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1.0 Introduction

The Heidelberg Transport System (IHeil'S) is a new-generation end-to-end commu-
nication system currently under development at the IBM European Networking
Center (ENC) in Heidelberg. 1leiT'S is aimed at a heterogeneous environment com-
prising several computers with different operating systems and a variety of under-
lying local, metropolitan, and wide-arca networks. It incorporates both end-system
and gateway communication functions.

Conventional communication networks, e.g. Ethernet, were designed for asynchro-
nous data traffic only. In new high-speed networks an integration of different traffic
types can be observed. FDDI, for example, supports asynchronous and synchro-
nous traffic. This integration in the neiwork leads to an integrated communication
system as a whole. HeiTS coexists with the well-established communication
systems like TCP-IP, Netbios or APPC It is designed to support muitimedia com-
munication, in particular the transfer of digital audio and video.

Interactive and conversational multimedia applications demand for real-time proc-
essing of audio and video data. Such data is said to be correct, if and only if data is
delivered errorless within certain time limits. Non-audio and non-video data may
also be subject to time critical processing. Consider the example of a telepointer in
a shared window. In this case, timing constraints may be useful in order for a partic-
ular user 1o say “pointing at this object we see ....” At this moment the pointer
must be placed on the respective object at the screen of all recipients of the data.
The guarantee of 2 maximal end-to-end delay requires real-time processing.

‘This real-time processing is needed by several multimedia system components, the
communication system is just one of them. Audio and video data retrieval from a
multimedia database, interactive multimedia document presentation and all types of
multimedia applications are examples of such components. Therefore, a common
support of real-time processing tailored for audio and video data is required.

The operating systems in the end-systems of Heil'S are OS/2 ! and AIX. Neither of
them is conceived for the extensive support of recal-time processing of audio and
video data. Enhancements for multimedia on top of the operating system are avail-
able as the “Multimedia Presentation Manager/2” for OS/2. This extensions focus
on the local audio and video data transfer making use of kernel (ring 0) device driver
programming. Alternatively, a real-time scheduler can be used. In this document
we claborate an inside view of our design to incorporate real-time processing into
the OS/2 environment. It allows for user level programming making use of real-
time scheduling policies adapted to audio and video data processing in a networked
environment. The integration of the MMPM/2 with our real-time scheduler is in
progress.

The OS/2 system scheduler is priority driven. It schedules each task according to its
particular priority. The setting of task prioritics can be done by each thread within
a process. A gencral mapping algorithm between the real-time processing and the
available priority scheme is required. ‘This algorithin must take into account the
cenvironmental constraints (timer resolution, possibility of preemption, etc.). This
paper outlines a solution which was implemented in leidelberg. Additionally we
present an exhaustive elaboration of traditional real-time scheduling applied to con-
tinuous media which was performed as part of this project.

FOS/2,P5/2, PM, AIX, RISC System /6000 are trademarks of IBM Corporation. ActionMedia is a trademark of Intel
Corporation.
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This document is organized in five chapters. In chapter two we discuss multimedia,
real-time and their mutual relationship. This chapter also includes a brief presenta-
tion of the related resource management. Several traditional real-time scheduling
algorithms, their suitability towards continuous media processing and implemented
multimedia prototypes are introduced in chapter threce. Chapter four starts with a
brief summary of the OS/2 real-time capabilitics. Subsequently we introduce two
alternative concepts to schedule continuous media tasks under OS/2, present our
actual design and the experiences with the running prototype. The final chapter
summarizes the work presented in this paper.
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2.0 Multimedia and Real-Time

2.1 Multimedia

Multimedia represents a growing area of interest in business, engineering and
science. Multimedia in computer science refers to the employment of different
media in computers. Computers are used as communication tools. The communi-
cation is either between humans and the computer or among humans using the
computer [26]. We distinguish between four major types of computer processed
data: Text, graphics, audio and video. Text and graphics are the traditional media
with a time-independent presentation. Other media, such as audio and video have
time-dependent data values. Therefore, their processing requirements on a com-
puter system are different. On computer networks, for example, they are character-
ized by their sensitivity to delays, high bandwidth requirements and tolerance of
high error rates [84].

A multimedia system should be able to handle each type of media independently.
Multimedia systems have to be distinguished from other technologies such as tele-
vision, due to the ability to allow the user more interaction with the system [57].

Specifically, a multimedia system is defined as a spstem that is characterized by the
computer-controlled generation, manipulation, presentation, storage and cormmuni-
cation of independent discrete and continuous media [72). Multimedia is perceived as
the logical, inevitable convergence of four major technologies: telecommunication, pub-
lishing, television and computing [83]. In the view of these authors a multimedia
system is a desktop or network application which uses at least three of the following
media types: video, graphics, text, audio and animation. Ilence, a computer system
for the processing of multimedia application has to be able to handle many different
kinds of media. The innovation that is provided by multimedia systems is the inte-
gration of all these media into a single system, obscuring the lines between com-
puting, telecommunications, and even mass media. Since a great deal of experience
has been gleaned over the past forty years the major challenge remain is the incor-
poration of continuous media into computer systems [26].

The main developments in computer science and electrical engineering that support
multimedia systems are fast processors, high-speed networks, large-capacity storage
devices, new algorithms and data structures, graphics systems, innovative methods
for human computer interaction, real-time systems, object oriented programming,
etc. [16].

Existing multimedia systems are, for example, employed in education (e.g. as
hypermedia systems [65]), Computer Supported Cooperative Work (CSCW) [19],
and as information systems (e.g for the presentation of art in museums [76]).

The expression continuous media (CM) for audio and video 1s derived from the way
in which they are perceived by humans. CM consists of consecutive time-dependent
information units. ‘Time attributes semantics to the media. In this sense CM differs
from common discrete media (IDM) processed on computer such as text and
graphics which consist of time independent information values [26].

The representation of CM in a digital system is discrete. It consists of logical data
units (1.DU) being, for example, single audio-samples or video-frames. The informa-
tion content of these [LDU is a value of a basic data type and it represents a piece of
the original data over a certain period of time. The triple m = (V, I, U) defines the
CM-data. V is the value of the basic data type, ‘I is the time value and U is the
duration of the digital stream. From these parameters we can derive the life-span of
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the CM-data L = [T, T + U).2 Specifically, CM is characterized by a periodic contin-
uous data stream. Aperiodic continuous streams can be transformed into periodic
streams.

The digital representation of CM allows its handling by standard system compo-
nents such as the CPU, main memory, disk, or network. Other applications can be
processed concurrently to the execution of CM operations with no adverse effects
due to contention for hardware resources. Further, CM and DM can be handled in
the same software framework (operating systems, nctwork protocols, window
system, programming languages) [23].

2.2 Real-Time

The German national institute for standardization DIN dcfines a real-time process
in a computer system as a process which delivers the results of the processing in a
given time-span. Programs for the processing of the data have to be available during
the whole run-time of the system. The data may require processing to an a priori
known time, or occur at a previously not known instant [ 14].

A real-time system has the permanent task to receive information from the environ-
ment and to deliver it to the environment within time constraints [6]. Speed and
efficiency are not the main characteristics of a real-time system. The correctness of
a computation in a real-time system depends not only on the results of the compu-
tation but also on the time at which they are presented [67]. In a multimedia appli-
cation a failure occurs when the data of a video or a piece of music is presented too
fast or when it is presented with a considerable dclay. Therefore, the time behavior
of a real-time system has to be both deterministic and predictable [22; 24]. In par-
ticular two aspects have to be considered [63]:

1. The processing of tasks in a strongly restricted time interval.

2. Tempora! and logical interdependence between two processes that require proc-
essing at the same time due to their internal and external restrictions.

Summarized, a real-time system can not only fail because of massive hardware or
software failures, but also because the system is unable to execute its critical work-
load in time [40].

In real-time system we have both kard and seft deadlines which represent the latest
time for the presentation of a processing result. A soft deadline is a deadline which
cannot be exactly determined and where failing does not produce an unacceptable
result, e.g. starting and arrival times of planes or trains can considered to be as soft
deadlines. Hard deadlines are determined by the physical characteristic of real-time
processes. They mark the border between normal and failing behavior. Failing such
a deadline causes costs which can be measured in monetary (e.g. inefficient use of
raw materials in a process control system), aesthetical (e.g. garbled output from
audio or video), or human and environmental terms (e.g. accidents due to untimely
control in a nuclear power plant or fly-by-wire avionics system) [36].

The deterministic and predictable behavior of a real-time system includes a guar-
antce requirement for time-critical tasks. Such guarantces cannot be assured for
cvents that occur at random intervals with unknown arrival times, processing
requircments or deadlines. T'urther, all given guarantecs arc only valid under the
premise that no processing machinc collapscs during run-time of real-time processcs.
Summarized, task scheduling is a matter of both reliability and performance [40].

2 “}) " indicates that T + U is not part of the valid time span

Mullimedia and Real-Time 4



A real-time system is distinguished by three feature (c.f. [67]):

1. Predictably fast response to time-critical events and accurate timing information.
Constrains such as an upper bound or an average value have to be imposed on
these response times. In the control system of a nuclear power plant, e.g., the
response to a malfunction must occur within a well-defined period in order to
avoid a potential disaster.

2. A high degree of schedulability. Schedulability refers to the degree of resource
utilization at, or below which the deadline of each time-critical task can be
ensured.

3. Stability under transient overload. Under system overload the processing of crit-
ical tasks to their deadlines must be ensured. These critical tasks are vital to the
basic functionality provided by the system.

Manufacturing process management is a main application area for the use of real-
time systems. Such a process control system is responsible for real-time monitonng
and control. Real-time systems are also used as command and control system in
fly-by-wire aircraft, automobile anti-lock braking systems and the control of nuclear
power plants [40]. New areas for real-time systems are computer conferencing and
multimedia.

2.3 Real-Time in Multimedia

If concurrent processes handling CM and DM share one machine, the operating
system has to provide them with the system resources they need and it must resolve
resource conflicts. In traditional multitasking systems such as UNIX, “fairness” is
the main criterion for resource admimistration. This criterion is insufficient for han-
dling CM. Apart from high throughput requirements, CM impose timing demands
on computer systems that result from the periodically changing value of CM data:
Each single value in an audio or video stream represents stream information for
some fraction of time. Changes in the times at which values are played or recorded
result in a modification of the original data semantics and must not happen uninten-
tionally. To ensure correct timing, delay and jitter for the handling of CM have to
be bounded if some 1/O equipment (and, obviously, some human user sitting in
front of it) is involved in the application [15]. Without I/O (e.g., when copying a
video {ile), the handling of CM is not time-critical.

To fulfill the timing requirements of CM, the operating system must use real-time
schedulding techniques. These techniques have to be applied to all system resources
involved in the CM-data processing. The entire end-to-end data path is involved,
not just the CPU. Networks and disks often contribute significantly to delay and
jitter.  With DMA capabilities of controllers, continuous-media data may not even
“pass” through the CPU. To support the function of these schedulers, a
deterministic behavior of the operating system has to be ensured.  Unpredictable
cffects of caching, process switches or page faults of a virtual memory system, e.g.,
can ruin any carcfully planned schedule.

Unfortunately, existing real-time systems are not well suited to support CM. Real-
time scheduling 1s traditionally used for command and control systems in application
arcas such as factory automation or aircrafl piloting. For these applications, a large
varicty of real-ime tasks, a plethora of I/O devices to interface with the technical
process to be controlled, and high fault-tolerance requirements (that somewhat
counteract to real-time scheduling efforts) are typical. CM have different (in fact,
more favorable) real-time requirements:

= A sequence of digital continuous-media data results from periodically sampling a
sound or unage signal. Tence, in processing the items of such a data sequence,
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all time-critical operations are periodic. Schedulability considerations for peri-
odic tasks are much easier than for sporadic ones [56].

