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Abstract—Point clouds are an important enabler for a wide
range of applications in various domains, including autonomous
vehicles and virtual reality applications. Hence, the practical
applicability of point clouds is gaining increasing importance
and presenting new challenges for communication systems where
large amounts of data need to be shared with low latency.
Point cloud content can be very large, especially when multiple
objects are involved in the scene. Major challenges of point
clouds delivery are related to streaming in bandwidth-constrained
networks and to resource-constrained devices. In this work,
we are exploiting object-related knowledge, i.e., content-driven
metrics, to improve the adaptability and efficiency of point clouds
transmission. This study proposes applying a 3D point cloud
semantic segmentation deep neural network and using object-
related knowledge to assess the importance of each object in the
scene. Using this information, we can semantically adapt the bit
rate and utilize the available bandwidth more efficiently. The
experimental results conducted on a real-world dataset showed
that we can significantly reduce the requirement for multiple
object point cloud transmission with limited quality degradation
compared to the baseline without modifications.

Index Terms—Point Cloud, Semantic Segmentation, Au-
tonomous Vehicles, Virtual Reality

I. INTRODUCTION

Recent advancements in depth sensors technologies and
their increasing affordability have led to a renewed interest
in the point cloud data for autonomous vehicles or virtual and
augmented reality applications. In autonomous vehicles such
as cars [1], or inland vessels [2], we need more than just 2D
images to enable a greater sense of the surroundings of an
autonomous vehicle and a real-time obstacle avoidance func-
tion [3]. Therefore, state-of-the-art autonomous vehicles detect
the surrounding environment by collecting sensory data from
cameras, radars, and LiDARs (Light Detection And Ranging).
The LiDAR sensor has shown outstanding performance and
great accuracy in converting the physical environment into
3D digital data in real-time [3]. It can represent this 3D
data as point clouds. The advantage of this representation
method is being adaptive and simple compared to other 3D
representations, such as polygon meshes. Point clouds allow us
to effectively model 3D data of the surrounding environment
and describe the shape and distance of the surrounding objects,
such as vehicles and pedestrians. In indoor use cases, point
clouds can be captured with an RGB-depth camera(s). The
RGB-Depth camera is a sensor that can capture both RGB

and depth data and has become widely available in commod-
ity devices, such as Intel RealSense or Apple Truth Depth
Camera. Because of their limited range, RGB-Depth sensors
are often used to acquire point cloud data only in an indoor
setup.

(A)  (B)

Fig. 1. Point cloud examples: (A) single object point cloud, and (B) multiple
object point cloud.

In virtual and augmented realities, the chosen 3D data rep-
resentation, such as depth images, volumetric grids, polygon
meshes, or point clouds, is the dominant influencing factor
on the feasibility and limitations of the content streaming
experience [4]. The primary difference between point cloud
content delivery for virtual or augmented realities applications
and delivery of regular 2D video or 360-degree video is the
high level of user interaction. Point cloud-based videos capture
the 3D space and objects from multiple angles, and thus
provide a better immersive experience than regular 2D videos.
By that, point cloud-based videos enable new application
fields with six Degrees of Freedom (6DoF) [4], allowing the
user to freely change their position and orientation in the
scenes, which allows high interactivity level with the scenes
components, i.e., objects.

However, despite the advantages of point clouds, there
are certain difficulties in adopting point clouds in either au-
tonomous vehicles or augmented/virtual reality scenarios [7].
The captured real-time raw point cloud can be many gigabits
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Fig. 2. Comparison of encoding and decoding time, for two point cloud
compression methods, namely G-PCC [5] and Draco [6]

per second in data generation, which seriously hinders their
application in practical scenarios. For example, the Velodyne
VLS-128 can generate 9.6 million points per second [3].
Therefore, major challenges of point cloud-based systems are
related to processing and transmitting a large amount of data
and adapting the used bit rate to the variable bandwidth
conditions [8], [9]. Previous studies have proposed novel
compression techniques, including video-based [5] for dense
point clouds compression (Figure 1(A)), and geometry-based
[5], [10] for sparse point clouds compression, e.g. LiDAR
scans (Figure 1(B)) [5], [10]. Even with compression, the
bandwidth requirements for compressed point cloud sequences
are still relatively high and may be impractical due to added
latency. Figure 2 shows overall encoding and decoding time
for the same point cloud content using some state-of-the-art
compression methods. High encoding and decoding latency
make streaming point cloud less applicable for real-time
applications.

