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Abstract. Short-term forecasting models on the micro-grid level help
guaranteeing the cost-effective dispatch of available resources and main-
taining shortfalls and surpluses to a minimum in the spot market. In this
paper, we introduce two time series models for forecasting the day-ahead
total power consumption and the fine-granular 24-hour consumption pat-
tern of individual buildings. The proposed model for predicting the con-
sumption pattern outperforms the state-of-the-art algorithm of Pattern
Sequence-based Forecasting (PSF). Our analysis reveals that the clus-
tering of individual buildings based on their seasonal, weekly, and daily
patterns of power consumption improves the prediction accuracy and
increases the time efficiency by reducing the search space.

Keywords: Smart grid; Sequence-based Forecasting; Time series mod-
els; K-means; Hierarchical clustering.

1 Introduction

Until 1998, the electricity market was divided into a set of power supply ar-
eas where the grid of each area is owned and supplied by one utility. However,
this monopoly ended after the electricity market liberalization in Europe which
increased the competition and led to more efficient production and supply of
electricity. Power utilities are primarily involved in the trading with electric-
ity suppliers on three different levels, namely: forward, day-ahead and intraday
markets [5]. In forward market, utilities and suppliers agree on the deliveries
of each year and up to six years with particularly liquid trading for the next
three years. In the day-ahead trading, companies agree on the power deliveries
for the next day and the deliveries are auctioned during the 12 midday before.
However, oscillation of the spot market power consumption can happen due to
unexpected events i.e. temperature changes, customers consumption pattern etc.
To cope with these issues and to ensure the cost-effective dispatch of the available
power generation facilities, the companies can after the day-ahead auction clo-
sure, trade on the intraday market level and agree on power deliveries on a very
short-term basis from quarter hour to hour blocks which trigger the vital need
for forecasting the day-ahead total power consumption and the fine-granular
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24-hour consumption pattern of individual buildings. Beside the importance of
accurate forecasting of power consumption on a very short timescale for utilities,
the grid scale hourly power consumption prediction can assist the planning of
duty cycles of A/C and ventilators in building management systems to flat the
daily power consumption and/or to leverage low price periods based on signals
from the power utilities monitoring systems.

The majority of previous research works have concentrated on aggregated
energy consumption showing that accurate short-term consumption forecasting
at the portfolio of buildings level can be achieved [16, 14, 12]. However, there is a
lack of results related to estimating short-term power consumption of individual
customers. In this work, we introduce two time series models, namely the To-
tal Consumption Pattern Matching (TCPM) forecasting model which is used to
predict the day-ahead total power consumption, and the Hourly Consumption
Pattern Matching (HCPM) model which is used to predict the 24-hours con-
sumption pattern of individual buildings i.e. the detailed consumption values at
each hour of the day.

This paper is organized as follows: Section 2 gives an overview of related
work in the domain of power consumption forecasting. In Sect. 3, we introduce
our concept for the long-term and short-term forecasting of power consumption.
Section 3 presents in details the short-term prediction models and their com-
parative analysis. Finally, Sect. 5 summarizes the paper and discusses future
work.

2 Related Work

Short-term forecasting of power consumption is considered by the power util-
ities for economic scheduling [1] and real-time control where accurate and ro-
bust short-term forecasting guarantees the cost-effective dispatch of available
resources while keeping shortfalls and surpluses to a minimum in the spot mar-
ket. S. Aman et al. presented in [2] an empirical comparison between several
averaging models for short-term forecasting of power consumption. Averaging
models are characterized by their simplicity as they make their prediction based
on averaging the power consumption of similar points of time horizon such as
day, month, and year [9, 8].