« For many applications missing a deadline in a multimedia system is - although
it 'should be avoided - not a severe failure. It may cven be unnoticed: If an
uncompressed video frame (or parts of it) are not available on time it can
simply be dropped. The human viewer will hardly notice it, provided this does
not happen for a contiguous sequence of frames. FFor audio, requirements are
higher because the human ear is more sensitive to audio gaps than the human
eye is to video jitter.

* The fault-tolerance requirements of continuous-mcdia systems are usually less
strict than for those real-time systems that have physical impact. The failure of
a continuous-media system will not directly lead to the destruction of technical
equipment or constitute a threat to human life.

« The bandwidth demand of CM is not always that stringent. As some com-
pression algorithms are capable of using different compression ratios - leading to
different qualities - the required bandwidth can be negotiated. If not enough
capacity for full quality is available the application may also accept a reduced
quality (instead of no service at all). The quality may also be adjusted dynam-
ically to the available bandwidth, e.g., by changing encoding parameters.

In a traditional real-time system, timing requirements result from the physical char-
acteristics of the technical process to be controlled, i.e., they are provided externally.
Some continuous-media applications have to meet external requirements, too. A
distributed music rehearsal is a futuristic example: Music played by one musician
on an instrument connected to his workstation has to be made available to all other
members of the orchestra within a few milliseconds, otherwise the underlying know-
ledge of a global unique time is disturbed. If human users are involved in only the
input or only the output of CM, delay bounds are flexible. Consider the play-back
of a video from a remote disk. The actual delay of a singlc video frame to be trans-
ferred from the disk to the monitor is unimportant. Frames must only arrive in a
regular fashion. The user will notice any difference in delay only in the time it takes
for the first video frame to be displayed. While the traditional real-time scheduling
problem is to find a schedule for a sct of processes with given delay bounds, the
main problem in multimedia systems is to find reasonable delay bounds so that a set
of processes is schedulable.

CM are an addition to - not a substitute for - the DM alrcady available in com-
puting systems. In the future multimedia systems, time-critical continuous-media
tasks and non-critical discrete-media processes will run concurrently. Such a mixed
operation imposes new demands on scheduling as traditional systems usually have
to support only one class of processes. The operating system must fulfill two con-
flicting goals:

« Time-critical processes must never be subject to priarity inversion (i.e., be kept
from running by non-critical processes for an indefinite time) [62].

» Unecritical processes should not suffer from starvation because time-critical proc-
csses are executed.

A solution to this conflict is possible if multimedia systems have control over the
time-critical workload making use of the resource management [82].

Multimedia and Recal-Time 6



2.4 Resource Management in HeiTS

A distributed multimedia system requires guaranteed processing of CM. The quality
of service (QoS) requirements depend upon the type of data and the nature of the
supported applications [74]. We consider three relevant QoS parameters for the
processing and transfer of CM-data [82]:

1. The throughput parameter determines the data rate a connection needs in order
to satisfy application requirements. The maximal achievable throughput on the
CPU depends on the algorithm that is employed to schedule time-critical tasks.

2. We distinguish between two kinds of delays:

a. The delay at the resource is the maximum time span for the completion of
a certain task at this resource.

b. The end-to-end delay is the the total delay for a data unit to be transmitted
from the source to its destination. It is the sum of the delays of all involved
resources.

3. ‘The reliability defines error detection and correction mechanisms used for the
transmission and processing of multimedia tasks. We distinguish three classes of
error treatment: ignore, indicate and correct. It is important to notice that error
correction through re-transmission is rarely appropriate for time-critical data
because the re-transmitted message will usually arrive late. On the other hand,
single or small errors might not be noticed by the user, and thus, uncompressed
data might not even need any error correction. For compressed data, especially
encoded video, error detection and the substitution of corrupted or late packets
might be useful because a single error may have continuing effects. In terms of
reliability the CPU represents little difficulties as no errors occur at the proc-
essing of a task.

To guarantee the QoS-parameters the resource managers allocates for each con-
nection the necessary resources (e.g. CPU, communication network). They ensure
that a new connection does not violate performance guarantees already given to
existing connections [27]. During the connection establishment the QoS parameters
are usually negotiated, mediating the application’s needs with the current capabilities
of the communication system. There are different ways to negotiate the QoS
parameters. The simplest negotiation scheme is the specification of the QoS through
the application. The resource manager checks whether this QoS can be provided or
not. A more claborate method is to optimize single parameters. In this case two
parameters are determined by the application (e.g. throughput and reliability), the
resource manager then calculates the best achievable value for the third parameter
(e.g. delay) [82].

A resource manager has four tasks:

1. Schedulability Test: The resource manager checks with the given QoS parameter
if there is enough remaining resource bandwidth available to handle the new
connection.

2. QoS Calculation: Afier the schedulability test the resource manager calculates
the best possible performance the resource can provide for the new connection.

3. Resource Reservation: The resource manager allocates the required capacity in
order to meet the QoS guarantees for each connection is reserved.
4. Resource Scheduling: Incoming messages from connections are scheduled
according to the given QoS guarantees.
This four tasks can be applied 10 each resource. lior the CPU, real-time scheduling
can be considered 1o be a task of the resource manager. But, in the case of process
management real-time scheduling is a duty of the operating system. Therefore, the
operating system must use scheduling methods which consider time constraint. The
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resource manager has to perform tasks 1,2 and 3 before tasks can be scheduled.
However, it must be noted that the schedulability test, QoS calculation and resource
reservation depend upon the algorithm used by the scheduler.

Reservation of resources can be made either in a pessimistic or in an optimistic way:

» The pessimistic approach avoids resource conflicts by making reservations for
the worst case, i.e. resource bandwidth for the longest processing time and the
highest rate necded by a task is reserved. This leads potentially to an underutifi-
zation of resources. In a multimedia system the remaining processor time (i.c.
the time reserved for traffic but not used) can be used by DM tasks. This
method results in, a guaranteed QoS.

* The optimistic approach reserves according to the average or minimum work-
load. This results in a best-effort QoS. The CPU is reserved for the average or
minimum processing time and data rate needed by a task for its processing. This
approach overbooks resources with the possibility of a packet loss.

Best-effort processes require the ability to detect and solve resource conflicts.
Resource conflicts occur when a best-effort process exceeds its reserved processing
time and other critical processes require processing. In this case the scheduler has to
detect the resource conflict, to preempt the best-effort process, and to schedule
another critical task. The OS/2 operating system does not supply the possibility of
measuring pure processing time. Therefore, it is difficult to detect and solve resource
conflicts. Another solution to this problem is the use of the following precemptive
multi-level priority scheme (c.f. [82].)

1. Critical guaranteed processes

2. Critical best-effort processes

3. Processes not executing transport system software (e.g. application processes)
4. Workahead proccsses (both guaranteed and best-effort)

A request from a guaranteed task will preempt every running best-effort task even if
the deadline of the best-effort task is closer. Hence, best-cffort tasks can fail to meet
their deadlines although they did not exceed their reserved processing time and there
would have been a feasible schedule. To use guarantecd processes and best-effort

processes concurrently one must to accept this flaw, although it is cerfainly not
ideal.

2.5 CM-Resource Model

The resource model for I1eiTS is based on the model of Linecar Bounded Arrival
Processes (I.LBAP) as described in [3]. In this model a distributed system is decom-
posed into a chain of resources traversed by the messages on their end-to-end trips.
Examples of such resources are single schedulable devices such as CPU, or com-
bined entities such as nctworks.

A LBAP is a message arrival process at a resource defined by three fixed paramcters.
M = Maximum message size (byte/message)

* R

* B

Maximum message rate (message/sccond)

i

Mazximum Burstiness (message)

A burst consists of messages which have arrived “ahcad of schedulce”

In the following this LBAP model is discussed in terms of a specific example:

Multimedia and Real-Time 8



Two workstations are interconnected by a LAN. A CD-player is

attached to one workstation. Mono-audio data is transferred from this CD-player
over the network to the other computer. There this audio data is delivered

to a speaker.

This mono audio signal is sampled with 44.1 kHZ. Each sample is coded with

16 bit.

Up to 12000 bytes are assembled into one packet and

transmitted over the LAN.

This results in a data rate of

16 bit

44100 1 e
s 8 byte/frame

= 88200 byte/s

The samples on a CD are assembled to frames. This frames are the audio messages
to be transmitted.
75 messages per second are transmitted.

88200 byte/s

e
75 message /s yte/message

In a packet of 12000 byte we can then have not more than

12000 byte
1176 byte /message

= 10 message

It obviously follows:

.
=
n

1176 byte/message
* R=175 nmessage/s

.
lve]
(]

10  message

During a time interval of the length t, the maximal number of messages arriving at a
resource must not exceed

B+ R x t (message)
e.g.: Assumet = [ s
10 message + 75 message /s x 1 s = 85 message

The Burstiness B introduces short time violations of the rate constraint. This allows
the modelling of programs and devices that generate burst of messages. Bursts are,
e.g., generated when data is transferred from disks in a bulk transfer mode or —as
above — when frames are assembled to large packets. The maximum average data
rate of a LBAP is:

M x R (byte|second)

1176 byte /message x 75 message /s = 88200 byte/s

It is guarantced that messages are processed according to their rate. Messages which

arrive “ahcad of schedule” have to be queued. For delay < period the buffer size is:

M x (B + 1) (byte)
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1176 byte /message x 11 message = 12936 byte

The function b(m) represents the logical backlog of messages. This is the number of
messages which already have arrived “ahead of schedule” at the arrival of message
m. Let a; be the actual arrival time of message m; 0 < i < n: then b(i) is defined by:

b(my) =0

b(my) = max(0, b(m; _ () — (4 —a;_ )R+ 1)
eg.: a 1= 1.00sa= 1.013 5; b(m_y)=4s

b(m;) =max(0.4 message - (1.013 s - 1.00 5) x 75 message/s + 1) = 4 message

The logical arrival time of a message m; can then defined as:

b(my)
Km;) = a(ny) + R
e.g.
e 4message 1.06
T message/s s
Equivalent by it can be computed as:
l(mg) = ag

[rmy) = max(q (m; _ ) + _ll€_)

eg.: l[(mi_,)=1053s

1lmessage

max(1.013 s, 1.053 s + )=1.06s

75 message /s

Intuitively /() is the earliest time the message m could have arrived if all messages
had obeyed their rate.

The guaranteed logical delay of a message m denotes the maximum time between
the logical arrival time of m and its latest completion. It results from the servicing
time of the messages and the competition among different sesstons for resources, i.c.
the waiting time of the messages. If a message arrives “ahcad of schedule” the actual
delay is the sum of the logical delay and the time by which it arrives to carly, it is
then greater then the guaranteed logical delay. It can also be less then the logical
delay when it is completed “ahcad of schedule”. The deadline d(m) is derived from
the delay for the processing of a message m at a resource. The deadline is the sum of
the logical arrival time and its logical dclay.

If a message arrives “ahead of schedule” and the resource is in an idle state, the
message can be processed immediately, ic. it is workahcad. ‘The message is then
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called a workahead message, the process is a workahead process. A maximum
workahead time A can be specified (e.g. from the application) for each process. This
results in a maximum workahead limit W.

W=A4xR

0.4 s x 75 message /s = 3message

If a message is processed “ahead of schedule” the logical backlog is greater then the
actual backlog.

