strengthens the ability to quickly try out different hardware configura-
tions, knowing that this might decrease the accuracy of the simulation results. Despite these assumptions
and simplifications, the model should be able to predict the lifetime of the individual sensor nodes as
accurately and precisely as possible. For this purpose, a concrete evaluation of a sensor node lifetime
simulation is provided in Chapter 6.

4.2 System Overview

WSNs consist of several sensor nodes. These sensor nodes are self-sufficient in terms of energy and
workload. This means, that in a typical WSN scenario, for example, the sensor nodes are able to take

15

measurements and transmit data on its own, without a central control unit. This enables the model to
consider each sensor node separately as an independent unit.

In order for these sensor nodes to operate autonomously, they consist of different components with
different functions. As shown in Figure 4.1a, a sensor node contains several Sensor Node Components, a
Battery, an Energy Model and an Application. Sensor Node Components represent hardware modules used
in a sensor node like Microcontrollers (MCs), communication interfaces, sensors, actuators and other
components. MCs here have a special role, as they are typically the hardware module where every other
hardware component is connected to. However, since it would theoretical be possible to equip a sensor
node with several MCs, they are treated as normal Sensor Node Components. To ensure that the sensor
nodes can be freely and individually equipped, any number of Sensor Node Components can be added to
a sensor node.

Since most sensor nodes have only one battery or one energy source consisting of several battery
packs, batteries are not considered as Sensor Node Components. This also simplifies the calculation of
the current state of charge, as there is a central battery model that represents all connected hardware
batteries of the sensor node.

The Application component manages the workload inside a sensor node. This means the Application
activates, configures and controls the individual Sensor Node Components. Most Sensor Node Components
represent actual hardware modules that consume energy. Therefore, they bring matching energy compo-
nents with them. These Energy Components define the actual energy consumption of all the tasks which
can be performed by their corresponding Sensor Node. Together with the Energy Model the sensor nodes
current total consumption is then calculated from the individual consumptions of the Host Components,
which is then taken from the battery.

SensorNode

Battery

EnergyModel

SensorNodeComponent

EnergyComponent

...

SensorNodeComponent

EnergyComponent

Application

(a) Basic structure of a sensor node. A sensor node
contains several Sensor Node Components, a Battery,
an Energy Model and an Application.

EnergyModel

En
er

gy
C

om
po

ne
nt

M

ic
ro

co
nt

ro
lle

r

En
er

gy
C

om
po

ne
nt

C

om
m

un
ic

at
io

n
In

te
rfa

ce

En
er

gy
C

om
po

ne
nt

Se

ns
or

...

B
at

te
ry

(b) The Energy Model handles the energy consumption
process for all connected Energy Components. Com-
ponents are able to be switched on and off.

Figure 4.1: Basic structure of a sensor node and its energy management.

Figure 4.1b shows the basic concept of energy consumption within a SensorNode. The individual Energy
Components of the corresponding Sensor Node Components notify the Energy Model if they consumed
energy. Defining the energy consumption of different tasks and features of the Sensor Node Components,
Energy Components have several states. By changing state, the Sensor Node Components adjust their

16 4 Design

corresponding Energy Component to fit the energy consumption to the current task. The tasks of the
Sensor Node Components are controlled by the Application.

The energy consumptions of all Sensor Node Components is directed to the Energy Model. Based on
the incoming consumptions, the total current energy consumption of the sensor node is calculated. The
Energy Model finally discharges the Battery with the calculated amount of energy.

4.2.1 Sensor Node and Energy Components

The Sensor Nodes stand as containers for single individual sensor node configurations inside a WSN,
including a Battery, an Energy Model, an Application and several Sensor Node Components. These Sensor
Node Components represent all modules that are physically connected to the Host. In most scenarios, the
central hardware component of a sensor node is an MC. Other typical hardware components of sensor
nodes are sensors, communication modules, motors, displays, LEDs or other periphery components. In a
real hardware sensor node, all other components are typically managed by an MC. In principle it is also
possible to add several MCs to a sensor node, although this is rather unusual, as MC are often among
the most energy-intensive components of a sensor node. This modular design supports several MCs
connected to a sensor node. However, different applications running on these MCs have to be merged
into one application module.

Depending on the complexity of a specific hardware module, a component is described as a Finite State
Machine (FSM) with at least two or more states. Components can be switched on and off, or consist of
more states to be described accurately in terms of their logical behaviour.

Due to most hardware components consuming energy while being turned on, Sensor Node Components
require a corresponding Energy Component. These Energy Components define the energy consumption the
Sensor Node Component requires for its task in its current state. As mentioned in Section 3.1.4, several
papers examine single hardware component modules to find out the corresponding energy consumption
of the module in a specific state. These specific states often differ greatly in their energy consumption, as
many hardware modules support several active and sleep states with different features and functionality.
Some MCs even have several different sleep states with different grades of power consumption and
functionality. In this design, the states of the sensor nodes are defined at task level. This means that
typical WSN tasks such as sampling sensor data or transmitting data are treated as individual states.
Some related works examine these states in more detail and subdivide the states used here into more
detailed sub-states. Since these sub-states must all be passed through to complete this state on task
level, a more detailed model brings no more information about energy consumption since the amount
of consumed energy does not change. From the point of view of energy consumption simulation, it is
therefore equivalent to define the energy consumption of a single state with an average energy amount
or a power consumption and the corresponding duration spend in this state.

Figure 4.2 shows the basic workflow of the energy management of a sensor node. Starting with the
Application that regularly checks the battery’s state of charge, it successively performs various tasks from
the configured workload. For this purpose the Application sets the Sensor Node Components to their
corresponding state. The Sensor Node Components again set their corresponding Energy Components to
consume the corresponding energy. These energy consumptions are reported to the Energy Model, that
discharges the Battery with the total energy consumption.

4.2.2 Energy Model

The Energy Model coordinates the nodes’ energy consumption. By adding all consumption values of the
active components, the Energy Model calculates the total current energy consumption of the node. Due
to different states in the applications workload cycle, the energy consumption of a node is not constant.
Due to the chosen energy-based approach, the correct current total energy consumption is calculated by

4.2 System Overview 17

Application

HostComp.

...

EnergyComp.

...

HostComp. EnergyComp.

HostComp. EnergyComp.
EnergyModel Battery

Figure 4.2: Procedure of energy consumption in the sensor node model.

the Energy Model by adding up the energy consumptions of all Sensor Node Components defined by their
corresponding Energy Components.

Another approach would be to examine the current consumption of the components and discharge
the battery with the sum of these currents. Since different hardware components need different sup-
ply voltages, information about the current only are not sufficient in terms of energy consumption.
Adding information about the corresponding voltage, the model would effectively get information about
power consumptions. Adding a time component is also necessary to ensure the correct duration of the
consumption. Finally, the transferred information at the battery would again result in an energy informa-
tion. Using information about energy simplifies the Energy Model and also supports the usage of simple
Battery Models with a given extractable energy in Joule.

Since energy is an absolute and time-independent value, energy consumption is defined for a specific
duration in a certain state. It represents the whole energy that is needed to perform the corresponding
task. This full amount of energy can be taken from the battery at different times. One possibility is
to deplete the battery, when the state changes. This can be done, when the current state starts or
when it ends. Since this model should rather model a too short than a too long sensor node lifetime,
it is recommended at this point to discharge the associated energy already at the beginning of a new
state. Due to the times at which the state changes are usually not evenly but unevenly distributed, this
strategy is called Dynamic Pushing. This strategy is well-suited for applications with many and steady
state changes, as the consumed energy is taken from the battery regularly. However, this state change-
based energy consumption calculation is unsuitable for applications with long periods without state
changes. Discharging the energy at the beginning of a long new state can lead to inaccuracies because
the simulation stops when the energy of the entire new state is discharged at its beginning. This means
that the simulated lifetime would be too short, or too long if the energy is used up at the end of a state.

Another approach fixing this issue would be an energy depletion strategy with a specific static time
interval at which energy is taken from the battery. Due to the static time interval, this approach is called
Static Pushing. The shorter the interval, the higher is the respective accuracy of the model. If the interval
is too long, rapid changes of state may not be calculated correctly because other states than the current
one were also active in the past time interval. On the other hand, a short interval might lead to a weaker
simulation performance since these calculation activities must be done for every sensor node of the WSN
independently. Further, the energy consumption of the states must be split with regard to the query
interval, to ensure the correct amount of energy is taken from the battery.

To overcome both issues of inaccurate energy depletion, a hybrid approach combining static and dy-
namic behaviour is proposed. As shown in Figure 4.3, energy is taken from the battery when the state
changes and when the static query interval is over. This enables the model to use the advantages of
both strategies. The static query intervals can be longer without missing rapid changes of state. This can
reduce the computing effort even for large networks.

For applications with continuous and frequent state changes, the static query interval is not as impor-
tant as for applications with infrequent state changes. Due to state changes triggering the energy model,

18 4 Design

applications with frequent state changes take energy from the battery regularly for the time interval in
the last state.

There are several further ideas to optimize this strategy which may especially interesting for applica-
tions with a high amount of modelled sensor nodes. For example, it would be conceivable to change this
static query interval dynamically depending on the current state of charge of the battery. Short intervals
only increase the precision at the end of the simulation where the battery might get fully discharged by
the next energy consumption query. If the battery is still full, shorter query intervals only increase the
computational effort. Depending on the number of simulated nodes and the requested precision, this
query interval can be shorter or longer.

Overall, to use Static- or Hybrid Pushing, it is necessary to provide an average energy consumption per
time for the individual states, which is equivalent to an average power consumption.

A AB C D B BE

A AB C D B BE

A AB C D B BE

Time

Dynamic Pushing

Static Pushing

Hybrid Pushing

Figure 4.3: Visualisation of Dynamic, Static and Hybrid Pushing. Dynamic Pushing discharges the battery before
each state change. Static Pushing discharges the battery in a fixed time interval. Hybrid Pushing
combines both methods. Here, the Static Pushing interval is set to two time steps. The state sequence
is exemplary.

4.2.3 Battery

As discussed in Section 3.1, batteries are central components of sensor nodes and decisive with regard
to the sensor nodes’ lifetime. Due to the modular design of the sensor node model, different battery
models can be used to describe the sensor nodes energy source. For example, the precise battery models
discussed in Section 3.1.2 such as the Kinetic Battery Model (KiBaM) or the Stochastic Battery Model
(StBaM) are ideal for well-studied batteries or batteries with detailed data sheets. Since several param-
eters are required to specify individual battery behaviour, these battery models require great knowledge
about the corresponding battery behaviour. As deep knowledge and battery-specific characteristics may
not be available for all batteries, a battery model as generic as possible is best-suited as a default bat-
tery model in this sensor node model. That means that the user can configure the total usable energy
provided by the used battery and gets a corresponding battery model for the WSN simulation. Effects
like Peukert’s Law or voltage drop can be considered in a generic model as well. However, using an
energy-based approach, the current voltage of the battery has no influence on the energy management.
If the specified amount of usable energy is used up, the battery is considered fully discharged. Due to
the simplified configuration, this simple battery model provides a estimate about the batteries behaviour.
However, the precision of the simulated sensor nodes lifetime using a simple generic battery model will
not be as accurate as with the precise battery-specific models.

Since batteries are typically labelled with an electrical charge rating in mAh or an energy rating in
W h these information need to be converted in a corresponding energy in Joule.

Assuming constant voltage and current, Listing 4.1 can be used to transform power and time to energy
in Joule.