Time series (TS) models predict future values based on previous historical
observations. The commonly used approaches include Moving Average (MA),
Auto-Regressive Integrated Moving Average (ARIMA) and the Pattern Sequence-
based Forecasting (PSF ) [12, 14]. Also regression models have been widely adapted
to model and forecast power consumption [7, 6]. A Semi-Parametric Additive
model for short-term (half-hourly) load forecasting model is proposed by Fan
et al. [4]. In this work, the authors aim to tackle the non-linearity, volatile con-
sumption pattern and interpret the effect of demand external drivers on power
consumption prediction. The study integrates the non-linear and nonparametric
driver factors within the regression framework. This is done by proposing semi-
parametric additive model to estimate the relation between power consumption
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and affecting variables. The load demand drivers include the seasonality factors
(weekdays, holidays and day of the year). In addition to the previous factors,
the historical consumption and temperature data from the previous three hours
as well as the same period from the previous six days are used.

Artificial intelligence techniques such as neural networks, support vector ma-
chines, and pattern matching techniques are widely applied to predict short-term
power consumption[13, 11]. An overview of different AI techniques is provided
in [10]. Among all AI-based methods, the technique of artificial neural networks
(ANNs) has received substantial attention in forecasting power consumption
due to its flexibility in learning load series and modeling the non-linearity be-
tween power consumption and the exogenous variables influencing it as well as
providing fairly acceptable results. S. Wan et al. developed an artificial neural
network model for modeling the electricity load of campus buildings in [17]. The
input data of the network includes the consumption history of buildings and the
time-dependent climate variables such as dew point, rainfall rate, pressure, wind
speed, humidity and temperature.

In this work, we improve on previous works by dividing the buildings into
homogeneous groups based on extracting features characterizing their consump-
tion pattern over different tie horizons i.e. daily, weekly and monthly. Then we
introduce two time series models namely, TCPM which is used to predict the
day-ahead total power consumption, and HCPM model which is used to pre-
dict the 24-hours consumption pattern of individual buildings i.e. the detailed
consumption values at each hour of the day.

3 Hybrid Short-term Power Consumption Forecasting
Model

In this section, we present our design of two time-series models for short-term
forecasting of power consumption inspired from the PSF algorithm, TCPM for
predicting individual customers day-ahead power consumption and HCPM for
day-ahead 24-hours consumption pattern forecasting. Both models consist of
two phases. As the first phase of grouping the buildings based on time-derived
discriminative features is common for both models, we present it separately in
the next section.

3.1 First Phase: Clustering of Buildings Using Time-Derived
Discriminative Features

The goal of this phase is to divide the buildings into several homogeneous groups
where each group contains only buildings with similar power consumption pat-
terns. As a first step, we extract discriminative features that characterize the
power usage pattern of individual buildings by leveraging the seasonal, weekly,
and daily patterns in their historical consumption data. The features are ex-
tracted with regard to different time horizons, namely day segments, daily,
monthly, and yearly. The extracted features are as follows:
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– Average power consumption for each week day and each month.
– Percentage of power consumption over six day segments: early morning,

morning, early afternoon, afternoon, early night, and late night similar to
previous work [15].

– Total power consumption over the trial in kWh.
– Percentage of power consumption over business days, Sunday, and Saturday.

The vital point of using time discriminative features is to identify different
classes of buildings without previous knowledge about them and only by relying
on the shape of their power consumption during the trial. After the features
extraction, the proposed clustering methodology consists of the following steps:

1. Normalizing the extracted features in the range [0,1] and assign different
importance levels to them.

2. Clustering buildings using k-means and hierarchical clustering algorithms.
3. Selecting the optimal number of clusters based on validity indexes of the

clustering process namely Dunn, Silhouette, and Davies-Bouldin.
4. Selecting the optimal clustering algorithm using the same validity indexes.

Two clustering algorithms, namely k-means and hierarchical clustering are used
to identify the different groups of buildings in the designed feature space. In
section 4.1, we evaluate our clustering methodology in order to determine the
optimal clustering algorithm as well as the optimal number of clusters to which
the buildings should be divided.