A message is critical if it has passed its logical arrival time.
Throughout the rest of the paper the LBAP-model is used to describe the arrival

processes at each resource. The resource must ensure that the arrival processes at the
output interface obeys the LBAP-parameters.
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3.0 Application of Traditional Real-Time Scheduling to
Multimedia Data Streams

In computer scicnce the problem of real-time processing is widely known [6; 20; 60;
66]. The Rate-monotonic algorithm to schedule periodic real-time tasks, for
example, was introduced by Liu and Layland in 1973 [47]. In industrial process
management and operation research (OR) scheduling is used in order to find an
optimal schedule for the processing of jobs on a single processor or on multiple
machines [17]. It differs from real-time scheduling in that it operates in a static
environment and must not adapt to any change of workload [85]. llerc, task dead-
lines are not hard. The major task is to get an optimal utilization of the machines.
Nevertheless, there are scheduling methods and modifications of the base algorithms
applied which are also used in computer science for real-time processing, e.g.
shortest processing time scheduling, earliest due data and Moor’s Algorithm [42].

There are many proposals to solve real-time scheduling problems with many vari-
ations of the basic problem. In order to find the best solution for our problem we
analyzed various algorithms and discussed their advantages and disadvantages. In
this chapter we focus on the most relevant algorithms. Most of these approaches
aim to solve non-multimedia problems but, their basic ideas can be used for our

purpose.

The goal of traditional scheduling is optimal throughput, optimal resource utiliza-
tion, and fair queueing. In real-time scheduling the major task is to provide a
schedule according to the constraints of time-critical tasks.

The scheduling algorithm has to map tasks onto resources such that all tasks meet
their time requirements. Therefore, it must be possible to show, or to proof, that a
scheduling algorithm applied for real-time systems fulfills the timing requirements of
the task.

3.1 Real-Time Scheduling: System Model

In this section we describe the system model for the scheduling of real-time tasks.
All scheduling algorithms to be introduced are based on this model. 'The model con-
sists of three components:

Resources: A resource is an entity with a finite capacity that is required by the tasks
for their processing. There are active resources like the CPU, and passive resources
like the main memory. A resource can be used exclusively by onc process or can be
shared with other processes. Active resources are always exclusive. Each resource
has a capacity which results from its ability to perform a certain function in a given
time-span. TFor real-time scheduling only the temporal diversion of the resource
capacity is of interest. If a resource exists only once in the system, it is called a single
resource, otherwise it is a multiple resource. In our case we have to deal with an
active, exclusive, single resource —the CPU. In a real-time systcm the scheduling
algorithm has to determine a schedule for cxclusive, limited resources that arc used
concurrently by different processes such that all of them can be processed without
violating any dcadlines.?

Tasks: A task is the schedulable entity of the system. It can be invoked to perform a
particular function. In a hard real-time system, a task is charactenized by its timing

3 This notion can be extended to a model with multiple resources (e.g. CPU’S) of the same type. It can also be
cxtended to cover different resources such as memory and bandwidth for communication.
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constraints as well as resource requirements [12]. In our case we consider only peri-
odic tasks without precedence constraints, an appropriate characteristic of CM-data
processing.
The time constraints of the periodic task T are characterized by the following
parameters (s, e, d, p) described in [43]:

« s Starting point

« ¢: Processing time of T

o d: Deadline of T

» p: Period of T

s r: Rate of T (r=1/p)
0 < e < d<p. The starting point s is the first time where the periodic task requires
processing. Afterwards, it requires processing in every period p with e processing
time. At s+ (k — 1)p the task T is ready for the k-processing. The processing of T in
period k has to be finished at s+ (k — 1)p + d. For CM-tasks we can assume that
the deadline of the period (k — 1) is the ready time of period k, this is called con-

gestion avoiding deadlines: The processing time for each data unit is the period of the
respective data rate.

=—C

L -

Figure 1. Characterization of Periodic Tasks

Tasks can be preemptive or non-preemptive. A preemptive task can be interrupted
by the request of any task with a higher priority. Processing is continued later on. If
a task 1s non-preemptive, the processing can not be interrupted. Any high-priority
task has to wait until the low priority task is finished. The high-priority task is then
subject to priority inversion. We consider CM-tasks on the CPU as preemptive.

Objectives of Scheduling Algorithms: The function of a scheduling algorithm is to
determine for a given task set whether or not a schedule for executing the tasks
cxists, such that the timing and the resource constraints of the tasks are satisfied.
llurther, it has to calculate a schedule if one exists. A scheduling algorithm is said to
guarantee a newly arrived task if the algorithm can find a schedule where the new
task and all previously guaranteed tasks can finish processing in every period over
the whole run-time to their deadlines. If a scheduling algorithm guarantees a task, it
cnsures that the task finishes processing prior to its deadline [12]. To guarantee
tasks it must be possible to check the schedulability of the newly arrived tasks.
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A major performance metric for a real-time scheduling algorithm is the guarantee
ratio. The guarantee ratio is the total number of guarantecd tasks versus the number
of tasks which could be processed. Another performance metric is the processor
utilization. This is the amount of processing time uscd by guarantced task vcrsus
the total amount of processing time [47]:

= n
S
=)

=il

3.2 Earliest Deadline First Algorithm

The Earliest Deadline First (EDF) algorithm is one of the best known algorithms
for real-time processing. At every new ready status the processor executes the rcady
task with the earliest deadline [13; 17]. It gets access to the requested rcsource. At
any arrival of a new task, EDF must be computed immediately heading to a new
order —i.e. the running task must be preempted for this scheduling process. The
new task is processed immediately if its deadline is carlier then the one of the inter-
rupted task. The processing of the interrupted task is continued according to the
EDF algorithm later on. EDF is not only an algorithm for periodic tasks but also
for tasks with arbitrary requests and deadlines. Also, the service execution times of
the tasks must not be known [13]. In this case no guarantee about the processing of
any task can bec given.

EDF is an optimal, dynamic algorithm. It produces a valid schedulec whenever one
exist. A dynamic algorithm schedules every incoming task according to its specific
demands. Tasks of periodic processes have to be scheduled in each period. With n
tasks which have arbitrary ready-times and deadlines the complexity is 8(n?) [24].

Most of the available schedulers work with priorities. ach task is assigned a priority
according to specific policy. The order of the tasks results from this priorities. The
task with the highest priority is executed until it is finished or preempted by the
request from a higher-priority task. After each time slice the scheduler may rear-
range priorities (e.g. in OS/2 in the priority-class “rcgular”). The determination of
the time slice has the goal to keep the number of context switches low (because the
check and determination of priorities is also done by the CPU and it requircs over-
head processing) and to get a fair and valid schedule over the whole run-time of the
system. '

The EDF algorithm assigns priorities according to the deadlines of tasks if the
scheduling is priority driven. The highest priority is assigned to the task with the
earliest deadline, the lowest to the one with the furthest. With cvery arriving task,
priorities have to be adjusted.

EDF is used by diffcrent models as basic algorithm. The time-driven scheduler
(TDS) is based on a policy similar to BDF. It extents EDIF and handles overload
situations. If a overload situation occurs the scheduler aborts tasks which can not
meet their deadlines any more and those which have a low value density. The value
density corresponds to the importance of a task [80]. In our system we do not
expect to have overload situations due to the use of pessimistic resource manage-
ment schemes prior to scheduling.

In [50] an EDFE scheduling algorithm is introduced which is also preemptive and
priority-driven. Iivery task is divided in to a mandatory and an optional part. A task
is terminated according to the deadline of the mandatory part cven if it is not com-
pleted at this time. ‘Tasks arc scheduled with respeet to the deadline of the ‘manda-
tory parts. A sct of task is said to be feasible scheduled if all tasks can mcet the
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deadlines of their mandatory parts. The optional parts are processed if the resource
capacity is not fully utilized. Applying this to CM the method can be used with
layered coding. Referring to uncompressed bitmaps, the processing of the MSB’s
(most significant bit) is mandatory whereas the processing of the LSB’s (least signif-
icant bit) can be considered as optional. Applied to compressed images based on
transformation into frequency domain, the most relevant information is part of the
lower frequencies. Their processing is mandatory in contrast to the processing of the
higher frequencies where the processing is optional. With this method more proc-
esses can be scheduled and in a overload situation no process has to be discarded.

For a dynamic algorithm like EDF the upper bound of the processor utilization is
100% [47]. Compared with any static priority assignment, EDF is optimal in a
sense that if a set of tasks can be scheduled by any static priority assignment it can
also be scheduled by EDFE. In EDF there is no processor idle time prior to over-
flow.

Applying EDF for the scheduling of CM tasks on a single processor machine with
priority scheduling priorities have to be rearranged when the priority required by a
new task 1s currently used for another process. This may cause a considerable over-
head. The EDF scheduling algorithm itself makes no use of the previously known
occurrence of periodic tasks.

3.3 Rate Monotonic Algorithm

The Rate monotonic scheduling was first introduced by Liu and Layland in 1973
[47]. It is an optimal, static, priority-driven algorithm for preemptive, periodic jobs.
Optimal here means that there is no other static algorithm that is able to schedule a
task set which can not be scheduled by the rate monotonic algorithm. A process is
scheduled by a static algorithm at thé beginning of the processing. Subsequently,
cach task is processed with the prionty calculated at the beginning. Five assump-
tions are made about the environment [47]:

1. The requests for all tasks with deadlines are periodic. I.e. with constant intervals
between consecutive requests.

2. Deadlines consist of run-ability constraints only. l.e. each task must be com-
pleted before the next request occurs.

3. The request of tasks are independent. Le. the requests for a certain task do not
depend on the initiation or completion of requests for other tasks.

4. Run-time for each request of a task is constant. Run-time denotes the time
which is required by a processor to execute the task without interruption.

5. Any non-periodic task in the system has no required deadline.

Iurther work shows that not all of these assumptions are mandatory for CM-data
processing.

Static priorities are assigned to tasks once according to their request rates. The pri-
ority corresponds to the importance of a task relatively to other tasks. Tasks with
higher request rates will have higher priorities [47]. The task with the shortest
period gets the highest priority and the task with the longest period the lowest pri-
orily.

A task will always meet its deadline if it is proven for the longest response time. The
response time is the time span between the request and the end of processing of a
task. This time span is maximal when all processes with a higher priority request
processing at the same time. This case is called critical instant. The critical time
zone 15 the time interval between the critical instant and the completion of a task.
An example is shown in Figure 2.
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Figure 2. Critical Instant

Consider an audio and a video stream scheduled according to the rate monotonic
algorithm. Let the audio stream have a rate of 1/75 and the video stream a rate of
1/25. The prionity assigned to the audio stream is then higher then the priority
assigned to the video stream. The arrival of a messages from the audio stream will
interrupt the processing of the video stream. If it is possible to complete the proc-
essing of a video message before its deadline which requests processing at the cnitical
instant, the processing of all video messages to their deadlines is ensured.

The processor utilization of the rate monotonic algorithm is upper bounded. It
depends on the number of tasks which are scheduled, their processing times, and
their periods. According to [47] there are two issues to consider:

I. The upper bound of the processor utilization which is determined by the critical
instant.

2. TFor each number 7 of independent tasks () a constellation can be found where
the maximum possible processor utilization is minimal. The least upper bound
of the processor utilization is the minimum of all processor utilizations over all
sets of tasks (f); j e (1, ..., n) that fully utilize the CPU. A task set fully utilizes
the CPU when it is not possible to raise the processing time of one task without
violating the schedule.

Under this assumptions [47] give an estimation of the maximal processor utilization
where the processing of each task to its deadline is guaranteed for any constellation.
A set of m independent, periodic tasks with fixed priority order will always meet its
deadline if:

. U N
Fl—+ +pfm—_mx( — 1) = U(m)

For large m the lcast upper bound of the processor utilization is U = In 2 [46].
Hence it is sufficient to check if the processor utilization is less or equal to the given
upper bound to find out if a task set is schedulable or not.