E =

∫ t1

t0

P(t) d t = Pconst ·∆T with ∆T = t1 − t0 (4.1)

4.2 System Overview 19

With this assumption made and Pconst = Uconst · Iconst , Listing 4.2 and 4.3 show the conversion from
electrical charge Q to electrical energy E.

Q =

∫ t1

t0

I(t) d t = Iconst ·∆T with ∆T = t1 − t0 (4.2)

E = Uconst · Iconst ·∆T =Q · Uconst (4.3)

The values from the battery in mA h multiplied with a voltage V can be converted in SI units with
1mA hV = 3600mA sV = 3.6A sV = 3.6W s = 3.6J. W h is already a unit for energy and can be
converted in Joule by using 1 W h= 3600W s= 3600J.

More precise battery models can be implemented by adding non-idealities to the battery model like
Peukert’s Law or the Recovery-Effect, as mentioned in Section 3.1.1. This can be done by using typical
battery models from Section 3.1.2. Also the battery voltage can be examined in detail by adding a voltage
drop behaviour in the battery model as described in Section 3.1.3. Therefore, a given or measured U-
I-characteristic has to be added to the model. The use of these extended models would improve the
simulated battery behaviour, which increases the accuracy of the simulated battery lifetime. On the
other hand, these models require in-depth knowledge of the batteries used, which can only be achieved
through detailed data sheets or elaborate measurements.

4.2.4 Application

The Application of a Host manages the tasks that are performed by the node and the individual cor-
responding Sensor Node Components. For this reason, the Application repeats an Application Cycle that
includes all tasks that should be performed by the Host. Figure 4.4 shows a typical WSN Application
Cycle example with the tasks wake-up, sampling sensor data, processing these data, sending data via
wireless transmission and going to sleep after. This Application Cycle is repeated until the battery is fully
discharged. The individual tasks in the cycle differ in duration and active Sensor Node Components. This
results in different amounts of energy consumption in these states. To ensure the states of the indi-
vidual Sensor Node Components fit the current Application Cycle state, the Application is able to set the
states of all Sensor Node Components. Basically, each application state contains control information for
all connected Sensor Node Components.

Sample Compute Send SleepWake-Up

Figure 4.4: An example for an Application Cycle with tasks of different duration. This cycle is repeated until the
Battery of the Host is completely discharged.

As the proposed model has the goal of high flexibility and modularity, the application of each sensor
node is configurable independently. Also, the model is extendible with other user-defined applications
and application tasks.

4.3 Acquiring Real-World Data for parameterised Simulation Models

The model describes in the previous sections is based on a modular structure. This allows the user
to combine and evaluate the composition of different hardware modules within a sensor node. For
a meaningful evaluation of the energy configurations of sensor nodes in a simulation, the individual
hardware modules used in the proposed WSN model need to be parametrised to resemble their real-
world counterparts. Also, for the evaluation of this design, it is necessary to compare the simulated
sensor node lifetime with the lifetime of a corresponding real-world sensor node.

20 4 Design

Due to the modular approach, instead of measuring the whole sensor node with different applications,
each component used in the evaluated simulation is isolated and measured for itself. In cases of sensors
or other isolated hardware components, voltage and current can be measured on the modules itself.
With MCs and components with several functionalities built in, an isolated measurement is not always
possible. Instead, the current consumption can be evaluated with a programmable MC that turns the
module to be measured on and off. The difference of these two current values can be considered as the
current consumption of the module. Since the supply voltage of these modules stay constant, a temporal
measurement of the voltage is not needed. As shown in Listing 4.4, the power consumption P can be
calculated by integrating the voltage and current over time and dividing the result by the time interval
∆T = t1− t0. Assuming constant voltage U(t) = Uconst and current I(t) = Iconst , the power consumption
formula can be reduced to P = Uconst · Iconst .

P =
1
∆T

∫ t1

t0

u(t) · i(t) d t = Uconst · Iconst (4.4)

As described in Section 3.1.5, there are different methods of measuring current and voltage of hard-
ware components. By using a shunt resistor in series with the load, as shown in Figure 4.5a, it is possible
to measure the voltage Ush and calculate the corresponding current IL. Assuming a shunt resistor with
resistance under 1Ω, the current flowing through the voltmeter can be neglected, as these typically have
an input resistance greater than 1 MΩ. Based on Ohm’s Law, the voltage drop over the shunt resistor
Ush can be determined by adjusting the resistance of the shunt resistor Rsh to the expected current IL,
as shown in Listing 4.5. Using the four-wire sensing method for measuring small resistors1, the shunt
resistor can be determined precisely, which is important as the shunt resistance influences the calculated
current with 1/Rsh.

Ush = Rsh · IL⇔ IL =
Ush

Rsh
(4.5)

Since the shunt resistor in series is equivalent to a voltage divider, the voltage drop Ush should not
be too big, as it decreases the voltage over the measurement object UL. If the voltage UL falls below
a certain threshold, the Device Under Test (DUT) may not work properly anymore. In addition, the
power consumption of the module may change if the supply voltage deviates from the nominal voltage.
On the other hand, using the same measurement device, the precision of the measured shunt voltage
increases with a greater amount of shunt voltage. To improve the measurement, an Instrumentation
Amplifier (INA) can be added to the measurement circuit as shown in Figure 4.5b. INAs are electrical
amplification circuits that are especially known for their high impedance input resistors. As a result, a
negligibly small current flows through the parallel measuring circuit, so that the measurement result is
not falsified. Amplifying the input differential voltage, the INA outputs the same voltage as measured in
Figure 4.5a but with a higher gain. By using an INA, a smaller shunt resistor can be used by achieving at
least the same amount of measurable voltage over the voltmeter. This enables the DUT to have a greater
range of measurable current consumption without significantly decreasing the supply voltage VL. This
approach is easy to implement using commercial available measurement boards like the INA219 by Texas
Instruments2.

4.4 Summary

In this chapter, the basic design of the modular energy-aware simulation model is presented. Generally,
due to the request of flexibility, modularity and extensibility, the model partially uses simplified compo-
nent models. Also, generic models for different components are presented, which makes the simulation
1 https://xdevs.com/doc/Keithley/Appnotes/2Wire_4Wire%20Resistance%20Article.pdf
2 https://www.ti.com/lit/ds/symlink/ina219.pdf

4.4 Summary 21

https://xdevs.com/doc/Keithley/Appnotes/2Wire_4Wire%20Resistance%20Article.pdf
https://www.ti.com/lit/ds/symlink/ina219.pdf

Vs

Rsh

Ush

IL

DUT

V

UL

(a) Measurement setup with a shunt resistor.

Vs

Rsh

Ush

IL

DUTUL

INA

V

(b) Measurement setup with shunt resistor and INA.

Figure 4.5: Measurement setups with shunt resistors. DUT represents the respective hardware module under test.
VS is the nominal supply voltage for the DUT.

easy to configure and provides fast results without deep knowledge of the used hardware components,
especially the batteries. This generic approach in its default configuration is not best-suited for high
precision simulation. However, due to the modularity and extensibility, hardware specific battery or
component models can be implemented easily so that the simulation is able to provide results with
higher precision as well.

The main structure of the simulation model contains Hosts for individual WSN nodes. These Hosts
are containers for several Sensor Node Components, a Battery, an Energy Model and an Application. The
flexible use of a generic, predefined and extensible custom Sensor Node Components enables this design
to support a modular Sensor Node architecture. A downside of this approach is that for precise simulation
the model needs further adjustments, especially when using the heavily simplified generic battery model.
Additionally, the proposed model can easily be extended with specific and further developed components.

Finally, a measurement setup is presented, that is suitable for measuring real-world data of typical
sensor node hardware. By using this setup with an INA amplifying the shunt voltage, the measurement
capabilities are improved. These measurements are necessary to define the performance characteristics
of new hardware components and to parameterise their respective models for simulative evaluation.

After discussing the concepts of the energy-aware model for sensor node simulation in this chapter,
details of the implementation of this model are presented in the following.

22 4 Design

5 Implementation

After the last chapter presented the proposed design from a conceptual view, a prototypical implemen-
tation of the proposed model is presented in this chapter. The goal is to demonstrate the feasibility and
give an example of how this proposed design can be implemented. For this, the presented model is used
to extend a simulation framework for wireless networks to enable modular energy-aware sensor node
lifetime simulations.

The used simulation framework Simonstrator[RSRS15] provides different functionalities in terms of
energy consumption and module interaction, which are extended and adapted based on our conceptual
design. These adjustments and further general design decisions are discussed in Section 5.1. Afterwards,
Section 5.2 provides detailed insights into the architecture of this implementation. This also includes
an overview of the most important and central interfaces and classes. Section 5.3 explains how the
interaction of the individual parts and components is implemented in this work. Before the summary of
this chapter in Section 5.5, Section 5.4 analyses the limitations of this concrete implementation.

5.1 Design Decisions

To be able to use the presented model for the simulation of sensor nodes and their lifetime, it is de-
termined how the proposed design from Chapter 4 can be implemented best. For this purpose, several
decisions and considerations are made about the concrete implementation of the model. Due to external
conditions, such as those imposed by the used simulation framework, various changes have to be made
to the model for implementation. This section explains different decisions regarding the used simulation
framework and the resulting opportunities and constraints. In addition, general implementation-specific
design decisions and the parameter selection for generic components are discussed.

5.1.1 The Simonstrator Simulation Environment

To be able to use the model presented here for the simulation of sensor nodes, a simulation framework
is required in which the model can be embedded. In general, various simulators can be used for this
purpose. Since the Java-based network simulation framework Simonstrator [RSRS15] is particularly
suitable for distributed systems that consist of several different components, it is used in this implemen-
tation as the simulation environment for the proposed model. Due to the component-based approach,
the Simonstrator provides access to the components and modelled hardware modules of individual sim-
ulated network devices. This — and the support for mobile networking — enables the individual and
independent simulation of multiple sensor nodes in a Wireless Sensor Network (WSN). The Simonstra-
tor has a wide range of basic functions, such as pre-built transmission models that can be used in the
implementation of the proposed design. Further, the Simonstrator already comes with a basic energy
simulation approach. As shown in Figure 5.1, the basis of this existing approach is an Energy Model,
where multiple Energy Components can register. These different Energy Components again contain a cer-
tain number of Energy States. Each Energy State defines a specific energy consumption, with which the
Energy Component can calculate its current energy consumption. After getting notified by an Energy Com-
ponent consuming energy, the Energy Model notifies the battery to reduce the amount of preconfigured
available charging capacity. The implemented Simple Battery model does not consider any non-idealities
or other advanced concepts of battery modelling. This basic concept can be excellently extended by the
design presented.

Independent of the existing energy management approach, the Simonstrator framework provides
event-based notification methods to interact between different components of the simulation model.

23

EnergyModel

 + registerComponent(EnergyComponent)
 + componentConsumedEnergy(...) EnergyComponent

 - EnergyState
 + calculateEnergyConsumption()

EnergyState

 + getEnergyConsumption()
Battery

 + consumeEnergy(double energy)

Figure 5.1: Simplified structure of the existing approach for energy simulation in the Simonstrator framework.

Thereby, the framework supports events to be performed immediately and events to be performed with
a certain delay. More information about how the different components of the design interact with each
other are given in Section 5.3.