3.2 Hourly Consumption Pattern Matching (HCPM) Model

As an output of the first phase, we get a set of clusters where each cluster repre-
sents buildings with similar consumption pattern. The second phase in HCPM
model consists of two independent steps. In the first step, each group from the
initial clustering process in the first phase is clustered using hierarchical clus-
tering. Differently from first phase, the clustering in each group is done based
on their detailed 24-hour consumption pattern in order to produce a set of dif-
ferent patterns which characterize the different daily consumption patterns of
each building. Then a label will be assigned to each resulting cluster. The as-
signed labels will be used in the next stage for pattern sequence matching. The
number of clusters is selected based on majority vote of the previously used
clustering indexes. As a result of the labeling process, we will have our 24-hour
daily patterns in each group represented as a time series of subsequent labels
where each label corresponds to one day. In the second step, HCPM utilizes the
labels produced by the clustering phase in the pattern matching process in order
to forecast the next day 24-hours consumption pattern. The forecasting process
starts by searching for days with same historical power consumption pattern
with the window size confirming to the length of the labels sequence.

The algorithm tries to find a matched pattern in the historical consumption
data of same building . In case of multiple matches, it takes the closest match
in time horizon because the consumption behavior should be more similar in
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recent past. If the pattern is not found in the historical data of same building,
the algorithm searches in the repository of historical consumption data of all
buildings. If multiple matches are found, the majority vote over all matched
patterns is considered as the predicted pattern. Finally, if no sequence is found
in the repository corresponding to window size W, the algorithm searches for the
sequences of labels equals to W-1 and thus successively. The searching procedure
for a match uses only the historical data of the same day of the week. The full
procedure of searching for an equal pattern in HCPM is illustrated in Fig. 1.
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Majority vote of pattern
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Search for matched pattern 
sequence in the same building

Search for matched pattern 
sequence in the buildings 
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Select closer match in time 
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Sequence 
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Fig. 1: Workflow of the hourly consumption pattern matching algorithm
(HCPM).

3.3 Total Consumption Pattern Matching (TCPM) Model

TCPM forecasting model depends in its second phase on the total power con-
sumption in each day rather than the used labels of each day’s 24-hour consump-
tion pattern in HCPM. The percentage error defined in (1) is used as a metric
to decide whether two days are considered as a match or not, where C1 and C2
are the total power consumption in the days to be compared.

PR(C1, C2) = |C1− C2

C1
| (1)

TCPM follows the same steps as in HCPM. The difference is that the nu-
merical values of the power consumption are the input for the algorithm instead
of the sequence of labels in HCPM. Also if multiple matches are found in the
repository of all buildings, the average consumption is considered as the final
prediction while the majority vote is used in case of HCPM.
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4 Evaluation

The used dataset in this work was provided by the Commission of Energy Reg-
ulation (CER) in Ireland [3]. Raw data representing the 30-minute power con-
sumption readings in kWh of individual buildings was collected over a period
of eighteen months during 2009 and 2010. More than 5000 smart meters were
installed in Irish homes and businesses in eight urban areas and three villages.
Pre-trial and post-trial surveys were conducted for both residential and business
participants. The questions were related to their demographic features, building
characteristics, life style and usage patterns of different appliances. For the eval-
uation of our proposed short-term power consumption forecasting models, we
used the data related to small and medium enterprise (SME) buildings as the
oscillation in their power consumption have a more regular pattern compared to
the residential buildings.

4.1 Buildings Clustering Using Time Derived Discriminative
Features

The average daily, monthly, and total power consumption during the trial were
given a higher importance level. The different importance levels can be given
after normalizing all features values in the range [0,1] by multiplying the range
with a constant factor. Based on extensive analysis of different features combina-
tions, the final set of used features consisted of the total consumption as well as
the consumption percentages on Sunday, Saturday, and different day segments.
We have given the percentage of consumption on Sunday, Saturday and differ-
ent day segments the same importance level whereas the total consumption was
given the highest importance level.

The optimal number of clusters for k-means and hierarchical clustering was
selected based on the majority vote of the three validity indexes. Lower value
of Davies Bouldin index indicates better clusters quality while higher values for
Silhouette and Dunn indexes prove better clustering quality. Figure 2 illustrates
the clustering quality for hierarchical and k-means algorithms. Apparently the
indices reached their optimal values when the number of clusters K=8. We pro-
ceeded using hierarchical clustering approach based on the relative comparison
of the indexes’ scores for both algorithms.

