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Abstract. After the electricity liberalization in Europe, the electricity
market moved to a more competitive supply market with higher effi-
ciency in power production. As a result of this competitiveness, accurate
models for forecasting long-term power consumption become essential
for electric utilities as they help operating and planning of the utility’s
facilities including Transmission and Distribution (T&D) equipments. In
this paper, we develop a multi-step statistical analysis approach to in-
terpret the correlation between power consumption of residential as well
as industrial buildings and its main potential driving factors using the
dataset of the Irish Commission for Energy Regulation (CER). In ad-
dition we design a hybrid model for forecasting long-term daily power
consumption on the scale of portfolio of buildings using the models of
conditional inference trees and linear regression. Based on an extensive
evaluation study, our model outperforms two robust machine learning
algorithms, namely random forests (RF) and conditional inference tree
(ctree) algorithms in terms of time efficiency and prediction accuracy for
individual buildings as well as for a portfolio of buildings. The proposed
model reveals that dividing buildings in homogeneous groups, based on
their characteristics and inhabitants demographics, can increase the pre-
diction accuracy and improve the time efficiency.

Keywords: Smart grid; Multiple linear regression; Time series models;
Random forests; Conditional inference trees.

1 Introduction

Load forecasting can be defined as the process of estimating the power consump-
tion needs of a specific geographical area in a certain point in time. It plays an
essential role in planning the facilities of electric utilities including Transmission
and Distribution (T&D) equipments in the demand side management, and in the
energy purchases by utilities as well. The accuracy and reliability of forecasting
models have a significant impact on electric utilities. On one hand, insufficient
power supply due to the underestimation of electricity demand may cause the
system to operate in a critical region where a total collapse of the system is
possible. On the other hand, the excess power supply due to the overestimation



of power consumption leads to high costs for operating too many power supply
units and as a result a drop in the investment due to extra energy purchases.

Previously, power utilities could predict the future consumption using statis-
tical metrics regarding economic growth such as the industrial growth index and
population statistics such as the growth index of residential buildings. Nowadays,
multiple power utilities can operate in the same area in which the customers have
different power suppliers to subscribe to and not only one supplier. This makes it
difficult for the power utilities to rely on the previously mentioned statistics such
as the economic and population growth indexes to predict future consumption.

To assist the future investments of power utilities, we need to provide an
estimation of the mean power consumption of current and new constructions
based on the historical consumption data and the different factors that affect
that consumption. A real-time measurements of residential power consumption
can be provided by the installation of smart meters in residential buildings. How-
ever, Germany for example will not follow the European Commission program
for 80% deployment of smart meters by 2020. Instead, it will adopt a phased
approach that will address its specific requirements around energy efficiency and
renewable energy integration. This fact triggers the need to design new models
which are capable of leveraging the smart metering technology and cope up with
the difficulties of integrating smart meters in nowadays networks.

In this work, we propose a new approach to overcome these issues by installing
smart meters in a representative subset of the population in a region. This subset
should cover the variety of domestic and small and medium enterprises(SME)
buildings. Then, by modelling the consumption pattern of the participants in
this trial, we can generalize the solution to predict the population’s future power
consumption. To estimate the long-term power consumption of a population, we
integrate the effect of time-independent factors such as building characteristics
and demographic features of inhabitants and time-dependent factors such as
weather conditions, workdays and holidays.

The paper is organized as follows: Section 2 gives an overview of related work
in the domain of power consumption forecasting. In Sect. 3, we introduce our
concept for the long-term forecasting of power consumption. Sections 4, 5 focus
on the long-term prediction model design while Sect. 6 presents the comparative
analysis and evaluation of the proposed model against RF and ctree. Finally,
Sect. 7 summarizes the paper and discusses future work.

2 Related Work

The problem of modelling and forecasting electrical consumption has been in-
tensively studied in the past decades. Long-term and medium-term forecasting
of power consumption are used by the utilities mainly for future planning and
maintenance purposes. A wide variety of models have been proposed for the
purpose of power consumption forecasting. They can be classified into five cate-
gories, namely averaging models [11],[13][12], regression models [2], [5], [10], [7],



[6], time series models [20], [16], artificial intelligence models [23], [15], [14], [19],
and hybrid models [18], [21].