To configure a simulation in the Simonstrator, an XML file structure is used to define the network and
the included sensor nodes. In addition to the pure network properties, various parameters can be set, for
example the simulation properties, the topology and node positioning, the behaviour of mobile nodes
or visualisation and evaluation settings. Thereby, sensor nodes are organized in groups. The sensor
node properties and energy modules like the Energy Model are configured for each group of sensor nodes
individually. This means, sensor nodes in the same group have the same configuration. Since there is
no limit to the number of groups, the number of sensor nodes with different configurations is also not
limited. After starting the simulation, corresponding Java objects are created and initialized from the
parameters defined in the XML file structure.

Due to the use of the Simonstrator as a suitable simulation environment, many models and concepts
from the proposed design can be implemented directly. However, in addition to the advantages of this
simulator, there are also a few limitations. The handling with these and further general implementation-
specific design decisions are explained in the next section.

5.1.2 Implementation-Specific Design Decisions

Since the model design allows different possible implementations, decisions have to be made about the
concrete model implementation. This means, on the one hand, adapting the model to enable interaction
with the simulation framework. On the other hand, general decisions about the concrete implementation
have to be made, due to the design allows a variety of different implementations. Further, some concepts
of the design are not realisable due to different limitations and have to be implemented in another way.
Some examples of the most important design decisions made for this implementation are explained in
the following:

• As described in Section 5.1.1, the Simonstrator parses the whole simulation configuration from
an XML structure into Java objects. Therefore, corresponding Java classes and parameters for the
construction of the objects have to be defined. To reduce the number of parameters to be set in
the XML structure, class-specific Factory classes are used. Reduced to the handover of different
component-specific characteristic parameters, the Factory classes can be used to manage the pro-
vision of any object parameters required for their corresponding object construction. This enables
the configuration effort to be reduced to the crucial parameters, which makes the configuration
faster and the XML structure clearer.

• Since different objects need to interact with each other, often after a certain event, an event-based
notification interface is used. This means that objects that can be triggered externally by other
objects, implement an event handler interface that is used to define the further procedure within
the triggered object. The advantage of using such events is that they can also be triggered with a

24 5 Implementation

user-defined delay. Since the Simonstrator framework provides a time interface, these event delays
are handled by the simulation framework to ensure correct synchronized timing. Details on the
interaction of components and event-based object interaction are given in Section 5.3.

• To enable the simulation to return the duration from a host starting for the first time until it
is deactivated due to a completely discharged battery, a timer needs to be implemented. Since
this timer functionality is required for all sensor nodes, there are several options for concrete
implementation. One would be to implement a global sensor node timing module that measures
the duration of all sensor nodes. This would enable the timer at the end of the simulation to
easily give a centralized view of all sensor node lifetimes. However, this means that all sensor
nodes have to register at the global timer module and send start and end events together with
a unique id to enable the timer module to measure the individual durations accurately. In this
implementation, another approach is used where the individual applications of the sensor nodes
themselves implement this timer functionality. This decentralized approach gives the applications
of the sensor nodes direct access to their current lifetime. This enables an easy, decentralized and
accurate sensor-node specific time evaluation.

• When implementing sensor components, the question arises as to which data should be used as
sampled sensor data. Since the Simonstrator does not bring any kind of environmental model, the
sensor components are not able to get meaningful values from the simulation. However, for the
simulation of the sensor node’s battery lifetime, meaningful sensor data are not required. Since
only the amount of bytes transmitted is relevant for the energy consumption of the transmission
model, the sensor components generate random data that correspond to the expected transmission
size of the associated hardware sensor modules.

Despite a fairly design-oriented implementation, some concepts are not compatible with the framework
used or have to be implemented differently than originally designed for other reasons. Design decisions
that address these limitations are discussed in the following:

• Different than defined in the presented design, the battery component in the Simonstrators basic
energy concept is configured as a part of the energy model. To support the modular aspect, the
presented design provides that all components of the sensor node model are defined as a list of com-
ponents with user-defined length. However, since the design also envisages that only one battery
or battery model is used per sensor node, it makes no functional difference to the implementation
if the Battery is configured as part of the Energy Model or as a normal Host Component, even if this
means that it might not support the standardised methods of the Host Component interface.
The same applies to the configuration of the transmission technology. As shown in Listing 5.1, the
HeltecESP32LoRaConfig configuration is defined as a component inside the EnergyModel tag. This is
necessary, as the used predefined EnergyModelFactory of the Simonstrator framework requires such
a configuration in order to ensure the interplay of the transmission component with the network
model. All other components, such as the sensor node’s Applications, Sensors, Microcontrollers
(MCs) and other peripherals are defined by adding the corresponding components to a list inside a
specific Hostbuilder section in the XML structure.

• The consumptions of the individual Host Components inside the sensor nodes, are specified as a
power consumption in microwatt, stored in the corresponding Energy States. The energy consump-
tion in microjoule is firstly calculated in the Energy Component by multiplying the power with the
duration of the consumption. This decision is based on the proposed energy-based consumption
approach is limited to fixed state durations. Since the Application and the used Energy Components
are configured independently, for a general simulation configuration it is more flexible to define
the energy consumption of the components independent of their individual state durations. This
results in specifying the energy consumption as an energy consumption per second, which is equal
to a power consumption.

5.1 Design Decisions 25

<Default>

<Variable name="BATTERY_CAPACITY_MAH" value="4500"/> <!-- mAh -->

<Variable name="BATTERY_DEFAULT_VOLTAGE" value="3700"/> <!-- mV -->

<Variable name="BATTERY_INITIAL_PERCENTAGE" value="1" /> <!-- decimal 100% = 1 -->

<Variable name="BATTERY_INITIAL_VOLTAGE" value="4200"/> <!-- mV -->

</Default>

<EnergyModel class="de.tud.kom.p2psim.impl.energy.EnergyModelFactory"

useRandomBatteryStartConfiguration="false">

<Battery class="de.tud.kom.p2psim.impl.energy.ExtendedBattery"

cap_mAh="$BATTERY_CAPACITY_MAH"

defaultVoltage="$BATTERY_DEFAULT_VOLTAGE"

initialPercentage="$BATTERY_INITIAL_PERCENTAGE"

initialVoltage="$BATTERY_INITIAL_VOLTAGE"

/>

<Component class="de.tud.kom.p2psim.impl.energy.configs.HeltecESP32LoRaConfig"

SF="7"

transmissionPowerDBm="7"

/>

</EnergyModel>

Listing 5.1: Extract from the XML configuration file, showing the configuration of the energy model including the
battery and the LoRa configuration of the Heltec Esp32 LoRa board. Variables are used to make the
configuration more clearly.

The design decisions discussed here serve as the basis for the rest of the implementation, whose ar-
chitecture is described in the next section. Among other things, the consequences of certain design
decisions are shown in the following section. In addition, Section 5.2 also goes into more detail on some
particularly interesting aspects of the implementation.

5.2 Architecture

This section explains how the structure of the presented conceptual design is mapped to the concrete
implementation in the Java-based simulation framework Simonstrator [RSRS15]. A special focus is
placed on the basic architecture, but also on particularly interesting parts of the implementation. Since
network models and possibilities for interaction between different Hosts are completely implemented in
the Simonstrator, this section shows the implementation of the inner-Host architecture.

The proposed model from Chapter 4 demands a flexible and modular structure of the sensor nodes.
Figure 4.1a from the design chapter shows the desired basic structure and division of the sensor node
in different Host Components, a Battery, an Energy Model and an Application. As already explained in
Section 5.1, this basic structure is adopted directly for most parts. However, due to the reasons and
restrictions of the framework explained in Section 5.1.2, some modifications have to be done. This
mainly concerns the implementation of the Battery and a transmission model configuration as a part of
the Energy Model. This is necessary as the design decisions are to adapt the model design rather than
change the existing Simonstrator framework to ensure the continued usability of this work for other
projects. Sections 5.2.1 and 5.2.2 show how these further developments are made to implement this
model in the existing infrastructure of the Simonstrator.

26 5 Implementation

5.2.1 Interfaces

Figure 5.2 shows an extract of the main structure of already existing interfaces and interfaces that are
added in this work to the Simonstrator framework. When looking at these main interfaces, it is notice-
able that the basic elements of the conceptual design can be found almost one-to-one in the structural
implementation at the interface level. The fact that some interfaces are subtypes of the HostComponent
interface and extend it accordingly already shows the implementation of a modular design. Thus, classes
that implement one of the subtypes of the HostComponent interface, are automatically recognized as an
implementation of a Host Component. The use of such interfaces can therefore guarantee that certain
implementations of concrete components also implement the corresponding methods that are required
for the function of this type of component. Further, these interfaces enable the Host to classify the com-
ponents from the configuration. With this, the Host can distinguish between the different HostComponent
subtypes. For this reason, it is important that all classes implement their corresponding interface.

«interface»
EnergyModel

«interface»
EnergyComponent

«interface»
Battery

«interface»
HostComponent

«interface»
EnergyAware-

HostComponent

added in this work

already implemented

«interface»
WSNSensorComponent

«interface»
Host

«interface»
Application

«interface»
SensorComponent

Figure 5.2: Overview over the basic interfaces. EnergyModel, EnergyAwareHostComponent, Application and
WSNSensorComponent are subtypes of the HostComponent interface.

Since most of these interfaces are already implemented in the Simonstrator, the focus is now on the
two added central interfaces of this work, which are the interfaces EnergyAwareHostComponent and
WSNSensorComponent. The interface EnergyAwareHostComponent is a subtype of the HostComponent
interface and represents Host Components, that have an energy consumption greater than zero. This en-
ables for example the Applications, to distinguish between Host Components that implement just logical
behaviour without actual energy consumption and Host Components that represent real hardware mod-
ules that actually consume energy. This interface is therefore used more as a flag than to define concrete
method headers. However, the EnergyAwareHostComponent interface defines a setter and getter method
for a corresponding Energy Component. More details on the usage of this interface inside a concrete
implementation of an application are given in Section 5.2.2.

The second central interface added in this work is the WSNSensorComponent interface which ba-
sically represents a sensor component. Since the Simonstrator already comes with a sensor in-
terface called SensorComponent, this new interface is a subtype of this existing sensor interface,
that also implements the HostComponent interface. Similar to the EnergyAwareHostComponent in-
terface, this new interface is also mainly used as a flag. Since the Simonstrator comes with
some types of virtual sensors, this is necessary to differentiate between real WSN hardware sen-
sors and virtual simulation-internal sensors. From the SensorComponent interface, the WSNSensor-
Component inherits the methods public boolean testSensor(), public double getSensorData(),
public int getSensorDataSize() and public String getName(). The method testSensor() is a

5.2 Architecture 27

method to test whether the sensor is working. The other methods are getter methods that request
certain data from the sensor component.

All interfaces that extend the HostComponent interface also inherit the following methods:
public void initialize(), public void shutdown() and public Host getHost(). The method
initialize() is called by the corresponding Host after all components of the Host have been regis-
tered. This call is mostly used to prepare the component for the upcoming simulation and registration at
other Host Components. If a component is de-registered by a Host, the shutdown() method is called. As
further explained in Section 5.3, the method getHost() is essential for the interaction between different
Host Components, as the Host is the central element of a sensor node.

Besides these main interfaces, further interfaces have been added for different reasons. For example,
the interface Deactivatable enables components to be switched on and off. However, these have a low
relevant influence on the main architecture of the implementation presented here.

Since interfaces typically do not implement concrete methods, classes are needed to use these inter-
faces to implement the corresponding functionality. The important classes for the architecture of this
implementation are explained in the following section.

