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Abstract—Large-scale packet queueing and scheduling is the
basis for today’s Quality of Service (QoS) in computer access
networks, especially to achieve guaranteed high throughput and
low latency. The throughput of a single network function, imple-
menting the QoS functionality for a large number of customers,
is in the range of hundreds of gigabits or even more. Therefore,
a good performance of the underlying hardware is mandatory.
While highly-performant fixed-function ASICs offer sufficient
functionality for most data center use cases, as of today, they
cannot support all functionality required for access networks,
including QoS-aware packet queuing.

In this paper, we first analyze mobile and residential In-
ternet access requirements from an Internet service provider
perspective, focusing on the QoS-aware packet queueing needs.
Considering this analysis, we present a universal and generic
FPGA design for high-performance packet queueing and schedul-
ing. Our evaluation results show that FPGAs can be used to
implement a deterministic QoS packet queueing system with high
performance. This concept can extend today’s programmable
networking ASICs with the desired functionality as an offloaded
“sidecar”.

Index Terms—FPGA, Network Function Offloading, QoS,
Queueing, Traffic Shaping, AQM

I. INTRODUCTION

Computer Networks are the basis for almost every digital
application and have become integral to daily life. As a
consequence, the underlying networking technology has been
subject to many improvements over the last decades.

The most important Quality of Service (QoS) metrics
in computer networks are throughput, latency and jtter. To
fulfill them deterministically, network functions within the
data plane, responsible for forwarding packets within the net-
work, are typically built with Application Specific Integrated
Circuits (ASICs). The control plane, a co-located software
implementation, manages these ASICs.j

With the introduction of Software Defined Network-
ing (SDN) concepts, e.g., the OpenFlow protocol [1], the
Interface between ASIC and control plane was opened to
program the ASIC’s flow tables within the capabilities of the
fixed chip pipeline.

However, bringing innovation into networking switches with
fixed-function ASICs and SDN is still very expensive, and
development cycle times are high due to the nature of chip

manufacturing. Especially for niche applications requiring
only a few thousand chips, it is almost impossible to facil-
itate this with the latest silicon manufacturing technologies
fulfilling current and future networking standards, i.e., up to
800 Gbit/s Ethernet.

To enable such niche functionality and to increase the
flexibility in data centers in general, programmable packet
processing chips were introduced in the last decade [2]. These
chips still have an ASIC-like internal architecture; however,
they provide a pipeline with generic functional blocks tai-
lored for packet processing. A compiler can connect these
blocks with some limitations and these programmable network
switches can achieve a similar performance as their non-
programmable predecessors. With the domain-specific and
open-source P4 programming language [3], programmable
ASICs can fulfill most requirements of today’s networks. Thus,
the most common data center functionalities and many niche
applications can be implemented with the same reconfigurable
networking chip, reducing innovation costs and time.

However, the supported functionality of these programmable
and reconfigurable ASICs, tailored for packet header pro-
cessing and high throughput in data centers, is still limited,
and not all networking applications can be implemented. One
such application is massive packet queueing and scheduling.
For Internet service providers, queueing is of tremendous
importance at the termination node for mobile and residential
customers, e.g., in 5G deployments, where advanced QoS
mechanisms must be applied in networks while maintaining
a high end-to-end performance [4].

For example, each customer’s traffic shall be separated and
treated independently without being affected by the network
usage of other customers. For that, a huge number of queues
and advanced scheduling mechanisms must be implemented in
hardware, which is not feasible with most existing chips. Exist-
ing solutions for massive queueing mainly utilize proprietary,
special-purpose chips, and they come along with high prices,
limited functionality, and slow innovation cycles because they
are designed for niche markets only.

In this work, we address the challenge of replacing tailored
chipsets with fully programmable off-the-shelf FPGAs, taking
the viewpoint of a Tier 1 Internet access service provider,
focusing on FPGAs for the QoS-functionality that available
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fully programmable chipsets cannot provide as of today. First,
we provide an overview of the essential requirements of QoS
processing chips in Section II. Second, in Section III, we
present our adaptable FPGA design addressing these require-
ments. Following this, we present evaluation results showing
the viability of FPGAs for QoS applications in access networks
in Section IV. Last, we discuss approaches in related work and
conclude this work with a summary.