Averaging models are characterized by their simplicity as they make their
prediction based on averaging the power consumption of similar points of time
horizon such as day, month, and year. They only require the historical con-
sumption information. S. Aman et al. presented in [1] an empirical comparison
between several prediction methodologies for short-term forecasting of power
consumption. In their first scenario, they have evaluated the Time of the Week
(ToW) averaging model using the 15-min interval load demand in a week cal-
culated as the average over all weeks. This simple model can be used to predict
the power consumption in a granularity of 15-min as the kWh value for that
interval.

More complex than averaging models, regression tree (RT ) models build
a decision tree to represent the non-linear relationship between the predictors
and the response variable. S. Aman et al. proposed a prediction model based
on regression trees to forecast the short-term power consumption of campus
micro-grids using indirect indicators [2]. In this work, the authors classify power
consumption indicators into direct and indirect. Direct indicators include the his-
torical weather information and the power consumption data from smart meters.
Indirect indicators include seasonal patterns such as day of the week, semester
and holidays, and academic calendar as well as static knowledge of the build-
ing characteristics such as surface area. They provide prediction models at the
building and campus levels for daily and 15-min intervals by training a CART
regression tree based on the direct and indirect indicators. Also Time series
(TS) models try to predict future power consumption based on previous his-
torical observations. The commonly used approaches include Moving Average
(MA), Auto-Regressive Integrated Moving Average (ARIMA) and the Pattern
Sequence-based Forecasting (PSF ) [17].

Artificial intelligence techniques such as neural networks, support vector ma-
chines, and pattern matching techniques show promising capabilities in forecast-
ing and modelling power consumption. An overview of different AI techniques
is provided in [14]. Among all AI-based methods, the technique of artificial neu-
ral networks (ANNs) has received substantial attention in forecasting power
consumption due to its flexibility in learning load series and modelling the non-
linearity between power consumption and the exogenous variables influencing it
as well as providing fairly acceptable results. S. Wan et al. developed an artificial
neural network model for modelling the electricity load of campus buildings in
[22]. The input data of the network includes building consumption history and
the time-depended climate variables such as dew point, rainfall rate, pressure,
wind speed, humidity and temperature.

The majority of previous research works for power consumption forecasting
focus on homogeneous buildings such as residential or industrial buildings re-
gardless of their differences i.e. demographic data, and building characteristics.
Moreover, they consider the prediction of future demand growth of current net-
works without taking into consideration new or planned constructions. Another



limitation of the current research conducted in this field is that it did not take in
consideration the difficulties of integrating smart meters in today’s networks as
well as the geographical structure of the network where each area is monitored
independently. In this work, we try to tackle these issues by investigating the
possibilities of estimating the long-term daily power consumption for a popula-
tion out of a representative sample.

3 Concept and Dataset

In this work, we follow a multi-step statistical analysis methodology as shown in
Fig. 1 in which we use time-dependent predictors such as temperature, business
days, and holidays combined with time-independent predictors such as demo-
graphic data, and building characteristics to estimate the power consumption
of existing and future planned buildings on different scales. In the first step,
we build the Building-Performance regression model that correlates the power
consumption with time-independent factors by following a stepwise approach for
the selection of predictors. This model provides good insights into the average
monthly power consumption of individual buildings. Furthermore, it assists the
process of excluding the data which belongs to buildings with consumption pat-
terns not representative of the population, in order to reduce the errors in next
modelling steps.

In the second step, we investigate the possibility of building a hybrid model
which uses conditional inference trees [8] to divide buildings into homogeneous
groups using the time-independent factors and then create a multi-linear regres-
sion model for each group to estimate the daily power consumption using time-
dependent predictors, demographic data, building characteristics and number of
available appliances. Later, this model is adapted for the prediction of future
power consumption of new buildings by removing the predictors related to avail-
able appliances and part of demographic data. The model will be capable of
predicting the daily long-term power consumption for the whole population.