A point cloud is a collection of points in a 3D space,
each having several properties, including point coordinates
along (X, Y, and Z) axes, colour values encoded in RGB
format, and several others. A point cloud can be a signal
object like a human body, see (A) in figure 1, or it can
be composed of multiple independent objects. For example,
a scan by automotive LiDAR for an urban street can have
multiple objects such as vehicles, pedestrians, motorcycles,
and trees, look at (B) in figure 1. An additional example is a
room scan taken by several RGB-Depth cameras from several
vantage points, generated by collecting the point data and then
stitching it together by detecting common points. In some
situations, however, there is no need to transmit the entire data;
instead, only a small portion of the point cloud needs to be
delivered. Knowing that each independent point cloud object
can be extracted from the mother point cloud, so it can be
processed or streamed independently and in controlled quality.
This feature seems less applicable to regular 2D images.

With increasing industrial demand, point clouds with deep
learning models have lately become a subject of great interest.
The point cloud is an essential enabler for many computer
vision tasks, including object classification, semantic seg-

mentation, detection, tracking, flow estimation, registration,
augmentation, reconstruction, and completion. For example,
semantic point cloud segmentation aims to label each point
of a point cloud with a corresponding semantic label of what
it represents. Semantic segmentation allows identifying and
segmentation of different objects within the point cloud. Thus,
it enables mapping out point cloud objects that need to be
handled differently.

The approach of this research is as follows. To control
the resulting network load during multiple object point cloud
sequences delivery, we incorporate semantic awareness of the
objects which compose the transmitted scenes. We believe that
awareness of the objects is a crucial piece of information and
can be exploited to enable the content bitrate adaptability in
networks with significant bandwidth variations. To evaluate
our approach, we used the SemanticKITTI dataset [11], which
provides labelled point cloud sequences with distinct classes,
including cars, pedestrians, vegetation, etc. We employ a
deep neural network for 3D object segmentation to generate
semantic information for the underlying point cloud scene,
i.e., classes or properties of objects. We leverage the gained
semantic awareness to control the volume level of the scene
objects. Depending on the application, thus, less essential
objects can be transmitted less frequently, in lower quality,
or completely filtered out. The resulting possibilities allow
better utilization of the available bandwidth and enable content
bitrate adaptation in a controlled manner, i.e., increase for
the significant objects and decrease for irrelevant objects,
and permitting dynamic adapting the bitrate of content to
changing network bandwidth or personalized user preferences.
We show the proposed approach’s effectiveness by applying
an experiment-based evaluation. We should point out that
our proposed approach is not meant to replace existing point
cloud compression, but enhance multiple object point cloud
content delivery efficiency by adapting the content to meet
the bandwidth or computational requirements with the help of
object-related knowledge. This can be combined with any up-
/downstream adaptation mechanisms, including compression.

We refer to point cloud semantic segmentation, classifi-
cation, or labelling, i.e., the task of assigning a semantic
label to each point of a point cloud, as point cloud semantic
segmentation throughout this paper.

We organize this paper as follows. Section II reviews some
related works. Section III describes our proposed method.
Section IV details our experimental setup and results. We give
the conclusion in section V.