5.2.2 Classes

As shown in the previous section, the main architecture of this implementation is close to the proposed
design from Chapter 4. Using the presented interfaces, different classes are used to implement the
required functionality of the respective components. In particular, the concept of inheritance and the
implementation of generic models are used to provide a very high degree of flexibility.

The Simonstrator already comes with classes implementing already existing interfaces. While some of
these classes can be used for this work, other components require new classes to be written. Basically,
the proposed design requires at least one concrete implementation for each of the interfaces shown in
Figure 5.2. The already existing class DefaultHost is used as an implementation of the Host interface. This
class manages the different types of Host Components by providing several getter, setter and registration
methods. This means that after correct configuration and initialisation, the host has different lists with
different subtypes of the HostComponent interface. This is necessary so that other components, for exam-
ple the Application, can access different components of the same Host. The class WSNSensorApplication
is a new implementation for such an Application.

WSNSensorApplication

The class WSNSensorApplication is a central component of the implemented design. It provides a con-
figurable implementation of a typical WSN sensor node Application workload. This workload includes
three basic tasks: sleeping, sampling and transmission. An example XML configuration of this application
is shown in Listing 5.2.

<!-- Generic Application component. All time values in micro seconds

<Application class="(...).WSNSensorApplication$Factory"

activeTimeUs="600000000"

sleepTimeUs="300000000"

transmissionIntervalUs="12400000"

sampleFrequencyUs="250000"

/>

Listing 5.2: Configuration of the configurable sensor node application WSNSensorApplication

28 5 Implementation

With the first parameters of this application component, activeTimeUs and sleepTimeUs, the durations
of the corresponding states are defined in micro seconds. While all components are deactivated in the
sleep state and only the MC consumes energy in its sleep configuration, the active state can be further
configured. For this purpose, the next two parameters, transmissionIntervalUs and sampleFrequencyUs,
are used. The parameter transmissionIntervalUs defines how often during the active time of the sensor
node, a data transmission takes place. In the case of SampleFrequencyUs the value in micro seconds de-
fines how often the sensors are used to sample data. Just like the TransmissionIntervalUs parameter, this
specification is only relevant for the active time of the sensor node. This type of configurable application
can be used for basic application consisting of these tasks but different durations.

The concrete implementation of this Application consist of a constructor setting the required parame-
ters, getter and setter methods, as well as many methods implementing the described tasks. An important
part of the constructor is the registration of the Application at the corresponding Host. To ensure the Ap-
plication to always know its current state, the enum WSNWorkloadCycleState defines the basic states
INIT, ACTIVE, SLEEP, ERROR, OFF, OTHER. Thereby, by setting the state to ON or OFF, automatically ac-
tives and deactivates the Host. In the beginning, this state is set to INIT. This means the Application is not
yet initialised. Due to the Application registered as an Application inside the constructor, the Host calls
the Application to initialise after the simulation starts. The initialisation therefore takes place as soon as
all components of the Host have been created. As shown in Listing 5.3 for the example of EnergyAware-
HostComponents, lists are filled with the available components of a specific subtype of the HostComponent
interface. Besides EnergyAwareHostModules, this is done for different transmission components like WiFi
and LoRa components and for instances of the WSNSensorComponent interface. Although some com-
ponents are part of multiple lists, this structure enables the application to quickly select the required
components.

private List<EnergyAwareHostComponent> energyAwareComponents;

public void initialize() {

// ...

try {

energyAwareComponents = getHost().getComponents(EnergyAwareHostComponent.class);

}catch (ComponentNotAvailableException e) {

// There are no EnergyAwareHostComponents available in this Host

}

}

Listing 5.3: Extract of the initialisation of the WSNWorkloadApplication class. Instances of different host
component subtype interfaces are stored in a list to enable the application so that the application
can quickly access these components.

After the successful initialisation, the Application starts its timer by saving the current simulation time.
Also, it generates an event, calling itself to start the workload cycle. The corresponding event handler
checks whether the Host is still active and then calls the method performWorkloadCycle(). This method
implements the central workload algorithm, that controls the tasks of the Application and thus also of
the entire sensor node. For this reason, several helper methods are implemented. These are sub-routines
for the execution of the sampling, transmission and sleep states as well as functional helper methods, for
example for setting all Host Components to a specific state.

The basic structure of the method performWorkloadCycle() is a cascade of different queries, like
whether the Host is still active and what is the current application state. As soon as a new task gets
started, a delayed event is scheduled. Thereby, the delay time is set to the corresponding configured
duration of this new task. This leads to this tasks is performed until the delayed event triggers the
Application to switch to the next task. Since the duration variables are changeable during the runtime,
this workload cycle stays dynamic in terms of the task durations. Listing 5.4 shows the event scheduling

5.2 Architecture 29

for the wakeup after the sleep task. Since the workload cycle starts with the active tasks, the wakeup
event restarts the performWorkloadCycle() method.

// Turn off all deactivatable components

setComponentsToState(WSNWorkloadCycleState.SLEEP);

if (isHostAlive()) {

Event.scheduleWithDelay(sleepTime, new EventHandler() {

@Override

public void eventOccurred(Object content, int type) {

// Wake-Up

performWorkloadCycle();

}

}, null, 0);

}

Listing 5.4: Extract of the performWorkloadCycle method of the WSNWorkloadApplication. The components are set
to sleep. The timer is set to schedule the wakeup after the corresponding time.

For scheduling the event which initiates the sleep phase at the end of the active time, the same struc-
ture is used. In addition, after setting the event, the active tasks sampling and transmission are started
by calling the helper methods startSampling() and startSending(). Within these methods, events
are again used to recall the methods itself after the specified time interval. The actual sample and trans-
mission tasks are again outsourced to other methods. These fetch the required components from the
corresponding initialised lists and set the states according to the current task.

To enable communication between multiple sensor nodes, the Application also provides a
messageArrived() method, which is called as soon as an message is received from one of the regis-
tered transmission modules. With this method, Applications are able to react dynamically on different
network activities. However, this behaviour is not implemented in this concrete Application component.

Since the Application manages and controls the tasks of the Host Components, some concrete imple-
mentations of different subtypes of the HostComponent interface are presented in the following.

Implementation of Configurable Host Component Subtypes for Generic Hardware Modules

Host Components are the central components, a Host consist of. These represent in particular models
of hardware modules such as MCs, sensors or actuators. While the implementation of an Application
just described cannot be assigned to a specific hardware module, the components shown here imple-
ment the functionality and energy consumption of specific hardware modules. This means, that the
components described here, need to be supplied with sufficient energy. If this is not the case at a certain
point in time, the sensor node is defined as inactive, due to its fully discharged Battery. Since there are
plenty of different hardware modules, even with the same functionalities, generic models are used in
this implementation. This means, that the components are configurable in terms of energy consumption
and component type. These information are sufficient for this basic energy-aware simulation. How-
ever, detailed model descriptions and extended functionalities for concrete hardware modules can be
implemented additionally in own classes.

In this work different configurable subtypes of the HostComponent interface are implemented. Looking
at the configuration of three of these different Host Components in Listing 5.5, a certain basic similarity
in terms of parameters and structure is recognisable. The number of parameters is quite manageable
for all of them and these consist of a factory and at least one specification of energy consumption. The
components GenericWSNComponent and GenericWSNSensor also provide a componentType or sensorType
parameter. The GenericMicrocontroller component is parametrised with two consumption values: the en-
ergy consumption in the active state energyConsumptionActiveUwatt, and the energy consumption in the

30 5 Implementation

sleep state energyConsumptionSleepUwatt. As decided in the beginning of this Chapter, both energy con-
sumptions are technically power consumptions as they are defined in micro watts. Nevertheless, based
on these values, the constructor of the GenericMicrocontroller class creates corresponding EnergyState
objects, that define an energy consumption per second for a certain state in the EnergyComponent. Valid
values for the componentType parameter are: COMMUNICATION, POSITIONING, CPU, DISPLAY, BASIC,
ACTUATOR, SENSOR and MICROCONTROLLER. The sensorType parameter accepts a expandable enumer-
ation of different sensor type names like AIRQUALITY, TEMPERATURE or HUMIDITY. This specification
allows an Application to treat sensors differently. Even though this is not the case with the configurable
Application shown here, this decision allows for a variety of other Applications further flexibility.

<!-- Active: 65mA * 3.7V = 240,500uW ; Sleep: 18mA * 3.7V = 66,600uW-->

<GenericMicrocontroller class="(...).GenericMicrocontroller$Factory"

energyConsumptionActiveUwatt="240500"

energyConsumptionSleepUwatt="66600"

/>

<!-- 10mA * 3.7V = 37.0mW = 37,000uW -->

<GenericWSNComponent class="de.tud.kom.p2psim.impl.wsn.GenericWSNComponent$Factory"

componentType="DISPLAY"

energyConsumptionUwatt="37000"

/>

<!-- 33mA * 3.7V = 122.1mW = 122,100uW -->

<GenericWSNSensor class="de.tud.kom.p2psim.impl.wsn.GenericWSNSensor$Factory"

sensorType="AIRQUALITY"

energyConsumptionUwatt="122100"

/>

Listing 5.5: Configuration of different generic HostComponent subtypes.

All of these generic components always implement the EnergyAwareHostComponent interface, due to
these components are modelled to consume energy. Depending on the actual component type, other
interfaces like the WSNSensorComponent are also implemented in addition. The class GenericWSNSensor
is a special case of a GenericWSNComponent, as it brings further sensor specific methods like specified in
Section 5.2.1. Nevertheless, since the basic concept is the same, the GenericWSNSensor class extends the
GenericWSNComponent class.

Different than the implementation of the GenericWSNComponent and the GenericWSNSensor, the im-
plementation of the GenericMicrocontroller supports the use and the configuration for multiple Energy
States. This can be seen in the configuration in Listing 5.5, where two energy consumption parameters
are given for the GenericMicrocontroller component. Listing 5.6 shows the creation of two EnergyStates
based on these consumption values. Further, the MultistateEnergyComponent is used to handle the cre-
ated list of EnergyStates. The next sections goes in more detail, how this MultiStateEnergyComponent
works.

MultiStateEnergyComponent

The MultiStateEnergyComponent is an implementation for an Energy Component that handles more than
one Energy State. Energy States define one concrete energy consumption, mostly for one task inside an
Energy Component. The task of the Energy Component is to handle these Energy States and so calculate
the current energy consumption of the corresponding Host Component.

Since the Simonstrator already brings the OneStateEnergyComponent managing the energy consump-
tion for Host Components with just one Energy State, the MultiStateEnergyComponent is added to extend

5.2 Architecture 31

// create the corresponding energy states

EnergyState stateActive = new DefaultEnergyState("active", energyConsumptionActive);

EnergyState stateSleep = new DefaultEnergyState("sleep", energyConsumptionSleep);

// define a list for all states and add these

List<EnergyState> states = new LinkedList<>();

states.add(stateActive);

states.add(stateSleep);

// create the corresponding energy component

this.energyComponent = new MultiStateEnergyComponent(states, ComponentType.MICROCONTROLLER);

Listing 5.6: Extract from the GenericMicrocontroller constructor. It shows the creation and handling of multiple
energy states.

the simulation environment with a more powerful Energy Component. As its name already suggests, the
MultiStateEnergyComponent is able to calculate the energy consumption for more complex modules that
consist of multiple different states with a different amount of energy consumption.