The used dataset in this work is provided by the Commission of Energy Reg-
ulation (CER) in Ireland. CER has started a project to collect measurements
about power consumption of individual buildings using smart metering tech-
nologies. The trials took place over a period of eighteen months during 2009
and 2010. Raw data representing the 30-minute power consumption readings in
kWh of individual buildings was collected. More than 5000 smart meters were
installed in Irish homes and businesses in eight urban areas and three villages [4].
Pre-trial and post-trial surveys were conducted for both residential and business
participants. Residential participants, which are considered for the evaluation,
provided information about the following aspects in the survey:

– Demographic features of residents such as number of people living in the
house, age groups, household income and employment status.

– Physical characteristics of the house such as floor size, house type, number
of bedrooms, heating type and insulation.
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Fig. 1. Workflow for long-term daily power consumption forecasting model.

– Type and number of available electrical appliances in the house.
– Behavioral features of residents such as their usage patterns of electrical

appliances as well as their awareness degree of the power each appliance
consumes.

4 Building-Performance Multiple Regression Model

The building-performance multiple regression model can serve as a reference
model for the power usage of the general population by interpreting the effect
of different predictors on the average power consumption. The set of predictor
variables consists of demographic data, building characteristics, heating sources
as well as the number of available appliances. The multiple linear regression
model can be expressed in the form:

yi = β1xi1 + β2xi2 + ....+ βpxip + ei (1)

where yi is the response variable representing the total power consumption of
building i during the trial. x1, .., xp refer to the predictor variables where p is
the number of predictors. ei is the estimation error for building i and β1, .., βp
are the regression coefficients.

The Multicollinearity due to a potential inter-correlation between different
predictors may negatively affect the interpretation of partial regression coeffi-
cients and make it difficult to recognize relative importance levels. To avoid any
negative effect of multicollinearity, a backward stepwise regression approach is



used to select the best model, where iteratively in each iteration a subset of
predictors that match best model performance is selected.

This model should represent the performance of the population buildings.
Therefore buildings with abnormal power consumption are considered as out-
liers and their related power measurements are excluded from the dataset and
then the model is fitted again. Based on the assumption of normal distribution
of the total power consumption, a data point is considered as an outlier if its
absolute value of the standardized residual is larger than 2 [10]. By defining the
predicted power consumption as ŷi, the standardized residual can take the form:

ẑi =
yi − ŷi
σ̂

(2)

where σ̂ is the standard error.

5 Hybrid Model for Long-term Forecasting of Power
Consumption

The idea behind developing a hybrid model is to get the benefits of several
rigorous modelling techniques in order to achieve a high prediction accuracy. On
one hand, modelling the effect of time-independent variables contributes to the
prediction of mean power consumption. On the other hand, modelling the effect
of time-dependent variables contributes to the modelling of the random error
generated by seasonal patterns and temperature changes.

We utilize conditional inference trees (ctree) to group the heterogeneous set
of buildings into several homogeneous groups based on time-independent vari-
ables, namely building characteristics, demographic data, heating source, and
the number of different available appliances. Ctree is a non-parametric class of
regression trees embedding tree-structured regression models into a well defined
theory of conditional inference procedures [9]. Ctree recursively performs uni-
variate splits of a dataset based on two stages. The first stage is the recursive
binary partitioning which proceeds as follows:

1. Using significance test of the global null hypothesis of independence between
the predictors and the response variable, the algorithm selects the predictor
with the highest association with the response variable based on the p-value
corresponding to significance test.

2. Select two subsets of the selected variable to split the observations into two
disjoint groups. The splitting point is selected based on another statistical
test.

3. Recursively repeat steps 1 and 2.

In the second stage, it fits a constant model in each leaf node of the gener-
ated tree. It is important to mention the differences between Ctree and other
popular regression tree algorithms such as CART and C4.5. Both CART and
C4.5 examine all the possible splits and select the covariate that maximizes the



cell purity. Both methods suffer from overfitting and bias towards partitioning
based on covariates with multiple splits. The overfitting can be overcome by
tree pruning. However, there is no statistical significance analysis that can prove
whether there is a significant improvement due to the split or not. On the con-
trary, Ctree algorithm is statistically more valid, it recursive applies a split based
on the theory of permutation tests in which partitioning is stopped when there
is no significant association between the predictors and the response variable.