II. RELATED WORKS

In the light of the high interest of research and industry
in point cloud delivery, various research approaches have
been proposed in this regard. However, adaptive delivery is
one of the most used methods for reducing bandwidth while
transporting high-quality point cloud content. In this section,
we review delivery approaches that adapt point cloud content
bitrate.
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1) Virtual or Augmented Reality: Hosseini and Timmerer
are the first authors who proposed an adaptive point cloud
streaming approach for virtual or augmented reality applica-
tions called DASH-PC [8]. The approach is DASH-compliant
for single point cloud streaming and is dynamic adaptive,
view-aware, and bandwidth-efficient. The proposed system
tackles the changing bandwidth demands for streaming point
cloud content by a DASH-compliant MPD (Media Presen-
tation Description) manifest specifically for a point cloud
object. Instead of using a dedicated encoder of point cloud
objects, they sample the object to provide a range of quality
variants. Then, the point cloud object will be fetched on
a per-frame basis. As a result, the number of HTTP GET
requests is comparable to the frame (object) rate. This may
lead to significant issues, particularly in the light of network
latency. In a later work, Hosseini extended the work and
proposed rate adaptation techniques for streaming multiple
point cloud objects [12]. The heuristic’s algorithm determines
the priority of the point cloud objects based on the camera
view, the objects’ visibility, and their distance from the camera.
Thus, point cloud objects closer to the camera are given
higher priority, and they are transmitted in a higher-quality
representation. Likewise, point cloud objects farther away are
given lower priority and transmitted in a less demanding
quality representation.

Park et al. proposed a utility-based rate adaptation heuristic
of point cloud based content for augmented reality that sup-
ports both network and user adaptation [13]. The proposed
system adapts the level-of-detail (LoD) of point cloud objects
according to their distance to the user location. They proposed
a greedy algorithm for rate-utility optimization that allocates
bits between different tiles across multiple objects. In more
detail, the system reduces bandwidth demands by reducing the
object’s level of detail depending on its location and distance
to the user’s viewport and location. They reduce latency by
introducing a window-based buffer to respond quickly to user
interaction. According to the results of their evaluation, the
proposed heuristic provides better utility and user experience
over variable throughput-constrained networks compared to
existing video streaming approaches.

Another system proposed by Qian et al., called Nebula, con-
siders point cloud video streaming to commodity smartphones
as regular 2D video as a strategy to reduce the computational
burden [9]. In their work, they offload the heavy lifting opera-
tions to a remote render server and employ rate adaptation
mechanisms to adjust the video quality to network condi-
tions by streaming different objects with different qualities
according to multiple criteria. In order to reduce the motion-to-
photon latency, they propose a viewport prediction mechanism
and a mega-viewport idea. They present several optimization
techniques to minimize the apparent motion-to-photon latency,
dynamically adjust to variable network bandwidth, and reduce
the system’s resource usage while maintaining a high QoE.

2) Autonomous Vehicle: Hoog et al. studied the feasibility
of lossy and lossless compression of point cloud data sharing
across inland vessels while maintaining usable point cloud

quality to set up situational awareness [2]. They found that
lossless compression using BZip2 reduces the size of the
point cloud to half, sacrificing no information, whereas lossy
compression using Draco [6] produces 25% of the original
size while still maintaining an acceptable point cloud quality.

Although the previous studies have successfully shown good
bit rate adaptation, they suffer from limitations in considering
the transmitted objects’ semantics. Nonetheless, they can be
combined with our proposed approach.

III. PROPOSED METHOD

This section describes our method for adaptively compress-
ing point cloud objects based on their importance in the scene.
For that purpose, we rely on different components, which are
the point cloud semantic segmentation model, point cloud
encoder, and point cloud decoder. First, we describe how
understanding the scene, i.e., objects semantics, can be used
to build a point cloud adaptor that prepares objects present in
a point cloud scene for delivery.
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Fig. 3. High-level architecture of point cloud streaming system incorporating
our proposed method.

The proposed content-aware bandwidth adaptor is to be
integrated with a point cloud streaming system to estab-
lish point cloud adaptability and reduce the bandwidth and
computational requirements of such streams. The adaptor is
implemented as a software component between the point
cloud content producer, e.g., LiDAR or recorded files, and
the content encoder, as shown in Figure 3. The adaptor is
used along with the encoder to prepare objects present in a
point cloud scene for streaming. The encoder does not need
to be changed with our suggested design. The bitrate is adapted
while operating in real-time with the encoding process to
satisfy the requirements.