Figure 3 illustrates the average daily power consumption in kWh of each
cluster generated using hierarchical clustering with an optimal number of clusters
K=8. There is a clear separation between groups 8, 6, 4, and 2. This indicates
that the total power consumption is the main factor to distinguish between these
groups. However, groups 1, 3, and 7 have close daily average power consumption
and the total power consumption is not the main factor to distinguish between
these three classes but rather the percentage of power consumed during the
weekend in comparison to the whole week as well as the percentage of power
consumed over different day segments.



7

0,55

0,65

0,75

0,85

0,95

1,05

3 4 5 6 7 8 9 10

Number of Clusters

Davies-Bouldin Index (Hierarchical) 

0

0,02

0,04

0,06

0,08

3 4 5 6 7 8 9 10

Number of Clusters

Dunn Index (Hierarchical) 

0,25

0,3

0,35

0,4

0,45

0,5

3 4 5 6 7 8 9 10

Number of Clusters

Silhouette Index (Hierarchical) 

0,29

0,49

0,69

0,89

1,09

1,29

3 4 5 6 7 8 9 10

Number of Clusters

Davies-Bouldin Index (k-means) 

0

0,02

0,04

0,06

0,08

0,1

3 4 5 6 7 8 9 10

Number of Clusters

Dunn Index (k-means) 

0,25

0,3

0,35

0,4

0,45

3 4 5 6 7 8 9 10

Number of Clusters

Silhouette Index (k-means) 

Fig. 2: Derived features clustering indexes.

4.2 HCPM Model

For the evaluation of HCPM model, one group named group 3 was selected with
59 SME buildings. A subset of 5 months of the trial was used as a repository
of power consumption historical data that can be used to predict the day-ahead
power consumption pattern. Also one month was excluded from the clustering
step for out-of-sample evaluation. The input for the hierarchical clustering al-
gorithm is the dataset of detailed 24-hours power consumption for all buildings
in the repository of power consumption historical data. Each data-point is a se-
quence of 24 points representing the consumption during 24 hours in kWh. The
optimal number of clusters was selected based on the majority vote of the same
validity indexes. Figure 4 demonstrates the quality of clusters generated using
hierarchical clustering algorithms.

Based on the majority vote, K=10 and K=9 were selected as the optimal
number of clusters. Mean Error Relative (MER) is used for analyzing the effect
of the obtained window size on the prediction error. Figure 8 demonstrates the
relation between the window size and the prediction MER. Mean Error Relative
(MER) starts with 24% and falls down to a minimum of 17.1 % for a window
size equals to 9.

Figure 5 demonstrates the relation between the window size and the percent-
age of correctly predicted labels. We define the precision as a metric reflecting
the percentage of correctly predicted labels divided by the total number of tested
samples. It shows that the precision increases significantly from 62.5% for W=1
to 82.1% for W=10. Also the number of found matches will decrease with an
increasing window size. However, more matches can be found in buildings which
are following a consumption pattern close to the targeted building. The results
in Fig. 6 are consistent with the MER statistics in Fig. 8.
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Fig. 3: Daily mean power consumption of each cluster generated using hierarchi-
cal clustering algorithm with an optimal number of clusters K=8.
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Fig. 4: Selecting the optimal number of clusters for group 3.

4.3 TCPM Model

For the evaluation of the TCPM model, the same group of 59 SME buildings was
used. We considered a percentage error of less than 10% to count for a match
between a day in the repository of historical data of the buildings and a day
in the consumption sequence of previous days of the day in question. Figure 8
depicts the relation between the window size and the prediction MER. The MER
is falling gradually from 22.6% and is reaching a minimum value of 9.1% for a
window size equal to 8. Then, it slightly increases for a window size W=9 and
again decreases to 9.2% for W=10. As a conclusion, more knowledge about the
power consumption of previous days can help improving the prediction accuracy.
However, a larger window might reduce the accuracy as we notice for window size
of 9. Moreover, a larger window size will increase the possibility of not finding a
match. Figure 7 demonstrates the drop in the number of found patterns based on
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Fig. 5: HCPM precision for different
values of window size.