II. PROBLEM STATEMENT

In this section, we identify the requirements on packet
queueing systems for Internet service creation based on our
own experience as a service provider and from related work:

Number of Queues: Internet service providers typically
use different QoS classes for different services, e.g., Voice
over IP (VoIP). Each class is mapped to one queue for
each connected customer to separate customers and different
services of one customer. The number of QoS classes per
customer can vary between 1 and 8, depending on the service
provider architecture [5]. Further, the number of customers
terminated by a single termination node is typically in the
range between 10, 000 and 35, 000 customers. Assuming four
QoS classes per customer, up to 140, 000 queues are required.

Throughput: We expect up to 100 Gbit/s Ethernet at next
generation termination nodes. Thus, this should be supported
by the FPGA design as well, ideally at multiple ports simulta-
neously. Assuming 1314 bytes average packet size [6], this
leads to an average packet rate of ~ 10Mpps.

Counting: For legal, accounting, and network monitoring
reasons it is required to count the number of packets and
bytes for each customer or even with a higher granularity,
e.g., for a specific service used by a customer. Depending
on the concrete requirements, between 1 and 12 counters per
customer are required before and after the queueing system.
Note that these counters can be implemented either within the
queueing system, i.e., an FPGA, or in a preceding/following
programmable network switch.

Rate-Limiting: The packet queueing system is responsible
for limiting the dequeueing rate of each queue according to
its configuration, e.g., 100 Mbit/s for a 5G mobile user.
As oversubscription of available resources is quite common
in Internet access networks, hierarchical schedulers might be
needed in addition to the per-customer limiting. For example,
the sending rate should not exceed the maximum throughput
of a 5G base station. In case of reaching a hierarchical
limitation, flows with higher priorities, e.g., VoIP traffic, shall
be prioritized over best-effort traffic of other customers. This
scheduling requirement is often referred as hierarchical QoS.

Further, in order not to overload the access network com-
ponents, the rate-limiting should not cause packet bursts, i.e.,
scheduling a bunch of packets at once and then having an
extended wait period than scheduling each packet individually.

Further, in mobile networks a handover can occur from one
base station to another. In this scenario, the QoS system must
buffer all packets during this handover until the customer is
reconnected to the new radio base station. For that, queues
must be able to be used as a gate, i.e., the rate of the queue
is set temporarily to 0.

Even though the previously mentioned examples focus on
mobile access networks, these requirements can be applied
similarly to residential access networks, except for handovers.

Active Queue Management (AQM): If the number of
arriving bytes is constantly higher than the configured de-
queueing rate, packet loss is unavoidable. However, the
decision when and how the queueing system is dropping
packets can strongly affect the end-to-end throughput and
latency of network flows passing through. Active Queue
Management (AQM) algorithms are dropping packets in an
“intelligent” and network congestion control aware manner to
ensure high throughput and comparably low latency at the
same time [7], [8]. This is of tremendous importance for
Internet service providers to offer high-quality products to their
customers. As FPGAs provide the flexibility of implementing
such algorithms in the data plane, an appropriate AQM should
manage the queue level in the desired design.

Modularity and Reusability: Requirements on QoS sys-
tems vary from country to country due to regulatory laws,
and between the mobile and residential access scenarios.
Even though FPGA bitfiles can be easily exchanged, the
implementation should be as reusable as possible. By that,
e.g., only the hierarchical scheduler behavior can be adjusted,
or the packet counting functionality is parameterized.

III. DESIGN AND IMPLEMENTATION

In this section, the design of the FPGA-based QoS system
is presented. First, we provide an overview of all components,
including the data and control flow. Second, we present
substantial parts of the design in detail. All components are
created in a modular design, allowing the replacement of only
a single component to fulfill the needs of another use case.

A. Overall Design

Figure 1 depicts the main components of the design and
their interfaces. Different clock domains and peripheral func-
tionality are not shown. Note that the design contains only
vendor-specific IP Cores for Ethernet, PCle, and DDR4 mem-
ory access and could, therefore, be migrated to a platform of
another FPGA vendor.

First, the left-hand side 100Gbit/s IP Core receives the
incoming packet and provides it as a 512-bit AXI4-stream [9].

Second, the classifier determines a queue id (gID)
based on the packet. There are several ways to classify packets,
e.g., based on a lookup-table matching one or multiple packet
header fields. In this work, we assume a preceding network
switch classifying the packets and handing over the queue ID
as the first 32 bits of the packet. The classifier removes
this queue ID before handing over the actual packet to the
rx—handler.