The point cloud scans are subjected to several manipulations
by the server before being provided to the client. The point
cloud server captures the point cloud scans from the content
source. It uses information about the current client and network
status to optimize the quality accordingly. These scans are
then provided to the encoder, which generates the encoded
scenes sent to the client by utilizing the encoding parameters
and region of interest (ROI) information given by the adaptor
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component. ROI information holds the importance of each
point.

The assumption is that only a small area of the point cloud
scan applies to the user’s interest or the application’s need.
Compressing the entire scan at the same quality and frame
rate is unnecessary. Therefore, we reduce the transmitted point
cloud sequence bitrate by enabling different update frequencies
and allocating different amounts of bits to various objects in
each point cloud scan based on the importance of these objects
to the user or the intended task. In the following subsections,
we present our proposed method for setting and exploiting
criticality levels to different objects to establish sharper point
cloud bitrate adaptability.

A. Criticality Assignment

Point cloud compression has almost always been considered
as a fidelity concern [14] in existing point cloud compression
techniques, for example, [15]–[17], where the aim has been
to maximize the LoD. However, point cloud content is very
application-dependent from a practical standpoint. Therefore,
compression may be executed with the purpose of the point
cloud content at the receiver side in mind. For example, for
decoder agents primarily concerned with localization tasks,
removing moving objects’ points during the encoding phase
will decrease the number of noisy points, increase localization
accuracy, and save bitrate [14]. As part of our approach, we
rank different objects to their criticality, considering the user’s
attention or the informative part of the scan. Our strategy is
to assign a higher criticality level, i.e., more weight, to the
most informative objects to tasks being carried out by the
application. Several criticality levels can be offered for the
point cloud content, depending on the goals and semantics of
the planned point cloud-based application.

We assume that the point cloud content is associated with
information about different objects’ criticality in point cloud
content. A hierarchy of the criticality for the involved objects
in the scenes might serve as an example of such information.
Using this information, we establish the criticality classes. An
example of content criticality information is that an automotive
point cloud scan comprises multiple objects, some of which
are least relevant to other vehicles. These objects have no
contribution to the intended task, for example, vegetation and
buildings in urban street scenes [18].

One way to obtain semantic information for point cloud-
based content is to use deep learning models. There are many
methods to analyse semantic information of point clouds [19]–
[22]. However, we believe this is the first work showing how to
utilize this information in adaptive point cloud delivery. Figure
4 shows an overview of the criticality assignment process. The
pre-trained semantic segmentation model partitions a multiple
object scene semantically into different criticality levels, where
each point of the given scene is assigned a criticality label.

Looking at Figure 5 (A) and (B), compare the scan before
and after applying semantic segmentation for an automotive
point cloud scan, respectively. Figure 5 (A) shows a raw scan.
Figure 5 (B) shows the same scan after applying semantic
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Fig. 4. Detailed view of our proposed method: Criticality assignment. The
point-wise semantic segmentation allows assigning a criticality level to each
point (in the figure C1, C2 and C3 are criticality levels). The assignment of
criticality levels to object classes is application dependent. This enables the
encoder to assign different quantization levels and/or frame rates to points
depending on their criticality level.

(A)                                                    (B)                                            (C) 

Fig. 5. Visualization of one scan of the SemanticKITTI dataset: (A) The
scan with no annotation, (B) The scan with annotation, (C) The scan after
adaptation, in this specific case, only the most critical objects, i.e., cars and
pedestrians, were considered.

segmentation, where each point in the scan belonging to a
car object is coloured blue, and each point belonging to a
road is coloured pink. We use this gained point-wise semantic
knowledge to estimate the relevance of each object in the scan.

B. Adaptive Quantization and Frame-rate

We aim to adapt the content bitrate to the available band-
width and avoid a deterioration in overall quality or a com-
promise of the intended task when delivering point cloud
streams to users. Therefore, during the exchange of scans,
the sender reduces the bitrate when the network connection
deteriorates and increases the bitrate to give a richer experience
when the network connection improves. Under the available
bit budget, the encoder’s rate control component distributes
bits to scans. Three levels can be used to allocate bits in
order to achieve the average encoding bitrate while adapting
to the bandwidth requirements: (i) group of scans level, (ii)
scan level, and (iii) object level. The greater the granularity,
the higher the level of bitrate control. Increased granularity
can enable the encoder to drill down on the points of each
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constituent object and quantize its data while maintaining the
overall quality. Therefore, the awareness of the content, i.e.,
ROI, is a crucial piece of information and can be exploited to
increase the content bitrate control granularity. However, it is
important to note that content awareness complicates the rate
control procedure since bits must be distributed to represent
object importance while still maintaining the target bitrate
and avoiding the introduction of large spatial and temporal
fluctuations.