With EDF, a processor utilization of 100% can be achieved because all task are
scheduled dynamically according to their deadlines. Figure 3 shows an cxample
where the CPU can be utilized to 100% with EDI' but where ratc monotonic
scheduling fails.
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A related problem is addressed in [69]. In most cases the average task execution
time is considerably lower than the worst case execution time. Therefore, scheduling
algorithms should be able to handle transient processor overload. The rate
monotonic algorithm on average ensures that all deadlines will be met even if the
bottleneck utilization is well above 80%. With one deadline postponement, the
deadlines on average are met when the utilization is over 90%. [71] mentions an
utilization bound achieved for the Nowy’s Insertial Navigation System of 88%. In
the case of CM and DM-data to be processed, the utilization discussed so far only
applies to CM. Even with a CM-utilization of 69%, the remaining 31% can be used
for DM processing,

Since the rate monotonic algorithm is an optimal static algorithm no other static
algorithm can achieve a higher processor utilization.

As shown in Figure 4 there might be more context switches with a scheduler using
the rate monotonic algorithm then one using EDFE.

N

Rate Monotone

Iigure 4. Rate Monolonic versus EDIP: Context Switches
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There are several extensions to this algorithm. One of them divides a task in to a
mandatory and an optional part. The processing of the mandatory part delivers a
result which can be accepted by the user. The optional part only refines the result
(c.f. 3.2). The mandatory part is scheduled according to the ratc monotonic algo-
rithm. For the scheduling of the optional part different policies are suggested [9; 49;

107.

To meet the requirements of periodic tasks and the response time requircments of
apecriodic requests, it must be possible to schedule both, aperiodic and periodic
tasks. If the aperiodic request is an aperiodic continuous stream (e.g. video images
as part of a dia-slide show), we have the possibility to transform it into a periodic
stream. Every timed data item can be substituted by rn items. The new items have
the duration of the minimal life span. The number of streams is increased but since
the life span is dccreased the semantic remains unchanged. The strcam is now peri-
odical because every item has the same life span [23]. If the stream is not contin-
uous we can apply a sporadic server to respond to aperiodic requests. The server
gets a computation budget. This budget is refreshed ¢ units of time after it has been
exhausted. Earlier refreshing is also possible. The server is only allowed to preempt
the execution of periodic tasks as long as the computation budget is not exhausted.
Afterwards it can only continue the execution with a background priority. After
refreshing the budget, the execution can resume at the servers assigned priority. The
sporadic server is especially suitable for events that occur rarcly but must be serviced
quickly (e.g. a telepointer in a CSCW-:=application) [66; 71; 70].

The rate monotonic algorithm is applied in real-time systcms and real-time oper-
ating systems by the NASA and the European Space Agency [67]. It is particularly
suitable for CM tasks because it makes optimal use of their periodicity. Since it is a
static algorithm there is nearly no rearrangement of priorities and hence no sched-
uling overhead to determine the next task with the highest priority. There are prob-
lems with data streams which have no continuous data rate (e.g. a compressed video
stream where one of five pictures is a full picture and all others are up-dates of a
reference picture). The solution is to schedule this tasks according to their maximum
data rate. In this case the processor utilization is decrcasing. The idle time of the
CPU can be used to process DM tasks or other non-time-critical programs.

3.4 Other Approaches for Real-Time Scheduling

In these study phase we evaluated further scheduling algorithms toward their suit-
ability for CM processing. In the following we describe briefly the approaches and
enumcrate the reason for their “non suitability”. Compared with EDF and rate
monotonic all of them have severe disadvantages for our problem.

Least Laxity First (LLF): The task with the shortest remaining laxity is scheduled
first [11; 46]. The laxity is the time between the actual time ¢ and the deadline
minus the remaining processing time. The laxity in period £ is:

L=@E+k—1Dp+d—(t+e

LLF is not only an optimal, dynamic algorithm for exclusive resources like EDIF but
also for multiple resources if their ready-times arc the same [21]. The laxity is a
function of deadlinc, processing-time and the current time. Since the processing-time
is not known, worst-case is assumed. Thercfore, the determination of the laxity is
inexact. The laxity of the waiting processes is dynamically changing over time.
During run-time of a task, another task may get a lower laxity. This task has then to
preempt the running task. Consequently, tasks can prcempt each other scveral
times without dispatching a new task. Hence, there may be more context switches
than with DI, At cach scheduling point, the laxity of cach task has to be newly
determined. ‘Fhis leads to an additional overhcad compared with DI Since we
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have only a single resource to schedule there is no advantage in the employment of
LLI" compared with EDF. It is not more accurate then EDF but has an higher
scheduling overhead. Therefore, we do not consider this a suitable scheduling algo-
rithm for CM-tasks.

Deadline Monotone Algorithm: If the deadline of tasks are shorter then their rate
(d; < p) the rate monotonic algorithm can not be employed. In this case a fixed pri-
ority assignment according to deadlines of tasks is optimal. A task 7; gets a higher
priority as a task 7; if di<d. No effective schedulability test for the deadline
monotone algorithm exists. In order to determine the schedulability of a task set, it
has to be checked for each task if it can meet its deadline when it requires execution
to its critical instant [44]. Tasks with a deadline shorter then the rate arise at the
measurement of temperature or pressure in a control system. Their data rate is low.
But, if there are any difference between nominal and real value the intervention has
1o be done quickly. In HeiTS we assume that the deadlines of CM-tasks are equal
to their rate. In this case, the schedule determined according to the deadline
monotone algorithm is the same as the one according to the rate monotonic algo-
rithm.

Shortest Job First (SJF): The task with the shortest remaining computation time is
chosen for execution [11; 17]. This algorithm guarantees that as many tasks as pos-
sible meet their deadlines under an overload situation, if all of them have the same
deadline. Since we encounter in general equal deadlines and do not have overload
situation (because of the pessimistic resource management). The SJF is not a suit-
able algorithm for the scheduling of CM-tasks.

First Come First Serve (FCFS): The task which arrives first is executed first. This
method does not consider deadlines, processing times, arrival times or logical arrival
times. FCFS is a non-preemptive scheduling strategy which should be applied if
there is no other knowledge about the task apart of the fact that it is critical. This
strategy does not have any process management overhead. There is a demand for a
deterministic and predictable behavior of CM-tasks. With FCFS no guarantee for
the processing of any task according to their deadlines can be given. Therefore, it is
an insufficient method for the scheduling of CM-tasks.

Real-Time Monitoring: In a monitoring system, data on task activities of the com-
puter system are extracted, processed and presented. Incorrect decisions on the
schedulability of the tasks can be avoided because the monitoring process gets all
necessary data about their behavior (e.g. performance bottlenecks) [20].  The
resource management then has all information to initialize a correct schedule and to
handle fault-handling. Unpredictable events can be handled casily. If there is any
possibility to schedule a task, it is scheduled. Idle times of resources are minimized.
Real-time monitoring is an exact dynamic scheduling method. It requires special
software and hardware support. In most of the existing operating systems such an
exlensive monitoring is not possible. The processing of all the data on the activities
of the computer system may lead 1o a large overhead in the resource management.
Our system is designed to support the processing of CM-tasks in a conventional
environment with already existing operating systems. Real-time monitoring can not
be done in any of the systems employed for the Hei'l'S project.

MARS: Magnet I Real-Time Scheduling Algorithm: This scheduling algorithim was
developed for asynchronous time sharing based switching nodes. There are three
classes of data. Class 1 and Il represent CM-data like audio and video, Class 11 is
DM-data. The time is divided into periods called cycles, each consisting of up to 11
cells. Each cycle 1s further divided into subceycles. The maximum length of the cycle
is defined by the parameters M M, My with M; + M + M < 1. ‘The scheduler first
chooses the parameter H which is kept constant. There are two schedules main-
tained by the scheduler that contain the number of Class [ and Class 11 cells that
need to be processed during cach future cycle on a finite horizon. At the end of cach
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cycle the schedules are updated by taking into account the number of new cells that
got ready during the previous cycle. The minimum amount of resources that satisfy
the Class 1 and Class II QoS requirements is allocated to each class, the QoS
requirements of Class I must always be met. If the remaining resources are not suf-
ficient for Class II tasks, the exceeding Class 11 cells are clipped. If there is resource
capacity left it is allocated to Class III tasks. The decision is always made at the end
of cycle times [28]. The Class I cells are guaranteed.

The MARS-algorithm was designed to schedule real-time traffic on a network. The
resource is the network, the scheduler is integrated in the packet switch. It runs on a
own CPU and does not have to consider the generated scheduling overhead. In our
case the scheduler runs on the resource it has to schedule. It has to minimize sched-
uling overhead. Therefore, the MARS-algorithm is too complex for the
CM-scheduling in our envisaged environment.

-Search Heuristics for Scheduling: The problem of finding a feasible schedule can be
conceived as a search problem. The normal search-algorithms can be employed to
solve this problem. In [75] the guarantee algorithm is introduced. This algorithm
uses a search tree to find a feasible schedule. The root of the search tree is the empty
schedule. An intermediate vertex of the search tree is a partial schedule and a leaf is
a complete schedule. Not all complete schedules arc feasible schedules. The problem
is to find a feasible schedule. A heuristic function H was developed. On each level of
the search the function H s applied to find the task with the minimum value of H.
This task is selected to extend the current, partial schedule. The complexity of this
search is not exponential.

An algorithm based on the network flow technique is developed in [68]. This algo-
rithm divides a task in a mandatory and in an optional part. With the network flow
algorithm a schedule where all mandatory tasks and as many optional tasks as pos-
sible can meet their deadlines is determined. The optimal schedule is the one with
the maximum flow in the network. The complexity to find an optimal feasible
schedule is 0(nlog n). The disadvantage of the network flow technique and the
search heuristic is their complexity. Those algorithms can be applied if the schedule
has to be determined only once and must not be altered during run-time. Our
system runs in a dynamic environment. At run-time often new connection may be
established or released. Every time a new schedule has to be determined. Therefore,
no search algorithms or methods based on network flow techniques are not appro-
priate to schedule CM-tasks.

All of the described methods and algorithms may be applied for the solution of our
problem. Some of them arc general algorithms, some are algorithms for special
problems. Various other methods and algorithms to schedule real-time tasks are
described in literature. E.g., an on-line scheduler for tasks with unknown ready times
[29]. In [7] a technique is introduced which is based on the network-flow model for
uniform processors. In [86] the Virtual Clock, Fair Queucing, Delay Earliest Due
Data, Stop and Go and Hierarchical Round Robin are described. Those are
methods for the queucing in a packet switched data network which also could be
used with some variations for the scheduling of rcal-time tasks on the CPU. Most of
thesec approaches are variations of the algorithms described above, some use
methods (e.g. round robin) that can not be considcred as a real-time scheduling
strategy at all [21].

3.5 Preemptive versus Non-Preemptive Task Scheduling

Real-time tasks can be preemptive and non-preemptive. If a task is non-preemptive
it is processed and not interrupted until it is finished or requires further resources. If
tasks arc prcemptive, the processing of any task is interrupted immediately by a
request for any higher priority task [21].
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In most cases where algorithms are treated as non-preemptive, the arrival times,
processing times and deadlines are arbitrary and unknown to the scheduler till the
task actually arrives. The best algorithm is the one which maximizes the number of
completed tasks. It is not possible to give any processing guarantees or do resource
management [85]. This methods are used in schedulers for hard real-time tasks with
unpredictable occurrence of tasks.