For this purpose, the MultiStateEnergyComponent gets constructed with a list of Energy States and the
Component Type of the corresponding Host Component. Also, the local variable currentState is initialized
with a new created default state with an energy consumption of 0 µW. This variable saves the cur-
rent state, that can be changed by using the public boolean changeState(EnergyState nextState)
method. This adds the provided Energy State to the list, if it is not already registered and sets it as the
active state. Due to this Energy Component implements Hybrid Pushing, as explained in Section 4.2.2,
after a successful change of state, the Energy Component consumes energy by notifying the Energy Model.
For this purpose, the changeState()method schedules an event for itself without any delay but with the
id parameter set to −1. This event calls the eventOccurred(Object content, int id) method which
is shown in Listing 5.7. Since Hybrid Pushing also requires a static query interval, the method in addition
schedules a new event with a delay of one second for itself, if the recent call was due to the static query
interval. That is why the dynamic state change sets the id −1 at the event creation, since in this case, no
new delayed event should be scheduled.

In order to simplify the handling of several states for application components, the MultistateEnergy-
Component provides two methods for selecting an active and a sleep state. These methods try to search
the list containing all known Energy States for the first state with the string "active" or "sleep" in its name
field. This state is returned and can be used to easily control components with just one active and sleep
state. This approach does not introduce any new parameters and is therefore compatible with previous
configured Simonstrator simulations.

Otherwise, this class mainly consists of getter and setter methods, as well as the methods required by
the implemented EnergyComponent interface for switching this component on and off.

ComponentBasedEnergyModel and Battery

The class ComponentBasedEnergyModel as well as the SimpleBattery class were almost fully implemented
in the Simonstrator framework. However, since these classes are very important for this implementation,
the main features are explained in this section.

As seen in the section before, the Energy Model gets notified from the corresponding En-
ergy Components regularly, if energy is consumed by a Host Component. The called method
componentConsumedEnergy(...) then manages the further procedure. This includes discharging the
Battery with a given amount of consumed energy and checking the new Battery’s state of charge. If
the Battery has still energy left, everything is fine and the components proceed in their individual tasks.

32 5 Implementation

// id = -1 means this was an state change triggered consumption call

public void eventOccurred(Object content, int id) {

if(isOn()) {

// calculate elapsed time since last energy consumption

long interval = Time.getCurrentTime() - this.lastConsumption; // time in us

double intervalS = ((double) interval) / Time.SECOND; // time in s

// calculate the real energy consumption

double consumedEnergy = currentState.getEnergyConsumption() * intervalS;

// actions to perform, if event occurred

energyModel.componentConsumedEnergy(this, consumedEnergy); // consume energy

this.lastConsumption = Time.getCurrentTime(); // update time of last consumption

if (energyModel.componentCanBeActivated(this)) {

if(id != -1){ // -1 means dynamic push due to state change

// schedule next static query interval

Event.scheduleWithDelay(Time.SECOND, this, null, 0);

}

} else {

this.turnOff(); // deactivate component

}

}

}

Listing 5.7: The eventOccured() method from the MultiStateEnergyComponent class. Due to the use of Hybrid
Pushing, his method gets called every second by itself, and after each state change.

If the Battery is now completely discharged, the Energy Model deactivates the Host, disconnects the
transmission components and turns off all other Host Components registered at the Energy Model.

This behaviour is compatible with different types of battery models, as soon as these implement the
Battery interface and provide a method to return the current state of charge. However, in this work, the
already existing SimpleBattery class is used. This class does not include any kind of non-ideal battery
behaviour. Instead, it is initialised with an specific amount of usable energy, that gets reduced over time
by the components consuming energy. This model is not particularly realistic, but it has the advantage
that it can be configured quickly and is easy to understand. To simulate scenarios in detail, the given
energy capacity of the battery must therefore be manually adjusted to include non-idealities, or an
extended battery model must be used.

5.3 Interaction of Components

Due to the modular design and the component-based approach of this implementation, multiple compo-
nents interact with each other. Further, the integration of the new implemented model in the Simonstra-
tor is arranged. This section explains the main principle and interfaces for the component interaction.

As already explained, the Host represents the central element of a sensor node. All Host Components
register at the Host before the simulation starts. Thereby, the Host creates lists of different components
implementing subtypes the HostComponent interface. With the associated getter methods, it is therefore
possible to access specific components of a sensor node via the Host. On the other side, the Host Com-
ponents get constructed with information about their corresponding Host. The HostComponent interface
also forces the Host Components to implement a public getter method returning their Host. This makes
it possible to access all other Host Components within a sensor node from each Host Component via the
associated Host. Especially for the Application, that is also just another HostComponent interface subtype,

5.3 Interaction of Components 33

this access is necessary to control the other Host Components. The same applies to the Energy Model. This
makes the Host an intermediary for interactions between Host Components.

In addition, it is possible to interact with the own component or with other components via the event-
based interaction methods. These differ from the classic access via the Host in that they can be equipped
with a time delay. Further, every event-based trigger, is handled as a parallel task. This means that the
calling function does not have to wait until the called function is finished, but can continue immediately.
However, it is therefore also not possible to get a return value. That is why these event-based component
interactions are mostly used as an event notification, as already described in Section 5.2.2. This approach
allows the simulation to process different tasks in parallel and to schedule events with a delay, managed
by the simulation time interface.

5.4 Limitations of the Implementation

This implementation has been done primarily to show that the design presented is feasible. However, by
no means all the possibilities of the design presented have been implemented and utilised. This is espe-
cially noticeable in the implementation of different Host Components for example the generic component
types, which are mainly implemented as energy consumers but come with a limited logical functional im-
plementation. If not only configurable energy behaviour is required for a simulation, but also extended
logical behaviour, this implementation requires further adjustments. Due to the modular design and the
Host Components having access to all other Host Components inside the sensor node, extended logical
behaviour can be implemented without further adjustments to the simulation environment. However,
due to the many possibilities of interaction between different Host Components, further development of
logical functionality could even lead to some components interacting with other components in a way
that is not supported by existing physically hardware modules. This may allow scenarios to be simulated
that cannot be realised in hardware, which can represent both a chance and a risk.

Further, the used battery model is a highly simplified and idealised battery model. It does not consider
any non-idealities and allows the components to consume as much energy as desired, as long as the
Battery still has available energy left. Effects like Peukert’s Law or the Recovery-Effect are also not imple-
mented. Using this simplified Battery severely limits the precision of the simulation. However, the design
used offers the possibility of expanding the simulation to include more precise, possibly hardware-specific
battery models. An evaluation of the simulation, especially with regard to the achievable precision using
the simplified battery model, is provided in Chapter 6.

5.5 Summary

In general, the presented implementation is very close to the proposed design in terms of the basic
structure. By embedding further interfaces and classes, it is achieved that the Simonstrator framework
is extended by the proposed model. In addition to the realisation of the basic structure of the proposed
model, a particular focus is on the implementation of generic and configurable sensor node components,
such as the WSNSensorApplication or the GenericWSNComponent. Also, the MultiStateEnergyComponent
is introduced as a powerful Energy Component, that is able to manage the energy consumption for more
complex Host Components. Further, since this modular approach needs different components to interact
with each other, Section 5.3 explains how the functionality of the hosts is guaranteed regardless of the
current sensor node configurations. Therefore, the host-centred architecture is pointed out.

Finally, Section 5.4 discusses the different limitations of this concrete implementation. These are
mainly caused by the use of a simplified battery model and the lack of logically detailed modelled hard-
ware modules. Among other things, it is also questioned to what extent this modular model with the use
of many generic components is able to provide precise information about the lifetime of sensor nodes.
Therefore the next chapter evaluates this aspect by using a proof-of-concept evaluation with real-world
measurements.

34 5 Implementation

6 Evaluation

After implementing the proposed design of a modular sensor node simulation model, this chapter evalu-
ates this implementation. Thereby, Section 6.1 describes the goal and the methodology of this evaluation.
Section 6.2 explains the therefore used evaluation setup, including the configuration of the simulation as
well as the setup for the real-world measurements. In Section 6.3 the results of the measurements and
the simulations are presented. Finally, in Section 6.4 the evaluation results are analysed in the overall
context of this work.

6.1 Goal and Methodology

This evaluation is done as a proof-of-concept evaluation. This means, using the described implementa-
tion, the presented design is used to simulate a Wireless Sensor Network (WSN) scenario, considering
the lifetime of different sensor node configurations. For this purpose, the battery-related lifetime of
each simulated sensor node is evaluated individually and compared with a real-world measurement.
Therefore, real hardware sensor node configurations are conceived and implemented in the simulation
framework. Starting with fully charged batteries, the lifetimes of the sensor nodes are then evaluated
and compared with the simulated results. Thereby, it is desirable that the simulated results come as close
as possible to the values of the real-world data.

The goal of this evaluation is to proof the fundamental functionality and feasibility of the proposed
concept. Further, the precision of the described implementation is analysed in terms of sensor node
lifetime prediction to assess the benefit of this specific implementation of the model. It also examines
how flexible and adaptable the model really is due to its modular structure.

Therefore, three different scenarios are determined that are simulated in the following as well as
programmed and assembled in real hardware. All scenarios are based on the Heltec ESP32 LoRa1 Micro-
controller (MC) and the CJMCU-8112 airquality sensor. Table 6.1 shows a detailed specification of the
three scenarios. Since the sensor nodes in Scenario 1 are always in active state and do not turn into sleep
mode, the active duration is set to infinity.

Scenario
Active

Duration [s]

Sleep

Duration [s]

Transmission

Interval [s]

Sample

Interval [s]

OLED

Display

1 ∞ 0 10 0.25 ON

2 600 300 10 0.25 ON

3 600 300 10 0.25 OFF

Table 6.1: Defined application workload parameters for the real-world sensor node measurement and the related
simulation. Transmission Interval and Sample Interval are defined within the active state.

By comparing the lifetimes of the real-world measurement with the simulated sensor node lifetimes,
it is possible to evaluate the precision of the simulation in different scenarios. In addition to the basic
simulation based on the nominal values of the used batteries, a second simulation series is performed
based on the measured real-world data, which is configured with modified battery values. In order to be
able to understand exactly how these measurements and simulations are implemented and performed,
the used setups and configurations are explained in the following section.

1 https://heltec.org/project/wifi-lora-32/
2 https://www.makershop.de/download/CCS811_Datasheet-DS000459.pdf

35

https://heltec.org/project/wifi-lora-32/
https://www.makershop.de/download/CCS811_Datasheet-DS000459.pdf

6.2 Evaluation Setup

For the proof-of-concept evaluation of the proposed model, different real-world measurements are per-
formed. First, the current consumptions and supply voltages of the individual hardware components
need to be analysed. The resulting power consumption values are then used as parameters for the con-
figurable Host Components inside the simulation model. Further, the real-world hardware sensor nodes
have to be configured and programmed, so that these and the corresponding sensor nodes in the simula-
tion perform the same tasks. In addition, a device for measuring the lifetime of the sensor node devices
must be built. The collected data is then evaluated after all sensor nodes’ batteries are fully discharged.