To adapt the bit-rate requirements, noninformative objects
can be updated infrequently, adopt low quantization levels,
or may be omitted altogether if the situation allows. From
this perspective, identifying the relevance level of each object
within a streamed scene enables better adaptability of point
cloud delivery.

In summary, we prepare objects present in a point cloud
scene for adaptation by the encoder as follows: We define
a priority hierarchy for the involved objects in the scenes.
We semantically partition a scene into its constituent semantic
objects. We assign quantization and frame rate amounts to each
criticality class based on the gained semantics information.

IV. EXPERIMENTAL EVALUATION

This section describes our experimental setup, shows the
content bitrate adaptation performance, and analyses the effi-
ciency and runtime. We also present our method implementa-
tion details.

A. Experiment Setups

1) Dataset: this study uses the SemanticKITTI dataset
[11], a large-scale real-world point clouds dataset designed
originally for the semantic scene understanding task. It pro-
vides 22 consistent point-wise semantic annotated point cloud
sequences comprising around 43k scans, in other words, mul-
tiple object point clouds. The data originated from a rotating
automotive 3D LiDAR sensor covering the 360-degree field
of view. However, the object’s back-facing part is always
occluded. Figure 5 (A) depicts a birds-eye perspective of a
LiDAR scan. A variable number of urban objects surrounded
the invisible LiDAR sensor in the centre of the image. Each
urban object can be identified as one of 28 classes, such
as different types of ground, structure, vehicle, nature, and
human.

2) Model: recently, with the development of deep neural
networks, performing point cloud semantic segmentation has
significantly improved [23]. This study builds upon a state-
of-the-art semantic segmentation deep learning model named
SalsaNext [24]. The SalsaNext model can semantically label
each point of a full 3D LiDAR scan with a corresponding
class of what is being represented. Our proposed method will
use point-wise semantic prediction in real-time to enable the
adaptability of the point cloud content. We modify SalsaNext
open source code to input criticality labels instead of object la-
bels. Then we train the model from scratch with our criticality
labels set.

Method Version Parameters

Draco DracoPy 1.2.0 Compression level=1
QP = 15 / 12 / 10

G-PCC release-v14.0 geomTreeType=Octree
positionQuantisationEnabled=1 (True)
positionQuantisationEnabled=1 (True)
sequenceScale=0.100
codingScale=0.100
inputScale=1000
transformType=Prediction
srcUnit=Metre
srcUnitLength=1
outputUnitLength=0.001
neighbourAvailBoundaryLog2=8
outputBinaryPly=1 (True)

TABLE I
EXPERIMENT SETUP PARAMETERS

(A)

Scan Size in MB Crit. 3 Crit. 2 Crit. 1

SemanticKITTI Scans Mean 1.340 0.539 (-59%) 0.098 (-92%)
STD 0.076 0.151 0.069

(B)

Scan encoding latency
in ms (Draco)

Mean 42.83 17.77 (-58%) 3.17 (-92%)
STD 3.71 5.02 2.80

Scan decoding latency
in ms (Draco)

Mean 12.83 5.36 (-58%) 0.70 (-94%)
STD 2.39 2.09 0.78

(A) shows the resulting scan size in MB used in the experiments under different
levels of criticality.
(B) shows the encoding and decoding latency time in milliseconds per scan with
Draco [6] compression.

TABLE II

3) Metrics: the feasibility and effectiveness investigation
takes the form of a case study of exchanging automotive
point cloud data. The evaluation of the proposed method
considers two aspects: (i) the communication cost metric is
defined as the average data volume exchanged between two
nodes in megabytes per scan, (ii) data processing latency in
milliseconds per scan.