To guarantee the processing of periodic processes and to get a feasible schedule for a
periodic task set, tasks are usually treated as preemptive. One reason is, that high
preemptability minimizes priority inversion [53]. Another reason is that for some
non-preemptive task sets no feasible scheduled can be found, whereas preemptive
scheduling is possible. Figure 5 shows an example where the scheduling of
preemptive tasks is possible but non-preemptive tasks can not be scheduled.

d d2

High Rate

Low Rate
Long Processing Time

]

Non-

Preempt'jve

Figure 5. Preemptive versus Non-Preemptive Scheduling

In this case, tasks with high rates and tasks with low rates and long processing times
are running concurrently in the same system.

In [47] Liu and Layland show that a task set of m periodic, preemptive tasks with
processing times ¢; and request periods p;Vie (1, ..., m) is schedulable

» with fixed priority assignment if:

Ze" <In2
7[_11

« and for deadline driven scheduling if

S
P —

ere, all tasks in the task set have to be preemptive to check their schedulability

The first schedulability test for the scheduling of non-preemptive tasks was intro-
duced by Nagarajan and Vogt in [58]. Assume, without loss of generality, that
streamm M has highest priority and stream | lowest. They proof that a set of m peri-
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odic streams with periods p;, deadlines d;, processing times ¢; and d; < pVi(l, ..., m) is
schedulable with the non-preemptive fixed priority scheme if

dm = €y 1 max(l <= m)ei,

m .
d;2 ¢+ max, < ;< mye+ Z ef(d; — ¢, 1))
e

m
d| = (4] =k maX(l Sjsm)q/ = Ze./F(dl = ej,Tj)
J=

where F(x,p) = ceil( %) + 1

This means that the time between the logical arrival time and the deadline of a task
t; has to be larger, or equal to the sum of the own processing time and the proc-
essing time of any higher priority task that requires execution during that time
interval plus the longest processing time of all lower priority tasks that might be ser-
viced at the arrival of .

high rate

=
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Figure 6. Deadline Requirements for Non-Precemptive Scheduling
The schedulability test is an extension of Liu’s and I.ayland’s. Given m penodic

streams with periods p; and unit processing times /7 pcr message. let d=p,+ E be
the deadline for stream i. Then the streams are schedulable

» with the non-preemptive rate monotonic scheme with:

1
Z,—)i«xESIHZ

* with deadline-based scheduling, the same holds with:

1
,—)iXESl

Application of ‘Traditional Real-Time Scheduling to Multimedia Data Streams 22



3.6 Scheduling of CM-Tasks: Prototype Works

The above described algorithms to schedule real-time tasks are partly, and with
modifications, applied in existing implementations especially designed to schedule
real-time multimedia tasks and in implementations which could easily be applied to
multimedia. Generally it can be distinguished between two kind of systems:

» Real-time operating systems: This are operating systems that are especially
designed to handle real-time tasks [60].

o Meta-scheduler: Scheduler using existing real-time capabilities of operating
systems to handle CM-tasks.

3.6.1 ARTS: A Distributed Real-Time Kernel.

ARTS is a real-time operating system for a distributed environment. It was devel-
oped on SUN3 workstations connected by a real-time network based on the
IE1EE.802.5 Token Ring and Ethernet by the computer science department of the
Carnegie Mellon University. In ARTS, a object based programming model was
developed. A object in this model is composed of data, one or more threads of exe-
cution, and a set of export operations. One or more threads will be assigned to each
of the operation exported by the object. Additional threads which are not associ-
ated with operations may also be present for doing internal computation [52].

The ARTS kernel consists of the kernel objects which provides the mechanism of
the ARTS operating system.
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Figure 7. ARTS System Structure

To solve the scheduling problems the time-driven scheduler (T'DS) with a priority
inhentance protocol was adopted. This priority inversion protocol was used to
prevent unbounded priority inversion among communication tasks. In particular,
almost cvery waiting queue discipline was replaced by a prionty-based discipline
with the priority inheritance protocol in the kernel.
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The integrated time-driven scheduling (ITDS) model is applied which provides pre-
dictability, flexibility, and ease of modification for hard and soft real-time activities
in various real-time applications. It allows to predict whether the given task of hard
real-time activities can meet their deadlines or not. The processor cycles are divided
into hard and soft rcal-time tasks. First, the processor utilization of the hard periodic
and sporadic activities are determined and the rate monotonic algorithm is applied,
then the remaining processor time is assign to soft aperiodic activities. It allows also
to check the schedule for more general task sets which accesses shared resources. As
long as there exists a schedulability test, the ITDS can adopt other scheduling poli-
cies like EDF.

The integrated time-driven scheduler can schedule the tasks based on their deadlines
as well as to the task criticality in the case of transient overload (cf. 3.2 & [80]).
The scheduling policy is separated from the scheduling mechanism layer. The sched-
uling: policy was implemented as a self-contained kernel object, and the mechanism
layer performs dispatching and blocking of the threads.

RM|| RM | |RM Policy Objects:
pLl|Ls [[RM[{ps |[pore| | [{EP | [rrof [Rr| 77"

DL: Earliest Deadline First

LS: Least Stack Time

ITDS Scheduler Object RM-DS: RM with Deferrable Server
RM-POLL: RM with Polling
RM-BG: RM with Background

FP: Fixed Priority

Low-Level Scheduling Mechanisms FIFO: First in First out

RR: Round Robin

(78]

Figure 8. The Structure of the ITDS Scheduler

Static scheduling policies such as rate monotonic are implemented as well as
dynamic methods like EDF or least laxity. For comparison with real-time sched-
uling methods common scheduling algorithms like FII'O, round robin and fixed pri-
ority were also implemented. The ITDS scheduler can guarantec schedulability of
hard periodic tasks, value function based soft real-time task scheduling, and overload
control bascd on the value functions of the aperiodic tasks.

The ARTS kernel provides a tool set for predicting the behavior of the system and
for run-time monitoring. The schedulability analyzer —called Scheduler 1-2-3— 1s a
X 11-window based interactive schedulability analyzer for creating, manipulating, and
analyzing sets of real-time tasks. It can be used to predict the timing effects due to
the software and hardware modification and together with other tools —such as the
timing tool and the real-time monitor debugger— as a synthctic workload generator.
The objectives are:

* Schedulability analysis: Verification of the schedulability of any given hard decad-
line task set under scheduling algorithms like EDF, rate monotonic etc.

* Response time analysis for aperiodic tasks: The performance of soft, aperiodic
tasks can be computed.

+ Convenient interface: Interface through which the user can perform the
schedulability analysis.

» Synthctic workload generator: Workload table.
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The ARM (Advanced Real-Time Monitor) is a tool to analyze and visualize the
run-time behavior of the target nodes in real-time. The objectives are:

 Visualization: It visualizes the system activity at an arbitrary level of abstraction.

» Monitorability analysis: The performance degradation due to the
monitoring/debugging features can be minimized and estimated beforehand.

* Remote debugging

‘The scheduling policies of ARTS can easily be changed or other ones can be added
by the user because the policies are implemented as kernel objects [78].

3.6.2 YARTOS: Yet Another Real-Time Operating System

YARTOS was developed at the University of North Carolina at Chapel Hill as an
operating system kernel to support conferencing applications that uses digital audio
and video, and supports a 3-dimensional graphics display system that is used for
research in virtual reality, It is a message passing system with a semantic of inter-
process communication that specifies the real-time response that an operating
system must provide to a message receiver [37]. YARTOS runs currently on IBM
PS/2 workstations (Intel 80386 processor) interconnected with a 16Mbit Token
Ring network to support digital audio and video. IBM-Intel Action Media 750
adapters are used for the acquisition, compression, decompression, and display of
the digital audio and video [38].

Programs which are executed under YARTOS are compiled nto a set of sporadic
tasks that share a set of serially reusable, single-unit resources. A sporadic task is a
sequential program that is invoked in response to the occurrence of an event. An
event is a stimulus that may be generated by processes external to the system (e.g.
an interrupt from a device), or by processes internal to the system (e.g. the arrival of
a message). Software objects like abstract data types that are shared by multiple
tasks represent a resource in YARTOS. For a given workload, YARTOS has two
goals:

* To guarantee that all requests from all tasks will complete execution before their
deadlines.

» To guarantee that no shared resource is accessed simultancously by more than
one task.

Therefore, an optimal, preemptive algorithm for sequencing of such tasks on a single
processor was developed [35; 36]. It is optimal in the sense that it can provide the
two guarantees whenever there is any possibility to do so. An efficient
schedulability test for a given task set was also developed.

The scheduling model is composed of tasks and resources. The workload consist of
a set of n sporadic tasks (7i...,T.) and a sct of m serially rcusable, single unit
resources (M,...., M,,). A task is described by a pair T= (£, R), where £ is the
maximum amount of processor time required to execute the program called the
computational costs, and R is a response time parameter derived from the rate.
When #; are the number of operations on shared resources performed by an invoca-
tion of task 7; with e;...., e, as the maximum e¢xecution time required for each opera-
tion and ey the maximum execution time for the remaining code then
Ei=e,+e + ... + e,

The algorithim to schedule the task results from the integration of a synchronization
scheme for access to shared resources with the EDIF algorithm [47]. A task has two
notions of deadline, one for the initial acquisition of the processor, and one for exe-
cution of operations on resources. 'I'o avoid priority inversion tasks are provided
with scparate deadlines for performing operations on shared resources. At the mvo-
cation of a task at time ¢ it has, as in traditional LDE scheduling, the deadline
d=(+ R. 'This is the deadline for the task to complete execution. If a task starts an
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operation on a shared resource at time ¢ then at this time its deadline will be equal
to min(£ + R, t +1 4+ Rmin); Rmin 1s the smallest response time of all tasks which can
access the resources. Therefore, a task which is invoked at 4 and wishes to perform
an operation on the same resource will not preempt the other task, because its dead-
line is necessarily greater than ¢ 4+ Rni,. This method ensurcs mutual exclusion on
resource operations. It is optimal in the sense that it can schedule a sct of tasks,
without inserted idle time, whenever it ts possible.

There is an efficient schedulability test for the algorithm. The first requirement for a
feasible schedule is like given in [47]:

._i_<]

The second demand is:
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Here, n is the number of tasks, n denotes the number of operations on shared
resources performed by an invocation of task 7;, and R,..x is the smallest response
time requirement of the tasks which are accessing the rcsource M,. This condition
applies only to task that requires access to resources, and quantifies the processor
demand that occurs when tasks simultaneously try to access a shared resource [37].

To ensure that all computational activities are dispatched by the scheduler, tradi-
tional non-dispatched activities like interrupt handler are implemented as tasks.
They are scheduled in the same manner as user tasks. The reason for this was the
demand to ensure that tasks with near deadlines do not fail. HHere, a traditional inter-
rupt handler is a task that is created by the user and invoked by a hardware signal.
The deadlines of these tasks are based on the expected inter-arrival time of the inter-
rupt. Although this information may not be reliable it turned out that it is not a
problem for the YARTOS applications.

According to its designer YARTOS is a useful vehicle for real-time applications that
are primarily concerned with processing of long-living, uniform data-streams in par-
ticularly CM-applications [37].