6.2.1 Acquiring Real-World Power Consumption Values for the Used Hardware Modules

To enable the simulation to be configured with suitable power consumption values for the individual con-
figurable Host Components, the power consumption of all corresponding hardware modules have to be
determined. For this reason, an Instrumentation Amplifier (INA)-based power, current and voltage mea-
surement shield TI INA2193 is used together with a custom made measurement program running on the
connected Heltec ESP32 LoRa MC. This measurement setup is connected in series with the Device Under
Test (DUT), as it is explained in Chapter 4.3. Sampling four consumption samples per second, consist-
ing of current, voltage and power values, this measurement setup provides CSV-formatted consumption
data via the MCs serial interface. Since the Heltec ESP32 LoRa is used as the MC for the evaluated sensor
node configuration, different modules are already included in this hardware component. This makes the
measurement more difficult, due to the individual hardware modules cannot be measured in isolation.
Instead, comparative measurements are done by using an application that switches a specific hardware
module on and off. This makes it possible to analyse the current consumptions of the OLED and LoRa
module inside the Heltec ESP32 LoRa MC. Also the sleep state consumption can be measured by pro-
gramming the MC to wake up and sleep regularly. In order to have a uniform measurement setup, the
used air-quality sensor module CJMCU-811 is also evaluated as a comparative measurement.

6.2.2 Evaluation Setup for Real-World Sensor Node Lifetime Measurements

For the real-world sensor node lifetime measurement the chosen hardware modules are the Heltec ESP32
LoRa development board including an OLED display, a LoRa transmission module and the ESP32 MC,
together with the CJMCU-811 air-quality sensor and a 3000 mA h rechargeable lithium battery. To enable
the hardware to execute the correct tasks, the MC is programmed to perform the workload defined for
the corresponding scenario. Since measuring the runtime of a sensor node requires equipping it with
a fully charged battery and then waiting until the battery is fully discharged, many hours are needed
to perform a measurement, depending on the application tasks. That’s why, for this evaluation, three
completely similar hardware configurations are set up and evaluated synchronously. This allows three
measurements of the same hardware and application configuration to be taken, so that the significance
of the measurement can be increased by calculating the average value. This resulting average is then
used to compare the simulated lifetime with.

As shown in Table 6.1, three different scenarios are examined to consider different hardware modules
being active and different application cycles are performed. Scenario 1 samples sensor data every 250 ms
and transmits a sample every 10 s. The currently measured samples are also shown on the OLED display.
Scenario 2 performs the same workload than Scenario 1, but adds a sleep phase of 5 minutes after being
active for 10 minutes. Scenario 3 performs the same workload than Scenario 2, but with the OLED display
turned off. The average power consumptions of these scenarios therefore differ, due to the sleep phase
and the switched-off display. One advantage of these three chosen scenarios is that they can all use the

3 https://www.ti.com/product/INA219

36 6 Evaluation

https://www.ti.com/product/INA219

same hardware setup and still allow different application workloads and hardware module usage. This
allows the versatility of the model to be tested with regard to the modularity of the simulation model as
well as the usability of the configurable sensor node application.

To ensure to correct lifetime measurement of the DUT, a measuring instance is built to receive and log
the transmitted data from the sensor nodes. This is done be using another Heltec ESP32 LoRa together
with a SD-card breakout board. Due to the on-board WiFi capabilities of the ESP32, the MC is able to
initialize its internal time module with the current date and time via the internet. Using the transmitted
individual device IDs, the receiver is able to log all incoming LoRa transmissions to device specific CSV
files. In addition to the received data, the date and time of receipt as well as the corresponding Received
Signal Strength Indicator (RSSI) value is also logged. This makes it possible to analyse the received and
logged data from the SD card to determine which device went offline at which point in time and stopped
transmitting. The hardware measurement setup including three devices under test and the receiver and
logger station, is shown in Figure 6.1. Since the receiver and logger must not run out of battery, it is
connected to the mains and buffered via a powerbank.

A major advantage of measuring via the receiver module is that a measurement can be taken without
any measurement feedback on the sensor nodes. This enables an unbiased measurement. In addition, the
receiver measures exactly the parameter that is relevant for a WSN sensor node, namely how long data
transmission is still possible. Other measurement methods, such as measuring the battery voltage, cause
direct measurement feedback, as they cause an additional current flow due to the measurement. Also,
the MC’s behaviour at low supply voltage would have to be analysed. These additional measurements
can be avoided by using the presented measurement setup.

6.2.3 Sensor Node Configurations for the Simulation Execution

For the evaluation of the proposed model, two simulation series are configured. Both require the results
of the consumption data measured in Section 6.2.1 since the chosen hardware modules are config-
ured in the simulation using the generic components GenericWSNComponent, GenericMicrocontroller and
GenericWSNSensor. The workload defined in Table 6.1 is implemented by configuring the WSNSensorAp-
plication component with the respective durations for active and sleep states as well as the transmission
and sampling intervals. The simplified battery model SimpleBattery is used as the battery model. For the
first simulation the battery capacities are set to the batteries nominal capacity of 3000 mA h.

While all other parameters remain the same as in the first simulation, the battery capacities are ad-
justed in the second simulation which estimates the performance of the presented model using a perfect
non-ideal battery implementation. For this purpose, the results from the real-world sensor node lifetime
measurement are analysed. With the help of the number of successful data transfers and the consump-
tion values of the individual modules and tasks, it is possible to calculate the energy that has been
applied over the entire lifetime of a sensor node. In this way, it is possible to reverse engineer the energy
that has been extracted from the battery. For this purpose, the duration of the sensor node in sleep and
active state are calculated by multiplying the total lifetime with the active to sleep ratio. These two time
values are then multiplied with the total current consumption of their respective state. The results in
mAh are then added and represent the base energy consumption. On top comes the energy consumption
of the transmission. For this purpose the number of received samples are multiplied with the duration
of a transmission, which is here set to one second. The result represents the total transmission time
and is multiplied with the transmission current, which leads to another consumption in mAh. Adding
this consumption to the base consumption represents the total consumption of the sensor node in mA h
which is set to the sensor nodes battery capacity. With these two simulation series, the upper and lower
limits of the battery-related accuracy of the presented model can be simulated.

6.2 Evaluation Setup 37

(a) Three equally configured hardware sensor nodes under evaluation in Scenario 1: Heltec ESP32 LoRa including a
LoRa transmission component and the OLED turned ON, CJMCU-811 airquality sensor, powered by Makerfocus
3000 mAh batteries, no sleep. The OLED displays the current sensor data as well as the sensor nodes individual
node ID.

(b) Receiving station and logger: is used for all scenarios, logs the incoming LoRa signals on an SD card, is
connected to the mains and buffered via a powerbank. The OLED displays the latest incoming connection
including its daytime, RSSI, ID and sensor data.

Figure 6.1: Hardware setup for real-world data measurement of sensor node device lifetimes.

38 6 Evaluation

6.3 Evaluation Results

In the last section two measurement setups are shown. For the power consumption of the hardware
modules which are used for the simulation of the sensor node lifetimes, a setup using an INA together
with an MC is shown. Also, the setup with which the real-world sensor node lifetime measurements are
done, is explained. This section now presents the collected data from the simulated results, as well as
the measured lifetimes of the real-world sensor node lifetime measurements.

6.3.1 Measured Power Consumptions for Precise Sensor Node Component Configuration

For the simulation of the sensor nodes lifetimes, the consumption values of the corresponding hardware
modules are required for the configuration of the sensor node components’ individual Energy Compo-
nents. These consumption values are determined by the measurement described in Section 6.2.1. The
resulting data for the current consumptions of these different application tasks with different used hard-
ware modules are shown in Figure 6.2.

Since comparative measurements were made, the IDLE measurement of the MC is particularly impor-
tant, as all other measured data, except for the sleep measurement, refer to this value. As it can be
seen from the IDLE line and in the spaces between the transmissions of the LoRa line in Figure 6.2, the
current consumption of the switched-on MC is 65 mA in the IDLE state. For the sleep state, the MC re-
quires an average of about 18 mA. The other consumptions for the air-quality sensor, the OLED and the
LoRa transmission module must be read in relation to the idle state. Thus, the air-quality sensor comes
to 33 mA and the LoRa module to about 70 mA while transmitting with spreading factor 7 and 7 dBm
transmission power. For the OLED, the values vary greatly depending on the comparative measurement,
the average value of the consumption is about 10 mA.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0 10 20 30 40 50 60 70 80 90 100 110 120

C
ur

re
nt

 [
m

A
]

Time [s]

AQ_OLED_LORA
AQ_LORA
LORA
IDLE
SLEEP10s
OLED
AQSLEEP

Figure 6.2: Current consumption of different application tasks analysed over time. The error for DC current mea-
surements with the TI INA219 is lower than ±0.5%.

6.3 Evaluation Results 39

The measurements took place at room temperature. The accuracy of the DC current measurement
using the TI INA219 is given with a typical error of ±0.2% and a maximal error of ±0.5%. Since the
focus of this evaluation is not on precise measurement but rather on proof-of-concept, this order of
magnitude for the measurement error is sufficient. These values are taken for the nodes’ Host Component
configurations which form the basis of the according simulation setup.

6.3.2 Collected Real-World Sensor Node Lifetime Data

As described in the previous section, three different sensor node scenarios are evaluated. The accord-
ing measurements are done with three equal hardware setups parallel, which enables to collect more
data simultaneously. For each sensor node all outgoing transmissions are logged together with the cor-
responding RSSI, date and time. Figure 6.3 shows the raw RSSI data for all three nodes and all three
scenarios. However, the concrete value for the RSSI is less interesting, than the duration between the
first and the last transmission of a sensor node. While Scenario 1 still provides valid values for all sensor
nodes, in Scenario 2 and Scenario 3 one or two sensor nodes fail after less than four hours of operation.
The respective sensor nodes did not wake up from their sleep phase and therefore did not transmit any
more samples. Since all three hardware configurations are built exactly the same and use the same
software, it is not apparent what caused these early failures in some sensor nodes. However, an early
failure of the batteries can be excluded, as the associated batteries still provided a voltage of more than
the nominal voltage of 3.7 V. The initial battery voltage at the beginning of the measurement is 4.2 V.
As these early sensor node failures are therefore not energy-related, they are not taken into account in
the further evaluations. However, this also means that less data is available for Scenarios 2 and 3, so that
the significance of these data series is also lower than for Scenario 1.

Further, it is also apparent that the lifetimes of the other sensor nodes differ greatly in some cases. For
example in Scenario 1, as shown in Figure 6.3a, node2 has a lifetime of 31:31h. In the same scenario,
node1 has a lifetime of 38:37h, which is an difference of 7:06h (18.4 %). Using Listing 6.1 to calculate
the standard deviation s, the relative standard deviation is calculated by dividing s trough the average
value µ.

s =

√

√Σn
i=1(x i −µ)2

n− 1
(6.1)

Table 6.2 shows that for the scenarios with several valid measurement data, high relative standard
deviations of more than 10 % are present. This high fluctuation can best be explained by a fluctuation in
the battery capacity. This means that the same battery modules can deliver different amounts of energy,
even though they are from the same model and have the same nominal capacity of 3000 mA h.

Scenario 1 Scenario 2 Scenario 3

valid measurements 3 2 1

average value µ [h:m] 34:25 56:02 54:36

standard deviation s [h:m] 3:43 7:05 /

relative standard deviation s/µ 10.8% 12.6% /

Table 6.2: Overview over the average lifetime value, standard deviation and relative standard deviation for all
three scenarios. Since Scenario 3 consists of just one valid measurement, no deviations are calculated.