4) Baseline Approaches: we assess the performance using
the metrics mentioned above and compare our method against
the baseline that encodes the scans without considering content
semantics. Two common point cloud encoding mechanisms,
Draco1 and G-PCC2, are used in our experiments. Draco and
G-PCC experiment setup is summarized in Table I.

5) Criticality Level Settings: since the dataset has a known
number of object classes, we create a three levels hierarchy,
i.e., criticality levels, based on object relevance. This is ex-
emplified by objects with the highest relevance to be shared
with other vehicles, such as cars and pedestrians, which fall
under criticality 1. Stationary objects like sidewalks are less
critical and fall under criticality 2. The last critical level,
i.e., criticality 3, includes all the other object classes. Figure
6 illustrates these criticality levels in a priority hierarchy.
Each criticality level includes the previous one; for example,

1https://github.com/google/draco
2https://github.com/MPEGGroup/mpeg-pcc-tmc13

https://github.com/google/draco
https://github.com/MPEGGroup/mpeg-pcc-tmc13
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Fig. 6. By using the object’s level of dynamicity in an automotive scan, the
related objects’ priority can be ranked in a hierarchy.

criticality 2 contains the classes of criticality 1 besides its
object classes. We attach one of the three criticality levels to
each object class and use this as the relevance indicator. As
a visual validation, Figure 5 (C) shows a scan after applying
adaptation with only objects belonging to critically 1. This
can lead to significant bandwidth saving under the assumption
that removing less relevant objects does not compromise the
intended task. Therefore, as can be seen in Figure 7, it is
apparent that each semantic group of points within a scan
requires different bandwidth.
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Fig. 7. Enable point cloud sequence adaptability by applying semantic
segmentation. Allowing each cumulative semantic group of points to require
different bandwidth.

B. Evaluation Results and Comparisons

In the experimental study, we apply our approach to se-
quence number 8 from the SemanticKITTI dataset. This
sequence has 4071 scans. On average, the scan size is 1.34
megabytes, with a standard deviation of 76 kilobytes. A
summary of the scan size and the encoding and decoding
latency time (LT) for each criticality group are shown in Table
II.

1) Bandwidth Savings: Our approach reduces the trans-
mitted point cloud sequence bitrate by enabling different
frame rates or allocating different amounts of bits to scan
points according to the assigned criticality level of the scan
points. Compared to a baseline scenario where the scans
are compressed with the same frame rate and a quantization
parameter. We start by showing the bandwidth saving that can
be achieved by applying different frame rates in comparison

to a baseline with a fixed frame rate. In Figure 8, we plot
the bitrate achieved when the frame rate is equal to 10 for all
points and when the frame rate is equal to 10, 5, and 2 for
criticality 1, 2, and 3 points, respectively. The bitrates of the
transmitted scans throughout the three groups and the entire
stream have significantly decreased, as seen in the figure.

0 100 200 300 400
Time (s)
FPS=10

0
2
4
6
8

10
12
14
16
18
20
22

Ba
nd

wi
dt

h 
(M

Bi
t/s

)

0 100 200 300 400
Time (s)

FPS=10,5,2

C1 Stream
C2 Stream
C3 Stream
Jointly Stream

Fig. 8. Bitrates savings by adopting frame rates 10, 5, and 2 for criticality
1, 2, and 3 points, respectively, against fixed frame rate for all points.
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Fig. 9. Bitrates savings by adopting quantization parameters 15, 12, and
10 for criticality 1, 2, and 3 points, respectively, against fixed quantization
parameter 15 for all points.
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Fig. 10. Bitrates savings by adopting frame rates 10, 5, and 2, and quantization
parameters 15, 12, and 10 for criticality 1, 2, and 3 points, respectively, against
fixed frame rate and quantization parameters for all points.