3.6.3 Split-Level Scheduling for CM

The split level scheduler was developed within the DASII-project at the University
of California at Berkeley. Its main goal is to providc a better support for CM appli-
cations. It was developed to prevent CM application from timing errors and lost
data due to the overhead of user/kernel interaction such as CPU scheduling and
[/O, or any concurrent system activity. A typical application is the ACME
(Abstractions for CM) I/O server which supports applications such as audio/video
conferencing, editing, and browsing. The supported physical devices are speakers,
microphones, video displays, and video cameras [5]. It allows to create logical
devices which are associated with physical 1/O devices, and do /O of CM over
CM-connections. For each of the CM-conncections a nctwork 1/O process exists
which transfers data between an internal buffer and the network. Each CM /O
device is associated to a device [/O process. I'or non real-time cvents such as com-
mands from the window scrver and request for CM-connection cstablishment there
arc cvent-handling processes. It is implemented on Sun SPARCstations. It is
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written in C+ + and uses a preemptive lightweight process library. I/O is done
using UNIX asynchronous 1/O [18].

The applied scheduling policy is deadline/workahead scheduling. The LBAP-model
introduced in {3] is used to describe the arrival processes. Ciritical processes have
priority over all other processes and they are scheduled according to the EDF algo-
rithim preemptively. Interactive processes have priority over workahead processes as
long as they not become critical. The scheduling policy for workahead processes is
unspecified but may be chosen to minimize context switching. For non real-time
processes a scheduling strategy like UNIX time-slicing is chosen.

The CM applications are multiple processes that are sharing a virtual address space
(VAS). The so called “split-level scheduler” uses lightweight processes (LWPs).
They have the advantage, that user/kernel interactions are minimized, so that
context switches within a VAS are fast. Figure 9 shows the structure of the split-
level scheduler,

User VAS User VAS

@ @
.

User-level
Scheduler (ULS)

Usched Ksched
Area Area

User

Systems Calls s

-

Kernel-level Scheduler  (KLS)

L18]

FFigure 9. User-Level and Kernel-Level Parts of the Split-Level Scheduler

There is one kernel process and multiple LWPs per VAS. A LWP sleeps or changes
the priority by calling its user level scheduler (ULS). The ULS checks whether its
VAS still contains the globally highest-priority LWP. This is done by examining an
area of memory that is shared with the kernel. If the highest-priority LWP is in the
own VAS the LWDP context switch i1s done without kernel intervention, otherwise, a
kernel trap is done. The kernel-level scheduler (KLS) decides then according to the
mformation in the shared memory segments which VAS should now be executed.

According to the designer malicious or incorrect programs may keep VAS pre-
emption masked indefinitely, or it may execute indefinitely without changing its
deadline. To prevent the other processes from starvation due to this behavior they
propose the implementation of a watchdog timer. This watchdog is used to detect
such conditions, and to kill or demote the offending process.

Split-level scheduling is a effective scheduling method. Compared with the perform-

ance of the normal UNIX scheduling mechanism it is better because it reduces the
number of user/kernel interactions [18].
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3.6.4 The HeiTS-AIX Approach
The HeiTS multimedia communication system is designed to run on different plat-
forms. Apart from OS/2 running on PS/2, we have IBM RISC System/6000 com-
puter running AIX version 3.1. Both have the task to process CM. The OS/2 and
the AIX approach arec both based on the same resource model (LBAP-model), have
the same QoS-parameters and the same requirements on scheduling [8].

Fach connection is associated with an own system process. The communication
protocols up to layer 4 are processed in this system process. The communication of
the different layers is done by up-calls and down-calls which are implemented as
function calls.

AIX, like UNIX, has a user and a kernel space. Interrupts are processed in the
kernel. Processes can run in the kemel or in the user space. The scheduling in AIX
is priority driven. Time-critical tasks can be processed with 16 different priorities
[33]. Processcs are preemptive. The kemel can be extended by additional device
drivers, kernel processes or system calls. Program components can be programmed
as system calls to process them in the kemel. Processes in the kernel can not be
interrupted by signals. Kernel processes can only use a restricted set of system calls.

Normal AIX processes are used for the processing of the CM-data. A data stream is
associated with one process. This process is used only for one connection, it serves
every incoming message from this connection. Since the messages can arrive in
bursts, enough buffer has to be provided for each connection. DFach message is
inserted in a queue that is assigned to the process. After the processing of a message
the next message is taken from the queue.

The scheduler is implemented as a set of functions that are called during the inter-
rupt processing or by the application programs. The scheduler determines the priori-
ties according to the rate monotonic algorithm. There are 13 priorities for
guaranteed and best-effort processes (best-effort processes run with a lower priority
than guaranteed processes), one priority for aperiodic processes (13), guaranteed
workahead (14) and best-effort workahead (15) processes.

Every incoming message is indicated by an interrupt. The interrupt handler deter-
mines the connection the message belongs to. Subsequently, the interrupt handler
storcs the message in an allocated buffer and queues the message. Buffer is allocated
for the number of messages indicated by the maximum burstiness. All necessary
information about a conncction is stored in the scheduling-cache. Only messages
which obey the LBAP specification are accepted. The process takes a message from
the queue and calls the scheduler. Figure 10 illustrates this processes and shows the
structure of the AIX meta-scheduler.
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Figure 10. Structure of the AIX Meta-Scheduler

Messages which are ahead of schedule are not processed with a workahead prionity.
A process checks if a message arrived in time or ahead of schedule. If the message is
ahead, the process starts a timer and blocks the processing till the logical arrival time
is reached.

There is no mechanism to observe the run-time behavior of the processes without
causing a considerable overhead. This is also the reason why there is no sporadic
server for the processing of aperiodic tasks and why best-effort processes have to run
with a lower priority compared to guaranteed processes. The processing time which
1s reserved for a best-effort process is the average processing time of this process.
There is no reason to give a best-effort process a lower priorily than a guaranteed
process as long as it does not exceed the reserved processing time. Only when a
process exceeds its processing time, it must run with a lower priority. Since it is not
possible to measure the processing time, best-effort processes have to run with a
lower priority then guaranteed processes.

Measurements of the system performance show that the overhead caused by the
scheduling and context switches are not negligible. A context switch takes between
36us and 48us. To start and stop the timer that indicates the logical arrival time of
messages takes about 82us. To decrease the overhead caused by context switches it
is proposed to build a non-preemptive scheduler.
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4.0 Heidelberg Multimedia Operating System Support

The goal of the Ilcidelberg Multimedia Operating System Support (I1eiMQOS) is to
provide the necessary real-time support needed by CM-applications. FFigure [1 illus-
trates the position of 11eiMOS within the I1ei' TS project. In this paper we focus on
CM-scheduling as the core component of 11eiMOS.

HeiDI HeiCAM ITei...
audio/video remote camera
distribution | | control
HeiMAT multimedia application toolkit
vk HHeiTS transport
network
connectivity OS% real time
resource
00 management
oS GUT
U buflfer HeiMOS

Figure 11. HeiMOS and its Relationship to HeiTS

The component HeiDI (Heidelberg audio-video distribution application) is a distrib-
uted audio-video application developed especially for IleiTS [55; 74]. Another
application i1s HeiCAM (lleidelberg remote camera control) a remote camera
control in a distributed environment [64]. The transport intetface of IHeiTS makes
its services available to all applications. They are implemented as function calls.
An object oriented interface to the communication system and other multimedia
specific functions are provided for the applications by HeiMAT (lleidelberg Multi-
media Application Toolkit).

The processing of time-critical data requires a careful allocation and manipulation of
buffer space. To avoid overhead through copying data the standardized buffer man-
agement provides virtual copying. The operating system shield (OSS) is a standard-
ized interface to all system extensions and in particular to the buffer management.

0S/2 provides no sufficient support for the processing of CM-tasks in real-time.
HeiMOS is intended to provide this support. It is designed to ensure that all time-
critical data are processed to meet their deadlines.

4.1 Hooks for Real-Time Processing in OS/2

HetMOS is based on the operating system OS/2. In this section we give a brief over-
view on OS/2 and discusses its real-time capabilities. OS/2 is a multitasking system.
Different tasks can run simultancously either in the same program, or in different
application programs. Fach program runs in a virtual address space. 'The OS/2 dis-
patcher coordinates the programs so that they do not influcnce each other. The
major change of the new version 2.0 is the step from 16-bit programming environ-
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ment to 32-bit programming model that enables applications, sub systems, and the
system itself to utilize the 32-bit register set, and the 32-bit instruction and
addressing mode, as well as memory objects larger than 64KB [39].

The purpose of the OS/2 scheduler design is to optimize response rather than
throughput. The system is not concerned about ensuring that all runable threads
get at least some CPU-time, and the system is not primarily concerned about trying
to keep the disk busy when the highest-priority thread is compute bounded. This
policy and some other provisions with real-time capabilities makes OS/2 suitable for
the design of time-critical applications on top of it.

411 OS/2 Process Management
0S/2 was designed as a time-sharing operating system without taking into account
serious real-time applications. Let us start with a short description of the available

process management, which was extracted from the available product information
[45; 61; 32; 30]

In OS/2 three levels within a multitasking hierarchy exist:

= A session represents a logically separated unit of screen, keyboard, mouse and
their related processes. Sessions can be arranged in parent and child sessions.
Each session contain at least one process. '

= A process is the logical unit of resources, including memory, files, and devices
that are allocated to run a process. Like sessions, processes can create other
processes leading also to a child — parent dependency. A process belongs to
one, and only one session. Each process has one or more threads.

» The dispatchable unit of execution is called a thread. Each thread belongs to
exactly one process. A thread shares the resources allocated by the respective
process. Threads are not organized hierarchically. Each thread has its own exe-
cution stack, register values and dispatch state (either executing or waiting to
execute).

Whenever a thread is created it belongs to a priority class. Four prionty classes
exist:

1. The time-critical class is reserved for threads that require immediate attention.
Such threads will be used for communications and real-time applications.

2. The fixed-high class is intended for applications that require good responsiveness
without being critical.

3. The regudar class is used for the executing of normal tasks.

4. The idle-time class runs threads with a very low priority. Any Thread in this
class 1s only dispatched if no thread of any other class is ready to execute.

Within each class 32 different priorities (0, ...,31) exist. Through time-slicing
threads of equal priority have equal chances to execute. A context switch occurs
whenever a thread issues a call to get access to an otherwise allocated resource. The
thread with the highest priority is dispatched, the time-slice is started again. At the
expiration of the time slice, OS/2 can preempt the dispatched thread if other threads
of cqual or higher priority are ready to exccute. ‘The time slice can be varied
between 32 msec. and 65536 msec. (by setting the variable TIMESLICE in the file
CONFIG.SYS). The default value is 250 msee.

‘T'hreads of the regular class may be subject of a dynamic rise of priority as a func-
tion of the waiting time. Whenever the variable PRIORITY is set to AUTO-
MATIC in CONFIG.SYS this mechanism is enabled. OS/2 boosts the priority of a
thread which has waited longer than specified by the MAXWAI'T variable.
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By definition of the variable PRIORITY = FIXED this mcchanism is prohibited,
and regular threads behave as those of any other class.

The OS/2 scheduler is priority based and preemptive, i.c. if a higher-priority thread
is ready to execute, the scheduler preempts the lower-priority thread and assigns the
CPU to the higher-priority thread. The state of thc preempted thread is recorded so
that execution can be resumed later.

4.1.2 Provision of Real-Time Capabilities by Physical Device Drivers

0S/2 provides the possibility to use physical device drivers (PIDI)) that run at ring 0
for applications with real-time requirements. These PDDs can be made non inter-
ruptible. An interrupt that occurs on a device (e.g. arriving of packets) can be ser-
viced from the PDD immediatcly. As soon as an interrupt happens on a device, the
PDD gets control and can do all the work service that interrupt. This can also
include tasks which could be done by application processes running in ring 3. The
task running at ring 0 should leave the kernel mode after 4 msec. (called the “4 ms
Rule™).