40 6 Evaluation

-80

-70

-60

-50

-40

0 5 10 15 20 25 30 35 40 45 50 55 60

R
SS

I
[d

B
m

]

Time [h]

node0
node1
node2

(a) Scenario 1: 0% sleep, OLED ON

-90

-80

-70

-60

-50

-40

0 5 10 15 20 25 30 35 40 45 50 55 60

R
SS

I
[d

B
m

]

Time [h]

node0
node1
node2

(b) Scenario 2: 33.3% sleep, OLED ON (ERROR on node3 after 2.5 hours)

-100

-90

-80

-70

-60

-50

-40

0 5 10 15 20 25 30 35 40 45 50 55 60

R
SS

I
[d

B
m

]

Time [h]

node0
node1
node2

(c) Scenario 3: 33.3% sleep, OLED OFF (ERROR on node1 and node2 after 3.5 hours)

Figure 6.3: RSSI measurements over time of three different sensor node configuration scenarios.

6.3 Evaluation Results 41

6.3.3 Simulated Sensor Node Lifetime Results

The core of the evaluation is the lifetime of the sensor nodes within the simulated WSN. In order to be
able to classify these, real-world measurements of the exact sensor node compositions were made, as
described in the previous section. Therefore, the configuration of the simulation is matched with the
real-world measurement as shown in Section 6.2.3. For the basic simulation, the resulting lifetimes of
the sensor nodes are 26:37h, 37:16h and 40:31h for the three scenarios, respectively.

As described in Section 6.2.3, a second simulation series is performed. Thereby, the used battery ca-
pacities are based on the results of the real-world sensor node lifetime measurements. For Scenario 1 the
average calculated used energy is 3636.52 mA h which is equal to 48.44 J by assuming a constant voltage
of 3.7 V. Scenario 2 has a calculated used average battery capacity of 4358.79 mA h and Scenario 3 has
4205.09 mA h. Based on these adjusted battery capacities, a simulation can now be carried out that cor-
responds to the use of an optimal battery model. With the results of this simulation series, it is possible
to estimate approximately how good this implementation can be using a detailed battery model. The
resulting values for the three scenarios using this adjusted simulation are 32:16h, 53:32h and 56:49h.

6.4 Analysis of Results

After presenting the results of the real-world measurement and simulation in the previous section, this
section analyses the results in terms of accuracy and discusses how these results should be placed in
the overall context of this work. For this, Figure 6.4 summarizes the evaluation results, including the
average and minimum value of the real-world measurements, as well as the simulated lifetimes of the
basic and adjusted simulation for each scenario. Further, information about the scenarios application
workload, the number of valid results in the real-world measurement and the corresponding standard
deviation are given as well for each scenario.

Already when looking at the individual results of the real-world measurements in Figure 6.4, it is
noticeable that there are large variations in the sensor nodes lifetimes. Accordingly, the relative standard
deviations are also high at over 10 % in each case. These large fluctuations therefore make it difficult to
classify the precision of the simulation. A guideline for precision would therefore be whether the results
of the simulation are within the standard deviation around the mean value of the measurements. On the
other hand, the minimum runtime of a sensor node is of particular interest for many applications of such
a simulation. With the median, one can assume that at this point in time about half of the sensor nodes
are already switched off. However, if not much data is available, as in this evaluation, it also makes
sense to look at the mean value, as this indicates the average duration of all measurements. All of these
approaches are sensible approaches for the evaluation, in this case the deviation from the mean value
is considered, as this corresponds most to the goal of the simulation to be as accurate as possible. For
further evaluation, Scenario 3 is neglected in the following, as the real-world measurement has only very
limited significance due to the limited data available.

When looking at the results in Figure 6.4, the simulated lifetimes with the basic battery configuration
with 3000 mA h is significantly smaller than the measured average value and even the measured mini-
mum value. The relative deviation is 23.7 % and 33.5 %. Thus, the base value is also not in the range
defined by the standard deviation around the mean value.

The adjusted simulation, which was configured with the back-calculated consumed energy, is located
in the desired environment around the average. With a deviation of 6.2 % and 4.5 % to the average
value of the measurements of the first two scenarios. It is interesting to note that in this case the energy
actually consumed is higher than the theoretical nominal energy available in the battery. There are
two main reasons for this. On the one hand, it could be that the newly purchased batteries for this
experiment can deliver even more energy than specified. However, this does not explain the energy
difference between the scenarios. A possible explanation for this would be the Recovery-Effect described
in Chapter 3.1.1. Especially in Scenario 2, where the sensor nodes are one third of their time in the

42 6 Evaluation

Scenario 1:
0% Sleep, OLED ON

(* three valid measurements,
s=3:43h (10.8%))

Scenario 2:
33.3% Sleep, OLED ON

(* two valid measurements,
s=7:05h (12.6%))

Scenario 3:
33.3% Sleep, OLED OFF

(* one valid measurement)

0

10

20

30

40

50

60

Li
fe

ti
m

e
[h

]

34:25h
100%

56:02h
100% 54:36h

100%

26:37h
-23.7%

37:16h
-33.5%

40:31
-25.8%

32:16h
-6.2%

53:32h
-4.5%

56:49
+4.0%Measured Average*

Measured Minimum
Simulated Basic
Simulated Adjusted

Figure 6.4: Evaluation results including the average and minimum value from the real-world measurements. In
addition, the simulation results are given for the basic and the adjusted simulation. The percentage
values indicate the relative deviation from the average value. For Scenario 1 and 2 the standard
deviation s is given as an absolute and relative value.

current-saving sleep mode, the calculated consumed energy with 4501.37 mA h, is significantly greater
than in Scenario 1 with 3636.52 mA h. This strongly suggests that the battery not only discharges more
slowly due to the sleep phase with the lower power consumption, but that the voltage at the battery
regenerates due to the Recovery-Effect.

Overall, this evaluation shows that this model with its modular structure is basically capable of simu-
lating sensor nodes in a WSN. It is important to note that the actual lifetimes of the sensor nodes can vary
greatly and this simulation only provides an average value, not a lower and upper bound. Furthermore,
this evaluation has shown that it is necessary to use an extended battery model to get more accurate
results from the simulation. The highly simplified battery model leads to a deviation of over 30 % in
some scenarios. This may be sufficient for some applications, but this model offers the possibility to
increase the precision by using extended battery models.

In addition to the analysis of the precision, it can also be said that the modular design allows a quick
configuration of different sensor nodes. Especially through the use of configurable components, the
simulations in this evaluation could be configured quickly and flexibly. The design and implementation
presented here thus enable a modular configuration for the simulation of battery-powered sensor nodes
in a WSN. Due to the modular design, this approach also allows the flexible use of different battery

6.4 Analysis of Results 43

models. These have an essential influence on the precision of the simulation and can be configured
individually for different sensor nodes as desired.

After discussing the general design, presenting a concrete implementation and evaluating the model
in terms of precision, the next chapter provides a summary about this work and its contribution. Also
possibilities for future work based on this work are given.

44 6 Evaluation

7 Conclusions

In this Chapter, a final summary on the work presented in this paper is done. Section 7.1 summarizes
the achievements of the main chapters of this paper. The main contributions of this work are shown in
Section 7.2. Possibilities for future work based on this paper are discussed in Section 7.3.

7.1 Summary

This work presents a modular approach for energy-aware modelling of sensor nodes inside a Wireless
Sensor Network (WSN). This requires a deep understanding of the structure and functioning of WSNs,
which is given in Chapters 1 and 2. For the development of the sensor node model, its structure and
the components it contains are of particular interest. As already examined in Chapter 3, the components
of a sensor node can be clustered into sensors, batteries, transmission modules, Microcontrollers (MCs)
and other hardware components. Due to the modular approach of this work, these models are all
modelled as individual sensor node components. Since single sensor node components can be re-used
for the configuration of other scenarios, this enables simulations based on this model to be highly flexibly.
However, this also means, that every component, used in a specific scenario, needs to be modelled as an
individual component. For this reason several related approaches are studied to gain further knowledge
on energy consumption of typical sensor node modules, different battery models and other approaches
for sensor node modelling and WSN simulations. Thereby, particular attention is paid to the different
battery models, as these play a central role in the calculation of the sensor node lifetimes.

Chapter 4 then presents the concepts of the proposed modular energy-aware sensor node model. The
focus here is heavily on the modular design. The presented sensor node model therefore allows an ar-
bitrary amount of different Sensor Node Components. Accompanied by a Battery, an Energy Model and
an Application, any number of hardware component models can be added as an Sensor Node Component
to the sensor node. With associated Energy Components defining the power consumption of the com-
ponents, the Energy Model is able to calculate the current energy demand and discharges the battery
accordingly. For the interaction of sensor node components, the Application is configured to define dif-
ferent workload cycles and phases, where the Sensor Node Components perform different tasks. Overall,
this modular concept leads to individual components consuming energy, so that at some point the bat-
tery is discharged and the sensor node is no longer considered in the simulation. The time span between
the starting point of a sensor node and its shutdown is returned by the simulation as the sensor nodes
lifetime. Since these sensor nodes may differ in their specific configuration, this lifetime considerations
are simulated individually for every sensor node.

The implementation of this design is available out of the box in the simulator Simonstrator, which is
very suitable for this purpose. With a few exceptions in the field of the configuration of the Energy Model
component, the design can be adopted directly. The modular approach is particularly effective due to
the configuration option via an XML file structure, where all simulation parameters including all sensor
node configurations are specified. Because of the use of generic configurable sensor node components,
the integration of new hardware modules is very fast and easy.

As a part of the proof-of-concept evaluation, the shown implementation gets evaluated in Chapter 6.
Comparing the simulated lifetime results with real-world measurements of the corresponding sensor
node configurations, the precision of the model is examined. The evaluation shows that the model
works and the lifetimes of the sensor nodes vary depending on the hardware and application workload
used. Using a highly simplified ideal and linear battery model, the simulation results of the model deviate
by about 30 % on average from the real-world measurements. Due to the time-consuming experiments,
the evaluation provides a sparse amount of measured real-world data, which gives a general intuition
of the real lifetimes of the sensor nodes. However, the accuracy of the model can be increased even

45

further by using extended battery models. Thus, the energy provided by the batteries in the real-world
measurements are reverse engineered. The calculated values are then used to tune the available energy
from the individual simple battery model instances of the corresponding sensor node configurations.
In principle, this imitates a perfect battery model. This increases the accuracy significantly and sets
the average deviation to around 5 % compared to the real-world measurements. This shows that the
proposed model is able to simulate good reference values. With the use of accurate battery models, it is
even possible to perform simulations with high precision. Overall, the evaluation shows that the basic
concept of a modular sensor node model works.

7.2 Contributions

The main contribution of this work is the development of an highly configurable modular energy-aware
model for WSN simulations. This enables a fast and easy to configure energy-aware simulation of indi-
vidual lifetimes of sensor nodes within a WSN. One advantage of this approach compared to approaches
that do not design sensor nodes in a modular way is that individual components can be composed as de-
sired, like in a construction kit. This does not require any considerations of the sensor nodes total energy
consumption, but reduces the necessary energy consumption specifications to the component level. This
makes the reuse of singe components in different scenarios possible, which in the long run accelerates
the configuration process due to the increasing number of available, already configured component mod-
els. Further, due to the modular design, the presented model is easily extendible by implementing new
sensor node components. With this model, the achievable deviation of the simulated lifetimes compared
to real-world measurements varies between 30 and 5 % depending on the accuracy of the battery model.

In addition to the provided model, the creation and use of configurable generic sensor node compo-
nents is also shown, which further simplifies the configuration process for new components. Also, for the
evaluation process, a simple measurement setup using the TI INA219 shield for measuring the energy
consumption of hardware components is shown.