Packet Storing: As the packets might be queued for a
longer time, e.g., up to 100 ms, they are stored in external
memory, while only the physical memory address and the
packet length are stored inside the FPGA. Internal memory,
i.e., SRAM-based memory cells, do not provide sufficient
capacity to store a large number of packets. For example,
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Fig. 1: Modular FPGA design for (H)QoS networking functionality. Packets are received and sent over 100G-Ethernet and
stored in one or two DDR4 memory attached to the FPGA as well as in internal SRAM memory (configuration dependent).

an average queueing delay of 10 ms at 100 Gbit/s requires
125 MB buffer memory.

For this, a central memory allocation unit (malloc) pro-
vides a physical memory address to the rx—handler. The
incoming data stream is written on this memory address
via a memory abstraction layer. This layer allows a simple
replacement of memory technologies, e.g., DDR4 with high-
bandwidth memory (HBM). After storing the packet data,
the rx-handler passes the packet metadata information,
including the queue ID, to the queue-memory.

To avoid waiting situations or even deadlocks between
rx-handler and queue-memory, a FIFO queue is used.
This queue allows asynchronous processing in both modules
by buffering up to four packet metadata to be enqueued.

The queue-memory stores the packet’s address, length,
and queue ID in internal data structures. Packets are separated
in different FIFO queues, identified by the rx—handler as
an ID. The internal logic of the queue-memory is described
later in Section III-C.

Packet Transmission: For transmitting a packet, the
gqueue-memory provides any non-empty queue ID and the
queue length to the scheduler. Based on this information
only, the scheduler determines if the top packet in this queue
is allowed to be sent or not. While the queue ID is required for
rate-limiting, the queue length is required by the Active Queue
Management (AQM) module, which will be introduced later.
Only if the scheduler allows the transmission of the packet,
the packet’s physical address and its length are deciphered
and provided to the scheduler, which passes through this
information to the t x-handler. Avoiding unnecessary early
lookups of packet meta-information enhances fast scheduling
decisions. For that, the rate limiter always assumes packets
with the same size as the Maximum Transmission Unit (MTU)
at decision time but the actual packet size when updating its
state to prevent approximation errors.

While passing through the meta-information or declining
the packet, the scheduler instructs the queue-memory to

continue searching the next non-empty queue. Parallel to this,
the scheduler triggers an attached counter module with the
queue ID and packet length, holding each queue’s packet and
byte counters. Last, the tx-handler requests the original
packet from the external memory and sends the packet out on
an Ethernet Port via an AXI4-stream interface.

B. Memory

As mentioned before, we utilize a memory abstraction layer
to abstract the read and write operations from and to the
memory from the underlying hardware. One benefit of this
memory abstraction layer is the possibility of simultaneously
utilizing multiple external and internal memories in a single
address range. This is highly beneficial, as our experiments
have shown that a single DDR4 memory supports only up to
60 Gbit/s to 80 Gbit/s simultaneous read and write requests,
due to the shared chanel for reading and writing, depending
on the FPGA configuration.

Our proposed design utilizes two external DDR4 memo-
ries, each having 256 MB, and an FPGA-internal SRAM-
based block memory of 2 MB size. The DDR4 memories
are aligned in 2048 byte blocks and the internal SRAM
memory in 512 byte blocks. Each of these three memories
has its own memory allocation unit, combined by a round-
robin arbiter, providing free addresses to the rx-handler.
However, physical addresses located in the SRAM memory
address space are only used for small packets, e.g., smaller
than 512 byte. Note that if no memory slots in the internal
SRAM memory are available, small packets can still be stored
in the external DRAM, but the overall performance will be
slightly worse. This has two advantages: First, smaller packets
belong more often to a high-priority traffic class [6] and are
typically scheduled faster, implying a shorter storage period
in the FPGA. Second, short read and write bursts on the
external DDR4 memory lower the total bandwidth of the
memory due to the physical limitations of DRAM. The three
memories are combined in one 32-bit address range, as shown
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Fig. 2: FPGA-internal data structure for packet queueing.

in the top left of Figure 1. Further memories can be added
similarly if needed. By that, they can be accessed in the
same way; only the memory allocation must be aware of
the heterogeneous memory. To increase the throughput by
overcoming long waiting periods, we perform multiple AXI4
read and write requests with different IDs in an overlapping
manner. For the rx-handler, we use up to 8 shared IDs
in parallel; for the tx-handler, we use up to 12 IDs in
parallel, 4 IDs assigned to each memory.

Through the usage of multiple memories, the order of
packets may be changed, as memory B (e.g., SRAM) might
have a shorter access time than memory A (e.g., DDR4).
However, the order of packets in different customer queues
does not pose a problem from a network perspective.