After dividing the buildings into several homogeneous groups, a multiple lin-
ear regression model is applied on each homogeneous group to model the daily
power consumption of that group using time-dependent predictors, namely tem-
perature, holidays, business days, and weekends. Moreover, a subset of time-
independent variables including floor size, number of bedrooms, people descrip-
tion, built year and home description is used for the purpose of predicting the
base power consumption of different buildings in the same group as shown in
Fig. 2. The advantage of using ctree is that the split process tends to apply split
on a subset only if a significant improvement can be achieved rather than group-
ing buildings based on heuristics such as the information gain as is the case in
CART algorithm.

Fig. 2. The hybrid model design . Ctree model is used based on time-independent
predictors for grouping the buildings into several homogeneous groups. Afterwards, an
individual linear regression model is fitted for each group based on building character-
istics and time-dependent factors.



6 Evaluation

In this section we evaluated the predictive performance of our proposed hy-
brid model. As a first step, we cleaned the dataset from outliers which are
buildings with abnormal power consumption when compared to the majority
of buildings with same characteristics. For detecting outliers, we utilized the
Building-Performance model explained in Sec. 4. Table 1 shows the main factors
contributing to the power consumption of residential buildings. This set mainly
included the description of people i.e. retired and all over 15 years old, the build-
ing characteristics, the number of different appliances, the cooker type, and the
water heating source. Thereafter, buildings with abnormal power consumption
were excluded from the evaluation. As mentioned before, the iterations of the
stepwise regression approach stop when no more improvement of the model ac-
curacy can be achieved and the main features will be fixed then.

After the removal of outliers, we got 892 residential buildings out of 930
used in the Building-Performance model, while the remaining 38 were excluded
through the backward stepwise regression approach. Then, we divided the dataset
into a training set of 753 residential buildings and another 139 buildings for out
of sample accuracy evaluation of the model. This step was done statistically, by
classifying the buildings using ctree and selecting 80% of each group for training
and the rest for testing. Dividing the buildings into homogeneous insured that
the testing sample covers the existing variety in power consumption based on
the buildings and the residents characteristics.

After getting a representative sample by excluding buildings with abnormal
consumption, we classified the buildings using ctree model into homogeneous
groups based on the listed time-independent predictors in Sec.5. Therefore, ctree
model should be configured to produce groups in which buildings are as homoge-
neous as possible. Ctree uses the argument mincriterion as the value 1 - P-value
corresponding to a significance test of dependency between a singe predictor and
the response variable. This value must be exceeded in order to implement a split.
In this work we set mincriterion to 0.90. The argument minbucket defines the
minimum sum of weights in a terminal node which, in the default configura-
tion, is equal to the number of data points that belong to a terminal node.
These weights of individual buildings can be changed to give different impor-
tance levels to different data-points. For our evaluation purposes, we kept the
default weights and set minbucket to 75, so we have no less than 75 data points
for building the multiple linear regression model. After that a separate multi-
regression model was designed for each group using time-dependent predictors,
and a subset of time-independent predictors Sec. 5.

Figure 3 shows the prediction performance of our hybrid model with ctree’s
mincriterion = 0.90 and minbucket = 75. This figure shows the actual ag-
gregated daily power consumption of all buildings compared to the prediction
results. The predicted daily total consumption was calculated by predicting the
daily power consumption of each individual building for six months in advance
using our hybrid model. Thereafter, prediction results of all buildings were ag-



Table 1. The Building-Performance final model coefficients. Std. Error is the standard
deviation of the sampling distribution of the estimates of the coefficients under the
standard regression assumption. t-statistic is used to test whether the corresponding
regression coefficient is different from 0 and Pr(> |t|) is the p-value of the corresponding
t-statistics. Intercept is the mean of the response variable when all predictors values
equal 0.