In general, ring 0 applications are considered to service a request of time-critical
tasks quicker then ring 3 applications because of their lower dispatch times.

The employment of a PDD has several disadvantages. Its implementation is more
complicated then the implementation of a ring 3 application. The PDD is bounded
to its device. It only services requests from its device regardless to any other events
happening in the system. Different streams that request real-time scheduling can
only be serviced by their PDDs. They run in competition with each other without
the possibility to coordinate or manage them by any higher instant. This is insuffi-
cient for a multimedia system where messages can arrive at different adapter cards
(e.g. DVI, FPC). It would be a reasonable solution for a system where streams
arrive at only one device and no other activity in the system has to be considered.

4.1.3 Provision of Real-Time Capabilities by Time-Critical Threads
Time-critical tasks can also be processed together with normal application running
in ring 3. The critical tasks can be serviced by threads running in the priority class
time-critical with one of the 32 priorities within this class. The thread with the
highest priority gets access to the CPU. All other threads are scheduled according to
their priorities. A thread is interrupted if another thread with higher priority requires
processing. Normal applications run as regular threads.

The main advantage of this approach is the control and coordination of all time-
critical threads. One instance running with a higher priority then all other threads
can perform resource management, observe their behavior, and determine a schedule
according to specified policy for all time-critical tasks in the system. The task may
involve different devices of the system. Their competition for the CPU is rcgulated
and through the resource management and the scheduler, a guarantec for their proc-
essing within the required time bounds can be given. Internal time-critical tasks (e.g.
stored audio or video from a disk) can also be considered.

The normal system scheduler is used to schedule all tasks. “Normal” applications
do not have to be considered by the meta-scheduler. They will run during the time
where no time-critical threads are ready for exccution. The resource management
should thercfore not usc the whole processor time for time-critical threads. We
decided to use time-critical threads with the known limitations.
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4.2 Scheduling Continuous Media in the HeiMOS Environment

Real-time scheduling in HeiMOS is done through a system process called meta-
scheduler. To employ the introduced algorithms and to build an application on top
of the operating system the tasks have to serve certain requirements. In this chapter
we describe this requirements

4.2.1 Interaction with Resource Management
Periodic task such as the processing of CM data have regular interarrival times equal
to their periods and deadlines that coincides with the end of their current periods
[71]. Different CM-streams have different requirements concerning their deadlines.
For instance, the processing of bitmaps is more tolerant to deadline failures then the
processing of compressed video. To meet the deadline requirements of all CM data
types, we consider all deadline to be hard. -

In order to build a feasible schedule, we have to know the rate and the processing
time. From the rate we derive the logical arrival time and the deadline of a message
according to its order number. At connection establishment, the processing time is
necded by the resource management to find out if it is possible to build a feasible
schedule with the new task.

With every new connection the resource management has to perform a
schedulability test. It has to check if it is possible to guarantee the required amount
of processing time within the given delay bound in every period. The efficiency of a
schedulability test is a major evaluation criterion for a scheduling algorithm. To
avold unacceptable delays during the connection establishment and to keep the
CPU-time required by the schedulability test low, it should be simple and easy to
perform.

The processing of a CM-task starts with the arrival of the message at the network
interface and includes network hardware interrupt handling, session identification,
protocol and user level processing. According to [1] there are five processing steps.

1. Packet arrival in the network interface device
2. lHardware interrupt to the CPU

3. Session identification

4. Protocol processing

5. User level processing

The end of the session identification is the first moment where all necessary data for
the scheduling of the message like connection, rate, and processing time is known.
IFrom this moment on a message can be scheduled according to a specific policy.
With a preemptive scheduling scheme a message is processed from its arrival to the
session identification with the highest priority. The currently processed message is
subject to priority inversion when the newly arrived message is belonging to a low
priority task. T'he resource management has to consider some laxity.

4.2.2 CM Scheduling: Goals
The main goal of our CM real-time scheduling is to schedule the resources (e.g.
CPU) that can potentially become bottlenecks in a way that allows reservation
(associated with performance guarantees) to be made to individual clients [2]. The
problem is to find a feasible schedule which schedules all time-critical CM-tasks in a
way that each of them can meet their deadlines. This must be guaranteed for all
tasks in cvery period over the whole run time of the system.
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Two conflicting goals have to be considered:

1. In a multimedia system time-critical CM-tasks and non-critical DM-processes
will run concurrently. An uncritical process should not suffer from starvation
because time-critical processes are executed [73]. A multimedia application
relies as much on text and graphics as on audio and video. Therefore, not all
resources should be occupied by the time-critical processes and their manage-
ment processes.

2. On the other hand a time-critical process must never be subject to priority
inversion. This means that it should not kept from running by non-critical, or
lower priority processes for infinite time. The scheduler has to cnsure that any
priority inversion is reduced as far as possible [54].

Apart of the overhead caused by the schedulability test and the connection establish-
ment, we have to consider the costs for the scheduling of every message. They are
more critical because they occur periodically with every message during the proc-
essing of real-time tasks. The overhead generated by the scheduling and the oper-
ating system has to be added to the processing time of the real-time tasks.
Therefore, it is favorable to keep them low. Particularly difficult is to observe the
timing behavior of the operating system and its influence on the scheduling and the
processing of time-critical data. It can lead to time garbling of the application pro-
grams. Therefore, operating systems in real-time systems can not be viewed detached
from the application programs and vice-a-versa [59].

4.2.3 CM Scheduling: Issues to be Considered
At the connection establishment the message rate is indicated. Through the burst
parameter a short time violation of the rate is possible. With a static priority algo-
rithm a high priority thread would process a message that is ahead of schedule at the
expense of lower priority tasks. To avoid this, a rate control mechanism has to be
included that assigns early messages a lower priority then critical messages or delays
their processing until their logical arrival time has elapsed.

The second parameter that is indicated by the connection at the connection estab-
lishment is the processing time. A task that permanently excceds its guaranteed
processing time violates the calculated schedule. With preemptive tasks only proc-
esses with a lower priority then the offending process are affected. All processes are
affected if the tasks arc non-preemptive. Therefore, the CPU-time needed by single
tasks for processing has to be controlled. Neither in AIX nor in S/2 the pure
CPU-time can be measured. The measurement of the processing time always
includes interrupts and other delays.

A problem which should not be underestimated is the overhead caused by the
scheduling itself, the controlling of processes, the setting and changing of priorities.
With a dynamic algorithm a priority driven scheduler might have to change the pri-
orities of all processes at the arrival of a new message. The resource management
and the scheduler have to be considered as overhead. This can cither be done by
adding the processing time needed for the scheduling to the processing time of each
task, or by a spccial process that has to be included in the schedule.

4.3 HeiMOS OS/2 Approach

As a result of our investigations on traditional real-time scheduling algorithms and
alrcady implemented prototypes, we developed two mecthods for the scheduling of
CM. The methods arc designed for their implementation on top of the OS/2 oper-
ating system [51]. We assume that tasks arrive according to the LBAP model.
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In the end-systems, messages from different connection are processed. Each con-
nection is associated with a single thread running in the priority class time-critical.
Each of this threads are associated with a own message queue. All messages from a
connection are processed within this thread up to the transport layer. The commu-
nication between the layers is realized as up- and down-calls. The application pro-
grams run on top of the transport layer. Apart of the threads for the different
connections, there are special threads to perform the connection establishment and
to control the application threads. Every incoming message triggers a hardware
interrupt. The second level interrupt handler (SLII1) generates then a software inter-
rupt. It runs with the highest priority within the priority class time-critical. From
this point on the scheduler has control over the message and is able to schedule it
according to a specific policy. The number of threads is restricted by the number of
different time-critical priorities. The upper bound of connections with different pri-
orities is 27. Prorities 3, ..., 29 are called critical priorities. We do not distinguish
different priority classes for guaranteed and best-effort processes. If at the connection
establishment a best-effort process is indicated by the resource manager, a critical
priority is assigned to that processes. T’he priority is lower then the priorities of all
guaranteed processes. Prority | is used by workahead processes. Priority 2 is pro-
vided for threads which exceeds their specified processing time. This priority is
called penalty priority. If more than 27 connections are necessary a constant ratio
grid could be used for the priority assignment [67]. We consider the number of pri-
orities as sufficient. Therefore, the implementation of a constant ratio grid is not
necessary.

In both methods we employ a control mechanism to monitor the behavior of the
CM-tasks. To guarantee the processing of tasks the scheduler must have the possi-
bility to monitor their behavior and to ensure that they do not violate the data con-
straint [4]. This includes a mechanism that is able to observe and react on
offending behavior.

4.3.1 Queue Monitoring

This method is based on the EDF-algorithm. We consider one system process with
scveral different threads for different applications. ¢ A own message queue is assigned
to each thread.

4 An extension of the model that allows o have different system processes which all perform the function of the meta-
scheduler is possible. ‘The different processes are self-coordinating through a table in a shared memory segment. For
the sake of simplicily we explain the method only with on system process.
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Figure 12. Structure of the Queue Monitoring Scheduler

The major tasks of the meta-scheduler are performed by the master thread that is
not assigned to an application function. It runs with priority 30 in the priority class
time-critical. Every incoming message is queued in the message qucue of the master
thread. If a message indicates a connection establishment the resource manager has
to check if sufficient CPU-time is left to accept the connection. The SLIII sends all
messages to the message queue of the master thread. Messages that are ahead of
schedule are queued to their logical arrival time in the message qucue of the master
thread. At every scheduling-point the master thread dispatches the message with the
earliest deadline to the message queue of its application thread. The master thread
then sleeps for the duration of the guaranteed processing time plus laxity for pos-
sible interrupts. If there is any message in the message queue of the master thread
that becomes critical during the run-time of a task and has an earlier deadline than
the currently processed one the master thread only slecps to the logical arrival time
of that message. It preempts the former thread calculates its processing time and dis-
patches the critical message to the message qucue of its application thread. The
master thread has to ensurc that the application thread of the new task has a higher
system priority than the application thread of the old task. With cvery incoming
message the master thread determines immediately a new schedule. A running thread
is preempted during the rc-scheduling.

If a thread has not finished processing within the given time it is preempted. A new
task is chosen for processing. The preempted task can finish processing on a lower
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4.3.2 Distributed

priority if there is enough processor time left. Every new message of this task is
scheduled according to its deadline. Tasks are only processed for the guaranteed
amount of processing time with a critical priority. A malicious or incorrect program
does not starve other tasks. Since all messages are scheduled according to their dead-
lines bursts are no processed at the expense of other tasks. There is no workahead of

messages if the processor is idle.

Our main intention was to keep the scheduling overhead as low as possible. Priori-
ties only have to be changed in exceptional situations. To reduced this overhead
base priorities can be assigned to each thread according to their rate. Nevertheless,
the overhead through the scheduling is still dynamic.

Access Control and Process-Time Monitoring
Tasks are scheduled according to the rate monotonic scheduling policy. There is

one system process with multiple threads.’

Non Real-Time Environment

Application
Control | Real-Time Al R
- Environment
I'hread Connection list
W
Rate-
Main

Message

Thread Queue

L Message Queue

Connection Table

Figure 13. Structure of the DACProM Scheduler

I'he Distributed Access Control and Process-Time Monitoring (DACProM) meta-
scheduler consists of a main thread, a control thread and several application threads.
The main thread and the control thread are not assigned to application

5 'I'his model also can be extended to have more then one system process Lo perform scheduling [unctions.
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functions.The main thread runs with priority 0 and the control thread with priority
30 in the priority class time-critical. A message that indicates a rcquest for a con-
nection is send to the message queue of the main thread. The main thread assigns
an application ‘thread to the connection if the schedulability test was positive. The
message queue name of the application thread that is associated with a conncction is
stored in a table that is shared with the SLIII. After the connection establishment
every message from the connection is queued in the message quecue of its application
thread. A unique priorty is assigned to each connection according to the rate

monotonic algorithm. This priority corresponds with the system priority of the
thread.