Fig. 6: HCPM number of matches for
different values of window size.

the increased window size also the relation between the number of found patterns
and whether they belong to the consumption history of the same building or not.
With a larger window size, the possibility to find a match in the historical data
of the same building is higher than finding this pattern in other buildings.

Fig. 7: The effect of window size on the number of found matches for TCPM
model.

4.4 Comparative Evaluation of HCPM against TCPM

Figure 8 shows that pattern matching using the total power consumption TCPM
significantly outperforms hourly consumption pattern matching (HCPM) in terms
of mean error relative (MER). The reason is that the used Euclidean distance to
measure the similarity level between two days based on the 24-hours consump-
tion pattern might assign the same label to two days with a large difference in
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total power consumption just because both have small distances to the centroid
of the cluster they belong to. To sum up, the total power consumption is more
appropriate for predicting the day-ahead power consumption.

Fig. 8: Relative comparison of MER values.

4.5 Comparative Evaluation of HCPM against PSF

PSF utilizes the k-means algorithm to realize the clustering of the dataset. The
first step was to determine the optimal number of clusters. For this, same indexes
were used to validate the clustering quality and select the number of clusters
based on the majority vote. The optimal number of clusters has produced clusters
with a big gap in the average hourly power consumption as shown in Table 1.
Group 4 contains days with an average hourly power consumption around 35.66
kWh. Therefore, we can roughly conclude that it represents retail buildings with
high power consumption and not days with different consumption pattern based
on day segments.

For the comparative analysis of prediction accuracy, we evaluated the PSF
using four different window size values W = 7,W = 8,W = 9,W = 10. With
W > 7 PSF should be capable of capturing the similarity over a week of con-
sumption data. Table 2 shows the comparative analysis between HCPM and PSF.
The proposed model outperformed PSF in terms of time efficiency and predic-
tion accuracy by introducing three enhancement on the original PSF approach.
Firstly, the proposed model clusters the buildings based on derived features using
the seasonal, weekly and daily pattern of the historical power consumption data.
This step makes substantial contribution to the overall performance by reduc-
ing the search space to include data for buildings belonging to the same cluster
only. Moreover, by giving high importance to the total power consumption as
one dimension for clustering, we separate buildings belonging to different power
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Table 1: Average hourly power consumption in kWh of the k-means clusters.

Cluster Number Average Hourly Power Consumption (kWh)

1 6.62
2 10.03
3 4.46
4 35.66
5 1.32
6 18.73
7 15.14

Table 2: Comparative analysis between HCPM and PSF.

Window Size MER
W PSF HCPM

7 46.73% 24.02%
8 45.11% 23.84%
9 43.15% 17.14%
10 39.91% 17.70%

consumption classes. In addition, the algorithm tries to find a matched pattern
in the same building historical data as a first option. This heuristic reduces the
search space and increases the prediction accuracy in case a match is found in
same building historical data. With more historical data of each building, the
chance for this heuristic to successfully find a match is higher. Finally, searching
for a match using only the same day of the week also reduces the search space
more. This heuristic will reduce the probability to find a match in the historical
data, however, this issue can be overcome by providing more historical consump-
tion data. The experiments prove that the used traditional time series model of
PSF cannot forecast the day-ahead power consumption of individual customers
in case of inhomogeneous groups. However, additional heuristics can improve the
traditional methods ability to predict the individuals short-term consumption.

5 Discussion and Future Work

In this work, two time series models TCPM and HCPM were designed to predict
individual customers day-ahead power consumption and the 24-hours consump-
tion pattern respectively. The comparison against PSF showed that the proposed
model of HCPM significantly outperformed PSF, also our analysis revealed that,
clustering buildings based on their seasonal, weekly and daily patterns can im-
prove the prediction accuracy and increase time efficiency by reducing the search
space. In future work, HCPM model will be tested on the post-trial dataset in
which the participants were allocated different tariffs, in order to check whether
the proposed model is able to handle the changes in customers demand pattern.
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