Coefficient Estimate Std. Error t-value Pr(> |t|)

(Intercept) -2.995e+03 3.775e+02 -7.934 8.48e-15
People description 6.079e+02 8.455e+01 7.189 1.69e-12
Floor size 2.836e-01 7.365e-02 3.851 0.000128
Bedrooms 4.378e+02 7.111e+01 6.157 1.25e-09
Water central heating system -2.323e+02 1.479e+02 -1.571 0.116663
Water electric(immersion) 3.509e+02 9.609e+01 3.652 0.000280
Water heating (Gas) -5.435e+02 1.423e+02 -3.819 0.000146
Water heating (Oil) -2.729e+02 1.200e+02 -2.274 0.023293
Water heating (Other) -1.628e+03 8.723e+02 -1.866 0.062394
Cook -2.634e+02 7.533e+01 -3.497 0.000501
Tumble dryer 4.529e+02 1.174e+02 3.857 0.000125
Dishwasher 4.296e+02 1.281e+02 3.355 0.000837
Electric heater plug in 1.622e+02 6.928e+01 2.341 0.019511
Stand alone freezer 3.134e+02 8.788e+01 3.566 0.000388
TV greater 21 1.972e+02 5.469e+01 3.605 0.000334
Desktop computers 5.562e+02 8.141e+01 6.832 1.83e-11
Laptop computers 3.146e+02 5.755e+01 5.467 6.39e-08
Games consoles 2.612e+02 6.441e+01 4.056 5.56e-05

gregated and compared to the sum of actual daily power consumption of all
buildings in the dataset.

In order to generalize the proposed model to be capable of predicting the
power consumption of new constructions, we removed the factors related to
inhabitants such as the number of different appliances as well as how they cook
and the demographic data related to the number of people in different age groups.

We compared the performance of our hybrid model against two robust ma-
chine learning algorithms, namely conditional inference tree and random forests
[3] with the same used datasets for training and testing. For the random forests
model, we set the number of bootstrapped trees to grow to ntree = 500. This
number should not be too small to insure that each record in the dataset is
predicted at least few times. While ctree was used with same configurations as
in our model mincriterion = 0.90 and minbucket = 75.

Table 2 demonstrates a relative comparison between our proposed hybrid
model, ctree, random forests and the generalized version of our model in terms
of model accuracy and time efficiency. For the accuracy evaluation, the Mean
Absolute Percentage Error(MAPE) and the Mean Absolute Error (MAE) were
used. MAPE is preferable for reporting since it presents the results as a percent-
age which makes it more interpretable, while MAE is less sensitive to very large



Fig. 3. Prediction accuracy of the proposed hybrid model with mincriterion=0.90 and
minbucket=75.

errors in prediction compared to other measures.

MAE =
1

N

N∑
h=1

|xh − x̂h| (3)

MAPE =
100%

N

N∑
h=1

∣∣∣∣xh − x̂hxh

∣∣∣∣ (4)

Where x̂h is the predicted value, xh is the actual value and N is the number of
predicted samples.

Table 2. MAPE, MAE and execution time for individuals and portfolio of buildings.

Individual buildings Portfolio of buildings Time
Model MAPE MAE MAPE MAE

Ctree 58.65% 10.51 4.84% 176.44 5 minutes
Random Forest 52.34% 9.65 5.38% 215.63 10 days
Proposed Model 49.01% 8.82 2.43% 89.41 1 minute
Generalized Model 50.67% 9.00 3.43% 123.11 1 minute

The results in Table 2 show that the proposed approach outperformed ctree
and random forests in terms of prediction accuracy and time efficiency. The



hybrid model required around one minute for generating the model. Ctree needed
5 minutes which is still feasible and 10 days were required by the random forests
for the modelling step which can be justified by the high number of trees used
by the random forests in order to achieve high accuracy. Moreover, the lowest
values of MAPE for individual buildings and portfolio of buildings were also
achieved using the proposed hybrid model.

7 Discussion and Future Work

In this work, we designed a hybrid model for daily long-term power consumption
forecasting on the scale of portfolio of buildings using conditional inference tree
and linear regression models. The hybrid model outperformed two robust ma-
chine learning algorithms in terms of time efficiency and prediction accuracy. The
proposed model showed that, clustering individual buildings into homogeneous
groups, based on building’s characteristics and their inhabitants demographics,
can improve the prediction accuracy and increase time efficiency by reducing
the search space. In future work, other modelling techniques will be used in-
stead of the linear regression model to predict individual groups consumption
in the hybrid model. Also we are interested in extending this work by designing
an ensemble forecasting model by applying multiple modelling techniques on
each group of the Ctree leaves. The ensemble model could be a fusion of the
predicted values from different models in an equation with different weights for
each model.
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