7.3 Future Work

Since the implementation shown here is strongly limited in terms of precision by the simplified battery
model used, it is worth developing a generic and configurable battery model for sensor nodes in WSNs
that consider several not-ideal effects like the Recovery-Effect. As shown in the evaluation, this would
enable an improvement in precision of up to 25 %. For an accurate evaluation and adjustment of the
presented model, further real-world measurements of sensor node lifetimes would improve the precision
and validity of the models accuracy. In addition, further measurements can be made with other types of
hardware components to confirm the general applicability of the model. Lastly, since WSNs in certain
scenarios consist of a very high amount of sensor nodes, a study on the models performance in terms of
scalability of large WSNs is interesting and could result in further improvements of the presented model.

46 7 Conclusions

Bibliography

[AA11] Nor Azlina Ab. Aziz and Kamarulzaman Ab. Aziz. Managing disaster with wireless sen-
sor networks. In 13th International Conference on Advanced Communication Technology
(ICACT2011), pages 202–207, February 2011.

[AAIS14] Aqeel-ur-Rehman, Abu Zafar Abbasi, Noman Islam, and Zubair Ahmed Shaikh. A re-
view of wireless sensors and networks’ applications in agriculture. Computer Standards &
Interfaces, 36(2):263–270, February 2014.

[AAT+18] Kofi Sarpong Adu-Manu, Nadir Adam, Cristiano Tapparello, Hoda Ayatollahi, and Wendi
Heinzelman. Energy-Harvesting Wireless Sensor Networks (EH-WSNs): A Review. ACM
Transactions on Sensor Networks, 14(2):10:1–10:50, April 2018.

[ALM05] Th. Arampatzis, J. Lygeros, and S. Manesis. A Survey of Applications of Wireless Sensors
and Wireless Sensor Networks. In Proceedings of the 2005 IEEE International Symposium
on, Mediterrean Conference on Control and Automation Intelligent Control, 2005., pages
719–724, June 2005.

[APS+09] Ch. Antonopoulos, A. Prayati, T. Stoyanova, C. Koulamas, and G. Papadopoulos. Exper-
imental evaluation of a WSN platform power consumption. In 2009 IEEE International
Symposium on Parallel Distributed Processing, pages 1–8, May 2009.

[ASM+11] A. A. Abdou, A. Shaw, A. Mason, A. Al-Shamma’a, J. Cullen, and S. Wylie. Electromagnetic
(EM) wave propagation for the development of an underwater Wireless Sensor Network
(WSN). In 2011 IEEE SENSORS, pages 1571–1574, October 2011.

[BV08] Leonardo Barboni and Maurizio Valle. Experimental Analysis of Wireless Sensor Nodes
Current Consumption. In 2008 Second International Conference on Sensor Technologies and
Applications (Sensorcomm 2008), pages 401–406, August 2008.

[CR06] Min Chen and G.A. Rincon-Mora. Accurate electrical battery model capable of predicting
runtime and I-V performance. IEEE Transactions on Energy Conversion, 21(2):504–511,
June 2006.

[DNDNCS16] Attilio Di Nisio, Tommaso Di Noia, Carlo Guarnieri Calò Carducci, and Maurizio Spadav-
ecchia. High Dynamic Range Power Consumption Measurement in Microcontroller-Based
Applications. IEEE Transactions on Instrumentation and Measurement, 65(9):1968–1976,
September 2016.

[HD13] Austin Hausmann and Christopher Depcik. Expanding the Peukert equation for battery ca-
pacity modeling through inclusion of a temperature dependency. Journal of Power Sources,
235:148–158, August 2013.

[HGL+21] Jonas Höchst, Jannis Gottwald, Patrick Lampe, Julian Zobel, Thomas Nauss, Ralf Stein-
metz, and Bernd Freisleben. tRackIT OS: Open-source Software for Reliable VHF Wildlife
Tracking. Gesellschaft für Informatik, Bonn, 2021.

[KCZ07] Baoqiang Kan, Li Cai, and Lei Zhao. An accurate energy model for wsn node and its
optimal design. In 2007 International Conference on Communications, Circuits and Systems,
pages 328–332, July 2007.

47

[KGT09] JeongGil Ko, Tia Gao, and Andreas Terzis. Empirical study of a medical sensor application
in an urban emergency department. In Proceedings of the Fourth International Conference
on Body Area Networks, BodyNets ’09, pages 1–8, Brussels, BEL, April 2009. ICST (Insti-
tute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

[KK16] Ingemar Kaj and Victorien Konané. Modeling battery cells under discharge using ki-
netic and stochastic battery models. Applied Mathematical Modelling, 40(17):7901–7915,
September 2016.

[KKNL06] V. Konstantakos, K. Kosmatopoulos, S. Nikolaidis, and T. Laopoulos. Measurement of
Power Consumption in Digital Systems. IEEE Transactions on Instrumentation and Mea-
surement, 55(5):1662–1670, October 2006.

[KNVK20] Dionisis Kandris, Christos Nakas, Dimitrios Vomvas, and Grigorios Koulouras. Applications
of Wireless Sensor Networks: An Up-to-Date Survey. Applied System Innovation, 3(1):14,
March 2020.

[KPA+10] Fotis Kerasiotis, Aggeliki Prayati, Christos Antonopoulos, Christos Koulamas, and George
Papadopoulos. Battery Lifetime Prediction Model for a WSN Platform. In 2010 Fourth In-
ternational Conference on Sensor Technologies and Applications, pages 525–530, July 2010.

[KPKK19] Dmitriy N. Karlov, Yulia S. Polozhentseva, Lyudmila V. Kremleva, and Dilovar D.
Kalimyllin. The implementation of the IoT concept in the post-industrial economy. Revista
ESPACIOS, 40(38), November 2019.

[KPMB08] Simon Kellner, Mario Pink, Detlev Meier, and Erik-Oliver BlaB. Towards a Realistic Energy
Model for Wireless Sensor Networks. In 2008 Fifth Annual Conference on Wireless on
Demand Network Systems and Services, pages 97–100, January 2008.

[KTK15] Priyanka Kakria, N. K. Tripathi, and Peerapong Kitipawang. A Real-Time Health Mon-
itoring System for Remote Cardiac Patients Using Smartphone and Wearable Sensors.
International Journal of Telemedicine and Applications, 2015:1, 2015.

[Lou21] Andre Louie. 35 IoT Device Statistics You Must Read: 2022 Data on Market Size, Adoption
& Usage. https://financesonline.com/iot-device-statistics/, June 2021.

[LWG05] O. Landsiedel, K. Wehrle, and S. Gotz. Accurate prediction of power consumption in
sensor networks. In The Second IEEE Workshop on Embedded Networked Sensors, 2005.
EmNetS-II., pages 37–44, May 2005.

[MBCM18] Kais Mekki, Eddy Bajic, Frederic Chaxel, and Fernand Meyer. Overview of Cellular LP-
WAN Technologies for IoT Deployment: Sigfox, LoRaWAN, and NB-IoT. In 2018 IEEE
International Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), pages 197–202, March 2018.

[MWHA09] Geoff V. Merrett, Neil M. White, Nick R. Harris, and Bashir M. Al-Hashimi. Energy-Aware
Simulation for Wireless Sensor Networks. In 2009 6th Annual IEEE Communications So-
ciety Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pages 1–8,
June 2009.

[OROR18] Chinedu I. Ossai, Nagarajan Raghavan, Chinedu Ishiodu Ossai, and Nagarajan Ragha-
van. Stochastic Model for Lithium Ion Battery Lifecycle Prediction and Parametric Uncer-
tainties. In 2018 Annual Reliability and Maintainability Symposium (RAMS), pages 1–6,
January 2018.

48 Bibliography

[Peu97] Wilhelm Peukert. Über die Abhängigkeit der Kapazität der Bleiakkumulatoren von der
Stromstärke. Elektrotechnische Zeitschrift ETZ, 18:287–288, 1897.

[RAA+14] Habib F. Rashvand, Ali Abedi, Jose M. Alcaraz-Calero, Paul D. Mitchell, and Subhas Chan-
dra Mukhopadhyay. Wireless Sensor Systems for Space and Extreme Environments: A
Review. IEEE Sensors Journal, 14(11):3955–3970, November 2014.

[RMB+17] Leonardo M. Rodrigues, Carlos Montez, Gerson Budke, Francisco Vasques, and Paulo Por-
tugal. Estimating the Lifetime of Wireless Sensor Network Nodes through the Use of
Embedded Analytical Battery Models. Journal of Sensor and Actuator Networks, 6(2):8,
June 2017.

[RSKN05] V. Rao, G. Singhal, A. Kumar, and N. Navet. Battery model for embedded systems. In 18th
International Conference on VLSI Design Held Jointly with 4th International Conference on
Embedded Systems Design, pages 105–110, January 2005.

[RSRS15] Björn Richerzhagen, Dominik Stingl, Julius Ruckert, and Ralf Steinmetz. Simonstrator:
Simulation and Prototyping Platform for Distributed Mobile Applications. In The 8th EAI
International Conference on Simulation Tools and Techniques (ACM SIMUTOOLS 2015),
pages 99–108, August 2015.

[WXVS14] Chaonan Wang, Liudong Xing, Vinod M. Vokkarane, and Yan (Lindsay) Sun. Reliability
and lifetime modeling of wireless sensor nodes. Microelectronics Reliability, 54(1):160–
166, January 2014.

Bibliography 49

	1 Introduction
	1.1 Problem Statement and Contribution
	1.2 Outline

	2 Background
	2.1 Requirements and Structure of Wireless Sensor Networks
	2.2 Applications of Wireless Sensor Networks
	2.3 Wireless Transmission Technologies for WSN
	2.4 Summary

	3 Related Work
	3.1 Energy Models and Battery Lifetime Prediction
	3.1.1 Influence of Non-Ideal Battery Behaviour
	3.1.2 Battery Models
	3.1.3 Battery Lifetime Prediction
	3.1.4 Energy consumption of typical sensor node modules, activities and protocols
	3.1.5 Energy Measurement of Hardware Modules

	3.2 Structures of Energy-Aware Simulations
	3.3 Analysis of Related Work
	3.4 Summary

	4 Design
	4.1 Requirements and Assumptions
	4.2 System Overview
	4.2.1 Sensor Node and Energy Components
	4.2.2 Energy Model
	4.2.3 Battery
	4.2.4 Application

	4.3 Acquiring Real-World Data for parameterised Simulation Models
	4.4 Summary

	5 Implementation
	5.1 Design Decisions
	5.1.1 The Simonstrator Simulation Environment
	5.1.2 Implementation-Specific Design Decisions

	5.2 Architecture
	5.2.1 Interfaces
	5.2.2 Classes

	5.3 Interaction of Components
	5.4 Limitations of the Implementation
	5.5 Summary

	6 Evaluation
	6.1 Goal and Methodology
	6.2 Evaluation Setup
	6.2.1 Acquiring Real-World Power Consumption Values for the Used Hardware Modules
	6.2.2 Evaluation Setup for Real-World Sensor Node Lifetime Measurements
	6.2.3 Sensor Node Configurations for the Simulation Execution

	6.3 Evaluation Results
	6.3.1 Measured Power Consumptions for Precise Sensor Node Component Configuration
	6.3.2 Collected Real-World Sensor Node Lifetime Data
	6.3.3 Simulated Sensor Node Lifetime Results

	6.4 Analysis of Results

	7 Conclusions
	7.1 Summary
	7.2 Contributions
	7.3 Future Work

	Bibliography