C. Data Structures for Packet Queueing

In this section, the internals of the queue-memory are
discussed. Note that this module implements a large number
of FIFO queues, e.g., 140,000 as mentioned before.

In general, the queues are implemented as a linked list,
consisting of a pointer to the first and last descriptor entry, as
shown in Figure 2. Further, each queue data structure holds
the current length of the queue in bytes. The packet descriptor
entries are stored in the descriptor_mem. For each new
packet, a new entry in the descriptor_mem is created. This
descriptor contains the packet information, i.e., the address and
length of the packet. Further, it contains a pointer to the next
descriptor entry in the queue, which is null for the last packet
in each queue. In the example of Figure 2, queue nr. 2 consists
of three packets with a total length of 2007 bytes.

When a new packet push request enters the module, a
free slot in the descriptor_mem is required. This slot
is provided by an additional memory allocation unit, called
descriptor_valid_memnm. For each entry a one bit infor-
mation is stored, indicating if the entry is used or free. Sim-
ilarly, the memory allocation units for the external memories
are implemented.

The last data structure for implementing the queueing
behavior is the queue_valid_mem. Here, for each queue,
a single bit indicates if at least one packet is enqueued in this
queue or not.

The enqueueing process is controlled by a Finite State
Machine (FSM), which pushes the packets into the correspond-
ing queue and updates the aforementioned memories. If the
maximum queue length is reached, the current packet gets
dropped (called “taildrop”), and the malloc unit is notified
to free the memory address of the packet.

Listing 1 depicts the pseudocode of inserting an incoming
packet into the previously introduced data structures repre-
senting the queueing system. First, in Line 8 to 11, a new
descriptor entry for the new packet is created. Following, if
the new packet will be the first one in this queue (Line 13),
the first pointer of this queue is set to this entry (Line 15)
and the queue is set to be non-empty (Line 17). Otherwise,
the next pointer of the old last entry in the linked list will be
set to the newly added packet (Line 19). In Line 20, the last
pointer of the queue is updated to the new tail entry, and in
Line 21 the total queue length is increased by the size of the
inserted packet.

This behavior is implemented as a four- or five-state FSM
(depending on the clock frequency and the number of queues).
In addition to this enqueueing logic, a second FSM is re-
sponsible for dequeueing packets in a similar way. To avoid
inconsistencies, a lock mechanism between the push and pop
FSM is required. This ensures that both FSMs never operate
on the same memory addresses simultaneously.

The queue_valid_mem is used for scheduling packets,
i.e., identifying non-empty queues. While having a data width
of 32 bits, in each clock cycle, 32 queues are checked to
be non-empty by a single # 0 comparison. Accessing the
queues_mem is only required if the scheduler decides to
send a packet from the respective queue. From our past expe-
rience as a Internet service provider, most queues are empty
most of the time. Therefore, this fast queue search mechanism
improves the overall system performance significantly.

D. Hierarchical On-demand Token Bucket

One of the design goals was the capability to replace a single
module for different scenarios, mainly the scheduler*®
module. As part of this work, we implemented three different
scheduler designs:

The no-scheduler module accepts all packets proposed
by the queue-memory. It is used for benchmarking the
maximum throughput of the system.

func enqueue (packet p, int qID):

//check configured max. queue length
3 if (queue[qID].length > MAX_QUEUE_SIZE) :
4 // drop the packet
5 malloc. free (p.address);
6 return ;
// create descriptor_mem entry
8 descriptor = new descriptor();
9 descriptor.address = p.address;
10 descriptor.length = p.length;
1 descriptor.next = Oxffffffff;
12 //update queues_mem
13 if (valid_memory[qID] == 0):
14 // special case: push of first
15 queue[qID]. first = descriptor;
16 //'set queue to be non—empty
17 valid_memory[qID] = 1;
18 else:
19 queue[qID].last.next = descriptor;
20 queue[qID].last = descriptor;

// null

packet

21 queue[qID].length += p.size;

Listing 1: Simplified behavior of the enqueueing FSM.
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The simple-scheduler enforces rate-limiting for each
queue based on a token bucket mechanism. No dependencies
between queues are considered. For example, similar sched-
ulers are used in today’s 4G/5G networks.

The hierarchical-scheduler provides L layers of
token bucket rate-limiters to fulfill the needs of residential
Internet access creation, as shown in Figure 3. Only if the
scheduling of a packet does not pose a problem for all
hierarchical layers, the packet will be sent.