In case of bursty traffic a high priority thread would process messages with the high
system priority ahead of schedule. Low priority tasks would miss their deadlines
while the messages of the high priority thread would be processed ahead of schedule.
To prevent from such behavior and to control the rate of the messages each thread
controls the arrival times of its messages. After each processing a thread sleeps to the
logical arrival time of the next message. Workahead messages are queued till their
logical arrival time is reached. The requests for all tasks are now periodic as required
by the rate monotonic algorithm.

The control thread observes the processing behavior of the application threads. The
processing time p(f) of a message is measured. During a control period all proc-
essing times are summed up p = (1) + - + p(n). Periodically the control thread

14
checks the average processing time dt = %.“ If dt is larger then the specified proc-
essing time the offending thread is set on the penalty priority by the control thread.

The scheduling overhcad is kept constant by the assignment of static priorities to
each connection. The rate control is performed through each application thread
after the processing of every message. The control thread prevents from the perma-
nent violation of the schedule through offending tasks.

4.3.3 Design of the Actual Implementation

4.3.3.1 System Timer Constraints
Two main criterions were considered for the assessment of the two alternatives.

1. The scheduling overhead caused by each method
2. Their adaptability to operating system constrains

The first alternative is based on EDF, the theoretical processor utilization of this
algorithm is 100%. The overhead of the scheduling is dynamic. The amount of tasks
and messages influences the amount of required scheduling decisions and control to
be done by the scheduler. The overhead turned out to be considerable

The second alternative is based on the rate monoton scheduling algorithm. The
maximum processor utilization is 69%.” The scheduling overhead is nearly constant.
Since we have also non-cntical tasks running on the computer which are not sched-
uled by the meta-scheduler we do not consider the bounded processor utilization as
a severe drawback.

During the design of the meta-scheduler we discovered that the timers provided by
the operating system are not sufficient for the employment in real-time systems.
The OS-timer calls are specified in milliseconds. The actual duration of the specificd

6 n = number of processed messages during the period.

7 This boundary can be widcly extended as described in chapter 3.3.
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time interval will be affected by the hardware clock tick. A tick interval lasts approx-
imately 31.25 milliseconds. Any time interval that is specified in milliseconds will
essentially be rounded up to the next clock tick [34]. Multimedia applications
require a timer granularity in the range of milliseconds or even finer [25]. There is
no reasonable way to vary the interval of the hardware clock tick. Programs or
device drivers that provide a more accurate time measurement are not varying the
interval of the hardware clock tick.

A device driver called OS2HRT provides a timer with a granularity in the
nanosecond range. The high resolution timer function has two output parameters.

e limer.lic
e timer.count

The timer.tic parameter counts the tick of the time of day clock. This clock is
advanced by one tick approximately 18.2 times per second (every 55 milliseconds).
To obtain a better accuracy the 8253 Timer/Counter component can be used. Timer
0 runs continuously counting down from 65536 to 0. Each time it reaches 0, it trig-
gers an interrupt which advances the time of day clock by one tick. The 16-bit
counter in the 8253 changes every 840 nanoseconds. The timer.count contains this
counter. With this device driver we achieve a granularity of 840 nanoseconds [48].

The time of day clock is not identical with the hardware timer. The content of
timer.count is not the number of counts which elapsed since the last hardware clock
tick occurred. A hardware clock tick occurs approximately every 31.25 milliseconds
whereas the time of day clock tick occurs approximately every 55 milliseconds.
Thercefore, the two timer have to be synchronized in order to use them simultane-
ously.

4.3.3.2 Structure of the Implemented Meta-Scheduler
Because of the insufficient timer support it was not possible two realize the intro-
duced alternatives in the proposed way. For the first proposal the timer insuffi-
ciency is such a severe drawback that it was not possible to find any reasonable
solution for the implementation of it. The second design proposal was modified.
The high-resolution timer is employed when the granularity of the hardware timer is
insufficient.

The functions of the main thread and the control thread are not affected by the
timer problem. The rate control through a simple OS-sicep is replaced through a
modified mechanism. A thread does not sleep after the processing of a message. It
waits on the message queue for the arrival of a message. Bvery time a message
arrives the thread checks if it is ahead of schedule. In this case it checks with the
synchronized timer if it is possible to sleep to the next tick of the hardware clock. A
thread is set on a workahead priority if the next hardware tick occurs later then the
logical arrival time of the message, or if it resumes processing before the logical
arrival time is reached. Every thread has to check at the beginning of processing if
there is any higher priority thread running with the workahead priority that becomes
critical during the processing of the own task. In this case the priority of the
workahead thread is reset on its original priority. If a thread ends processing in a
workahead state 1t resets its priority. ‘

To measure the processing time of each message, the beginning of its processing is
recorded. After the end of the processing, the difference between the start time and
the end is calculated. If the processing is interrupted by another thread with a higher
pniority the high priority thread has to calculate the present processing time and
after its own processing to reset the start time of the intecrupted thread. Problems
occur with asynchronous 1/O. A thread is inactive as long as an asynchronous
cvent 1s processed.  Le, the thread gives up control and another task can be proc-
cssed by another thread during that time frame. It is not possible to measure the
processing time of a thread with a lower priority that starts processing in that time
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frame because the thread that performs the asynchronous actions resumes processing
immediately after the end of the asynchronous event. The present processing time
of the low priority thread can not be determinatcd when the high priority thread
resumes processing. Since we only record the beginning and the end of the proc-
essing and calculate the processing time out of this the measurcd processing times
are inaccurate. Apart of interrupts it always includes the time where a thread was
inactive during an asynchronous event. -

The scheduling method we apply prevents from the processing of bursts through
higher priority thrcads at the expense of low priority threads. Rate control was
implemented using the timing tools of the opcrating system. The overhead caused
has to be accepted because there is no other way to serve the premises of the rate
monotonic algorithm. The measured processing times does not reflect the exact
CPU-time needed by a task. These are only a rough estimate of the time a task
needs the CPU for processing.

4.3.4 Evaluation of the HeiMOS Solution

4.3.41 Performance Measurements of the Implementation
The modified DACProM meta-scheduler was implemented in C under OS/2 on a
PS/2 with 25Mhz and a 80486 processor. There are several changes from OS/2
version 1.3 to OS/2 version 2.0. We took these changes into account during the
development and kept the programs closely compatible for both versions.

A full description of the implementation can be found in [51]. Since the meta-
scheduler is a basic component of HeiTS we have not yet had the opportunity to
gather experience with genuine multimedia data generated and transferred through
HeiTS. Experiments and measurements have been performed using test programs
especially designed for this purpose. These test programs show that the meta-
scheduler meets the described requirements.

To estimate the performance of the programs we mecasured truncated portions of the
programs and important system calls individually. We found that the system call to
change prioritics requires approximately 73us whereas a context switch takes
approximately 47us. The processing time control takes for one connection 0.31 .
For two connections (.4 ms is required at average and every additional conncction
requires another 0.1 ms.

To set a thrcad on a workahead priority takes approximately four times the time
then required for simple DosSleep. The overhead for the control of the proccssing
time is acceptable but to be a useful tool for controlling it should be much more
precise.

4.3.4.2 Known Limitations of the HeiMOS Solution
During the design of the meta-scheduler we had to consider various restrictions
mainly through the operating system. This has negative effects on the functionality
of the mecta-scheduler. To evaluate the solution -we have to consider all thesc
restrictions and limitations. In this section we discuss them and show the limits of
our solution.

IZach single thread in the system is able to run with a priority in the priority class
time-critical. A thrcad running in this priority class without the knowledge of the
resource manager violates the calculated schedule, the processing guarantces given
by the resourcc manager are not longer valid. A malicious program can block the
whole system simply by running with the highest priority in the priority class time-
critical without giving up the control anymore.

In OS/2 it is not possible to measure the exact time a thread is using the CPU. Any
measurement of the processing time includes interrupts. Interrupts can not be disa-
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bled since they may contain information ncecessary for the scheduling. If a thread
was interrupted by a higher priority thread it also includes the time needed for the
context switch. During asynchronous I/O a thread gives up its control. Another
thread can use the CPU during that time. It is not possible to interrupt the time
measurement during the asynchronous event. Therefore, the measured time is only a
hint how long the processing of a task takes and does not reflect the time the CPU
is needed by a task. ’

The system timer provided by OS/2 is insufficient. The hardware timer is enhanced
by one clock tick approximately every 31.25 milliseconds. For a real-time system an
acceptable granularity would be in the millisecond range. With the High-Resolution-
Timer we have an accurate measurement tool. The problem is that it only can be
used by an active thread. The granularity of the rate control is therefore determined
by the granularity of the system timer. Our main objective was to build the meta-
scheduler on top of the operating system without intervening into it. To improve
our system we need more support from operating system side.

Real-time capabilities may be achieved in OS/2 by changing the OS itself: Either
the scheduler may be enhanced by a class of fast threads, perhaps without time-
slicing with the ability to mask interrupts for a short well defined period. Those
threads should be reserved for CM-tasks and monitored by a system component
with extensive control facilities. Performance enhancement of the scheduler itself
incorporating some mechanisms of real-time scheduling like earliest-deadline first or
least laxity first would be another solution.

The operating system has to provide sufficient timing and measurement tools. There
has to be a possibility to measure the pure CPU-time required by thread for the
processing of a task. A kind of watchdog timer would all so be sufficient. A system
timer is needed that supplies a granularity in the millisecond range. This may be
achieved through a single timer chip with the only task of triggering interrupts in a
specified granularity.

The meta-scheduler provides the necessary real-time support for CM-application. It

does not serve all requirements of a hard real-time system. [urther work has been
done by improving the timer capabilities in changing the OS2IIRT-device driver.
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5.0 Conclusion

Multimedia applications require real-time support cither through the operating
system or through another system component. The operating systems used in
HeiTS are not conceived for the extensive support of real-time processing. 11eiMQOS
is designed to provide this support in the end-systems of HeiTS. Therefore, a mcta-
scheduler was developed to run on top of OS/2. Time-critical tasks are scheduled to
serve their process requirements as well as their time requirements.

To find the best method to schedule time-critical multimedia tasks we evaluated
various real-time scheduling algorithms. It turned out that EDFEF and the rate
monotonic algorithm are most suitable for the solution of this problem.

Based on this two algorithms we developed two meta-scheduler to run under OS/2.
In the design the occurrence of multimedia data strcams according to the linear
bounded arrival process model and other restrictions had to be considered. One
alternative was implemented. It turned out that the system timer provided by the
operating system are not sufficient for real-time applications. To solve this problem
we employed a special device driver. With this device driver a timer granularity in
the nanosecond range can be achieved. This timer does not replace the system
timer since it is a measurement tool that only can be used by active threads. There-
fore, the necessary rate control is complicated and expensive. A method to control
processing times and to react on offending behavior of tasks was implemented. Since
the operating system does not supply the possibility to measure pure CP’U-time the
measured times include interrupts, context switch times, and asynchronous I/O.
Therefore, it is only a rough estimation of the real CPU-time needed by a thread.

An exact and reliable real-time scheduling should be provided, or at Icast supported
by the operating system. Either through the modification of the system scheduler, or
through real-time tools that enhance the real-timc capabilitiecs of the operating
system. It should provide an exclusive priority class especially for real-time proc-
esses that is controlled and monitored by a system process. Further, exact time and
measurement tools are needed.
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