Next, we show the bitrate savings achieved by applying
different quantization levels per criticality points compared to
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a baseline with a fixed quantization parameter for all the scan
points. In Figure 9, we plot the bitrate achieved when the
quantization parameter is equal to 15 for all points and when
it is equal to 15, 12, and 10 for criticality 1, 2, and 3 points,
respectively. The figure shows a significant data reduction in
the bitrates of the transferred scan’s overall stream. We next
show in Figure 10 the bitrate savings achieved by applying
different quantization levels and frame rates per criticality
points in comparison to a baseline with fixed quantization
parameter and frame rate for all the scan points. The figures
show that content-aware adaptation can achieve bitrates saving
from 65% up to 82% compared to classic Draco baseline.

2) Efficiency Gains: It is, of course, possible that the re-
duction of data can be translated to improvements in encoding
and decoding latency time. We show the computational re-
quirement reduction that can be achieved by applying different
frame rates for criticality 1, 2, and 3 points compared to a
baseline with a fixed frame rate for all points. In Figure 11,
we plot the encoding and decoding latency required by two
common point cloud encoding mechanisms, Draco and G-
PCC, under different frame rates. The figure shows that the
adaptive frame rate performs better than the baseline with a
fixed frame rate.

We should point out that the average SalsaNext inference
time per scan is 4560 milliseconds and 36.19 milliseconds on
CPU and GPU, respectively.

3) What About Quality?: To illustrate the consequence of
our adaptations on the scan’s quality, we estimate the quality
using PSNR throughout our adaptations. We used a quality
measure tool3 by MPEG that determines objective PSNR for
the provided original and modified point clouds.

3https://github.com/MPEGGroup/mpeg-pcc-tmc2

Although the quality for high criticality points counts the
most, it remains important to maintain good quality for less
relevant points. We suggest a simple technique that may
be applied at the receiver side to mitigate the quality loss
resulting from a reduced frame rate. The key idea is to
compensate for the quality loss in the reduced frame rate scans
by introducing in-between frames, which can be created by
finding a transformation that estimates the positions of the
points between two actual frames using the relative position
and orientation of the LiDAR. The SemanticKITTI dataset
contains information on the LIDAR’s relative location and
orientation. The position and orientation of the LiDAR, which
may be piggybacked to the higher criticality frames, have
minimal impact on the bandwidth and computing cost.

In Figure 12, we plot the average PSNR measurements
achieved by the entire point cloud sequence under differ-
ent adaptations. The figure shows that the overall quality
(estimated by PSNR) stayed relatively high because of our
adaptations.

C. Implementation Details

For the model implementation, Python 3.7 and PyTorch
1.1 were used. The training was performed on a machine
running Ubuntu 18.04 with two NVIDIA RTX 2080 GPUs
and an Intel Xeon Silver 4112 CPU. The model inference
was executed on a Windows 10 based system on a single
RTX 3080 Ti in combination with an AMD Ryzen 7 5800X
CPU. The architecture is mostly based on SalsaNext. For our
use case, we reduced the batch size to a value of six and
disabled the KNN post-processing. Also, the original label
configuration was replaced with criticality labels instead of
object labels. Then, training was carried out over 150 epochs
with an initial learning rate of 0.01 using Stochastic Gradient
Descend. Finally, for the LiDAR point cloud visualizations,

https://github.com/MPEGGroup/mpeg-pcc-tmc2
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we leveraged the API for SemanticKITTI4. All scripts to
reproduce the results of this paper will be made publicly
available on GitHub5.

V. CONCLUSION

In most point cloud content exchange scenarios, a small
part of the point cloud can be prioritized instead of trans-
mitting the entire data. Based on that idea, we developed an
approach to transmit the prioritized objects with enhanced
quality relative to the rest of the objects. Our work aims
to explore and evaluate object-related information’s effective-
ness in facilitating adaptation in multiple object point cloud
content streaming, which is crucial for the seamless delivery
of these objects under dynamic environmental conditions. In
this work, we evaluate our approach with SemanticKITTI
scans, showing how content awareness enables the adaptability
of point cloud content delivery. This includes predicting the
objects’ semantics, which is in turn used for estimating each
object’s importance in the transmitted scan. The results show
that our approach leads to improved bandwidth and coding
performance compared to a situation without awareness of the
content.
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