The interface between scheduler and queue-memory,
depicted in Figure 3, can be divided into four phases to
ensure fast scheduling decisions: 1) The queue ID is pro-
vided to the scheduler, deciding if the packet should
be sent. In addition, an Active Queue Management (AQM)
algorithm can be consulted. 2) The scheduler notifies the
queue-memory if the next packet of the indicated queue
should be sent or not. 3) If the packet should be sent, the
queue-memory dequeues the packet metadata, including its
length and physical memory address. This information is then
forwarded to the tx—-handler. 4) Last, the scheduler
informs the queue-memory to continue searching the next
non-empty queue from a given starting queue ID. This is useful
if a certain queue range, e.g., 0 — 4095, is not allowed to send
a packet due to hierarchical restrictions, and the search should
continue with queue ID 4096.

Frequently updating the state of many token buckets is
impossible. Thus, a token bucket value bucket;,q and a
timestamp ¢; 45 Of the update are stored for each queue.
In addition, a rate value rate; stores the number of tokens
provided per time for each queue. Only if a packet may
dequeued, the token value is updated as shown in Equation (1):

bUCketi,new = bUCketi,old + (tnow - ti,last) - rate; (1)

E. Active Queue Management

One advantage of FPGAs is the customization of logic
designs for specific purposes. As the primary use-case of
this system is Internet service creation, we could integrate
a well-suited Active Queue Management (AQM) algorithm
into the design as part of the simple-scheduler. We
chose one of the most prominent algorithms, CoDel [10], to
be implemented.

This algorithm requires the queueing delay of the packet
as an input. One approach would be to store a timestamp for
each packet at enqueue time in the queue—memory requiring
significantly more memory resources. Thus, we calculate the
current queueing delay from the fill level of the queue and

the rate-limiter configuration. By that, no additional per-packet
state is required.

In addition, the CoDel algorithm requires a binary per-queue
state, a 31 bit time register, and a 16 bit counter, leading to a
memory width of 48 bit. The algorithm itself is implemented
as a simple state machine, following its specification [10].

The output of the AQM is a two-bit information, either
dropping or sending the packet. A central state machine in
the simple-scheduler combines this output with the
rate-limiter decision and notifies the queue-memory
and tx-handler accordingly.

F. Control Plane Interface

The PCle control plane interface allows for the writing
of configuration memories and the reading out of counter
values. As no high performance is needed, we build upon the
lightweight wishbone bus protocol.

1V. EVALUATION

In this section, we investigate the performance of the
presented FPGA design. All results are measured on a Xilinx
Alveo U200 FPGA running at 220 MHz clock frequency for
the queueing logic and 300 MHz for the DDR4 memory
controllers. All evaluated designs are routed without any
timing violation.

The measurements are performed with the PASTA measure-
ment framework [11], which measures latency and packet loss
of each packet up to 100 Gbit/s link speed. To achieve the
highest possible time accuracy, i.e. below 5 ns, the input rate
was limited to 99.9 Gbit/s in all tests. All latency mea-
surement results are corrected by the measurement overhead,
i.e., a fixed and constant latency caused by the measurement
equipment and propagation delay of the used fiber optical
cables. Therefore, the presented results describe only the time
a network packet resides inside the evaluated FPGA design.

If not otherwise stated, each measurement run is 10s long
and consists of multiple millions of captured packets.

A. Throughput and Latency

To measure the theoretical maximum throughput and min-
imal latency, we instantiated the no-scheduler in the
FPGA design with two DDR4 memory instances, as shown in
Figure 1. This scheduler implementation accepts all packets
immediately after being notified from the queue_memory
and forwards them to the tx-handler. By that, no queue
should be built up in the FPGA, and the base latency caused
by receiving and sending packets through the DRAM can be
measured. Further, the maximum achievable throughput can
be determined.

The packet size of the following measurment results was
1474 bytes, a realistic packet size of best effort downstream
flows in Internet access networks.

The plots in Figure 4 depict the measured latency time series
for a system with 2048 and 262, 144 queues, respectively. It
can be observed that a higher number of queues causes a
higher jitter in latency. This jitter is caused by the round-
robin scheduler, which searches for non-empty queues. In one
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Fig. 5: Queueing latency distribution depending on the packet
size and utilized memory technology at 100 Mbit/s.

clock cycle, concrete 4.5 ns at 220 MHz, 32 queues can be
scanned. Assuming 262, 144 queues, this would cause a jitter
of 8192 clock cycles or 36.864 ws. In the case of 2048 queues,
a theoretical jitter of 288 ns by the RR-scheduler is expected.
However, the measured jitter is around 1.2 us. We suspect that
the remaining is caused by the non-constant behavior of DDR
memory access and micro congestion in the FPGA design.

We experienced neither packet loss nor packet corruption for
large packets with a size of 1474 byte. However, disabling one
of the two DDR4 memories lowered the maximum throughput
to around 70 Gbit/s at the same packet size.

Additionally, smaller packets increase the packet per time
rate but lead to packet loss at high loads. This fact is caused by
the internal architecture and the performance characteristic of
DRAM memory. For small packet sizes, the memory perfor-
mance of DDR4 decreases due to the nature of DRAM [12].
To tackle this, we introduced in Section III-B the possibility
to store small packets in internal SRAM. For 500 byte sized
packets and a single SRAM, we observed similar throughput
performance characteristics compared to utilizing two external
DDR4 memories. Also, we detected 0.6 s less jitter than with
packets of the same size stored in external DDR4 memory as
a side effect. Figure 5 shows the measured latency distribution
dependent on the packet size and used memory technology. In
all cases, the input rate into the queueing system was limited
to 100 Mbit/s.

First, it is noteworthy that the histogram of SRAM memory
is tighter distributed than for DDR4 memory. Second, the
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Fig. 6: Inter-packet arrival time for a configured rate of
100 Mbit/s, 1000 byte packets and 262144/2048 queues with
the simple scheduler and no AQM.

latency for 250 byte packets is more widespread than for
500 byte packets. This can be explained by the constant bytes
per second input rate which doubles the rate of packets per
second when the size is halved.

We conclude that for a mixture of big and small packets,
e.g., VoIP and normal Internet traffic, the total system per-
formance can increase enormously by an additional internal
SRAM memory. Furthermore, applications with strong jitter
requirements can benefit from that.

B. Scheduler Verification

The rate-limiter should schedule packets of each queue with
the assigned rate. In addition, it should cause as little packet
bursts as possible. A perfect rate-limiter would always send
only a single packet and the time between two packets is
constant if the packet size is constant. A limiter tending to
microbursts would send many subsequent packets in a row,
and the waiting time until the next packet burst starts would
be much longer in order to comply with the configured rate.

To verify the rate-limiter, we configured a rate of
100 Mbit/s in the FPGA and sent 1000 byte test packets with
> 200 Mbit/s to ensure a permanently filled queue. Figure 6
shows the measured results for an FPGA design with 2048
and 262,144 queues. From this, we can deduce that always
only a single packet was sent at one point in time and no
micro-bursts occurred. In contrast to an ideal rate limiter, the
time between two packets is not perfectly constant. This is
caused by the time the scheduler requires to iterate over all
queues, i.e., 64 clock cycles for 2048 queues. By that, small
microbursts are unavoidable if the configured rate is not integer
divisible by the scheduler period.

C. Active Queue Management

Last, the functionality of the integrated Active Queue Man-
agement (AQM) algorithm will be investigated. Note that this
implementation is only one example to show the integrability
of AQMs in the proposed FPGA design. In Figure 7 the mea-
sured latency over time is shown for the FPGA implementation
of the CoDel-AQM, which exhibits a similar behavior as the
Linux kernel reference implementation. This behavior results
from controlled packet dropping in the FPGA and the rate
adaption of the TCP congestion control as a consequence
of the detected packet loss. The actual latency falls below
the desired value of 5 ms periodically, which is the expected
behavior.
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Fig. 7: CoDel Active Queue Management (AQM) comparison
for three concurrent TCP flows. The FPGA implementation
shows a similar behavior as the Linux Kernel reference im-
plementation of CoDel.

TABLE I: Resource utilization for the Xilinx Alveo U200
FPGA. All configurations have a single 100 Gbit/s Ethernet
IP core for receiving and sending packets.

Configuration || LUT FF BRAM URAM
2048 queues, 16384 buckets, 36,463 51,104 130 6
1x DDR4, no-scheduler || (3.1%) (2.3%) (6.0%) (0.6%)
2048 queues, 16384 buckets, 36,775 54,445 139 8
1x DDR4, simple-scheduler || (3.1%) (2.3%) (6.0%) (0.8%)
2048 queues, 16384 buckets
> ’ 37,178 54,596 130 9
1x DDR4, smple—schedAlgijl, (3.1%) (2.3%) (6.0%)  (0.9%)
2048 queues, 16384 buckets, 65.373 $8.797 157 73
2x DDR4, 1x SRAM. || w500 380y (7.3%)  (7.6%)
simple-scheduler, AQM -70 70 270 070
262144 queues,
131072 buckets, 66,576 89,108 173 416
2x DDR4, 1x SRAM, || (5.6%) (3.8%) (8.0%) (43.3%)
simple-scheduler, AQM

D. Resource Utilization

The resource utilization of the FPGA depends strongly on
the configuration of the design. Table I shows the numbers for
five exemplary configurations after synthesis for the Xilinx
Alveo U200 FPGA. For all configurations, the number of
counters is equal to the number of queues.

First, it is noteworthy that internal SRAM memory (BRAM
and URAM) is the most utilized resource. This utilization is not
surprising as the design consists of huge memories for queues,
packet pointers, and counters. Second, we would like to point
out the capability of scaling. For some use cases, having only a
few thousand queues and less total buffer capacity is sufficient,
e.g., Internet service creation in sparsely populated areas. Such
a configuration can also be built with low-budget FPGAs. The
utilization of boolean Lookup Tables (LUT) and Flip-Flop
memories (FF) is neglectable in all investigated configurations.
We can summarize that the limiting resource is internal SRAM
memory. The maximum utilization of this resource is limited
by the signal routing constraints of the FPGA compiler. The
last example represents the upper bound configuration, i.e.,
which is feasible for the synthesis tool, at the FPGa clock
frequency of 220 MHz.

E. Energy

To assess the energy consumption of the presented FPGA
design, we measured the electrical interface input power of

TABLE II: Measured energy consumption of the FPGA de-
sign (maximum configuration: 262k queues, three memories,
AQM) in idle mode and under 99.9 Gbit/s load in a server.

idle 99.9 Gbit/s A
Server | 7T5W
Server + FPGA | 98W 108W 10W
A | 23W

a server with and without an integrated FPGA. The results
are as shown in Table II. The measurements were performed
with a smart power outlet with an accuracy in the range of
1% as indicated by the vendor NETTO. In both scenarios, the
server (Dell R740 with an Intel Xeon Silver 4110 CPU) does
not execute any processes besides the underlying operating
system. In the scenario with an FPGA, we 1) measured the
energy power input while no packets are processed in the
design (idle), and 2) while forwarding 99.9 Gbit/s of packets
through the FPGA.

The results show that the additional power consumption
of an FPGA with the proposed design in idle is around
23 W, including all overheads. The additional variable power
consumption is 10 W at 99.9 Gbit/s.

Compared with the calculated energy consumption of the
synthesis tool, namely 10.5W, this is much higher due to the
several energy consumers despite the FPGA chip, i.e., FPGA
board overheads as well as the server system itself.

It is noteworthy that most energy is used to operate the
server holding the FPGA card and not the card itself. An
integrated design, i.e., into network switching hardware [13],
could strongly lower the total energy consumption. Never-
theless, the energy consumption of processing the packets in
software would be much higher. Depending on the concrete
software and FPGA implementation, we assume a factor
between 10 and 100 under load [14].

The results show that it is feasible from the energy per-
spective to integrate this or a similar FPGA design into
network switches as an additional QoS processor. Assuming
1,000 Gbit/s FPGA bandwidth distributed over two FPGAs,
we expect an additional power consumption of less than
230 W in idle and additional 100 W when operating at max-
imum bandwidth. Note that this is an upper-bound estimation
as we consider the idle FPGA power consumption to be linear
to the maximum throughput.

F. Control Plane Performance

At startup and runtime, the configuration of queues and
schedulers must be updated by the control plane to set each
customer state according to its subscription. Further, counter
values must be read by the control plane. For this, memory-
mapped I/O operations are performed, typically over PCle.

Table III shows the measured access times for 32-bit read
and write requests on the FPGA internal registers for different
scenarios. Each scenario was executed and measured 100 times
to be statistically significant.

First, we evaluated a local controller accessing the FPGA
directly through a simple I/O kernel module and via memory-
mapped I/0. Second, we started a local gRPC server, allowing
access to the FPGA via a simple API. This approach allows
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TABLE III: Measured control plane speed for sequential 32 bit
configure write and read requests on the PCle interface.

kernel memory gRPC gRPC
module mapped local remote
write 5.3Tus 1.25pus  270.4ps  14822us
std. dev. (w) 0.4615 0.22ps  49.84us 5154us
read | 11.11ps  5.67us  271.2pus  15010us
std. dev. (r) 2.40us 3.74ps  41.46us 6311pus

disaggregating data and control plane logic as suggested by
Software Defined Networking (SDN) concepts.

For the local controller, it is noteworthy that the overhead
of the context switches between controller and kernel lowers
the speed approximately by a factor of 4 in the case of writes
and by a factor of 2 for reads. Note that a kernel module is
not needed at all, as it would only be required for interrupt
handling and DMA transfers, which are typically not required.

Using gRPC significantly reduces read and write through-
put, especially in the case of a remote controller running
on a second server in a remote data center. This is caused
by the implementation, which executes read and write re-
quests sequentially and blocking. Therefore, remote controllers
should implement an API allowing parallel calls, write request
batching, and non-blocking operations.

Nevertheless, assuming a local gRPC control plane ap-
plication with non of the above mentioned optimizations, it
would be possible to set up 10,000 customer sessions in the
FPGA within 2.7 s. This exceeds the setup rates achievable
by common control planes in service provider environments
by more than an order of magnitude and thus will not act as
a significant bottleneck.

G. Discussion and Summary

Our evaluation results show that FPGAs are a viable so-
lution for massive packet queueing in computer networks if
off-the-shelf switching ASICs do not provide the required
functionality. The presented design, optimized to run at
100 Gbit/s link speed, provides sufficient performance and
could be instantiated multiple times on a single FPGA to serve
several Ethernet ports in parallel and to achieve a total higher
throughput.

While this work focused only on internal SRAM and
external DDR4 memory, the availability of novel FPGA chips
with integrated High Bandwidth Memory (HBM) opens up
new possibilities. For example, state outsourcing of unused
queues or counters might be possible.

Further, FPGAs allow the integration of advanced schedul-
ing and active queue management algorithms in the network
data path to ensure a high QoS level.

Last, we would like to mention the possibility of integrating
FPGAs into (programmable) network switches. Similar to
accelerator cards in data centers, this would provide a universal
and flexible platform allowing to describe almost any network
functionality while combining the benefits of FPGAs and
conventional programmable network switching ASICs.

V. RELATED WORK

The use of FPGAs for building network functionality has
been discussed in related work before. Naous et al. pre-
sented the first generation of the NetFPGA hardware and

project in 2008 as a universal platform for packet switching
research [15]. In addition to FPGAs, Shrivastav proposed in
2019 the novel concept of programmable Push In Extract Out
(PIEO) queues, which allows schedulers to be programmed
in hardware [16]. The PIEO concept can be embedded in
programmable switching ASICs without requiring reconfigura-
bility on the bit level (as it does on FPGAs). Utilizing FPGAs
for packet queueing and Active Queue Management (AQM)
was discussed by Sivaraman et al. in 2013 [17]. The authors
illustrate that FPGAs are well suited to implement many
different AQMs in hardware. Additionally, they state that there
is no single algorithm that fits the need of all scenarios, and
therefore, the reconfigurability of FPGAs is highly benefi-
cial. In accordance with this, Xu et al. proposed an AQM
implementation on FPGAs, tailored for datacenter networks,
allowing high throughput and no packet loss [18]. Further-
more, the feasibility of AQM algorithms on P4 programmable
networking switches, providing best-in-class performance, was
shown with some limitations [19].

Sanchez et al. have shown the viability of FPGAs for
advanced flow-based and QoS-aware network functions in
5G networks [20]. In our previous work, we proposed the
concept of offloading residential Internet access functionality,
except for massive packet queueing, on P4 programmable
switches [5]. Activities within the Telecom Infra Project (TIP)
are targeting an open platform for residential Internet ac-
cess creation, called “OpenBNG”, upon programmable hard-
ware [21], in which our work perfectly fits.

VI. CONCLUSION

Powerful systems are needed to fulfill the need for high
performance and deterministic packet queueing in Internet
service provider access networks and other scenarios. While
most commercial ASICs for packet switching, aiming at a data
center market, do not provide sufficient queueing capabilities,
FPGAs offer a promising alternative coming at scale and
reasonable power consumption.

In this work, we proposed an FPGA design running at
100 Gbit/s link speed with more than 200,000 queues. This
design provides sufficient memory capacity realized in external
DDR4 memory and the capability to implement complex
scheduling algorithms. Our evaluation results show the feasi-
bility of this approach and the desired performance character-
istics. In scenarios of up to 100Gbit/s, we could not observe
any unexpected packet loss or packet corruption. The measured
electrical power consumption clearly shows that this approach
is also highly energy efficient. The presented design is avail-
able as an open-source project to enable other researchers to
benefit from this project and its building blocks'.
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