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'I'his document is organized in five chapters. In cliaptcr two we discuss multimedia, 
real-time and their mutual relationship. This chapter also includes a bricf preserita- 
tion of the related resource management. Sevcral traciitional real-timc scheduling 
algoritlims, their suitability towards continuous mcdia processing and implcmetited 
multimedia prototypes are introduced in cliapter thrce. Cliapter four starts witli a 
bricf summary of the OS12 real-time capabilitics. Subsequently we introducc two 
altcrnativc concepts to schedule continuous media tasks unclcr O S / 2 ,  prcsent our 
actual design and the experiences with the runniiig prototype. 'The final chapter 
summarizes the work presented in this paper. 



2.0 Multimedia and Real-Time 

2.1 Multimedia 
Multimedia represents a growing area of interest in business, engineering and 
sciencc. Multimedia in computer science refers to tlie einployment of different 
mcdia ui computers. Computers are used as communication tools. The communi- 
cation is either between humans and the computer or  among liumans using the 
computer [26]. We distinguish between four major types of computer processed 
data: Text, gaphics, audio and video. Text and gapliics are the traditional media 
witli a time-uidependent presentation. Otlier media, such as audio and video have 
time-dependeiit data values. Therefore, their processing requireinents on  a com- 
puter system are different. On computer networks, for example, they are character- 
ized by their sensitivity to delays, high bandwidth requuements arid tolerance of 
high error rates [84]. 

A multimedia system should be able to handle eacli type of media independently. 
Multimedia systems have to be distinbuished from other technologies such as tele- 
vision, duc to the ability to allow the User more interaction witli the system [57]. 

Spccificdy, a niuftirnedia sjstem is defined as a syslem thui is characterized by [he 
conlpuler-conlroiied generulion, manipulaiion, preseniation, slorage and comrnuni- 
cation of independerzt discrere and conlinuous media [72]. hdultimediu is perceived as 
tlie lqicul, ineviluble convergence of four major lechnologies: lelecommunicution, pub- 
lishing, felevision und computing [83]. In the view of these authors a niultimedia 
systenl is a desktop or  network application which uses at least three of the following 
mcdia types: video, graphics, text, audio and animation. IIence, a computer system 
for tlie processing of multimedia application has to be able to handle many different 
kiiids of media. Tlie innovation that is provided by multirnedia systems is the inte- 
gration of all these media into a single system, obscuring tlie liiies between com- 
putirig, telecominunicatio~is, and even mass media. Since a gseat deal of experience 
lias bcen gleaned over tlie past forty years the major chdenge remabi is the incor- 
poration of contuiuous media into cornputer systems [26]. 

'I'lic inairi developments in computer science and electrical engineeriig that support 
multirnedia systems are fast processors, higli-speed networks, large-capacity Storage 
devices, new algorithms and data structures, graphics systems, innovative metliods 
for human computer interaction, real-time systeins, object oriented prograrnming, 
etc. [16]. 

Dxisting multimcdia systeins are, for exarnple, employed in cducation (e.g. as 
liypcrniedia systems [65]), Computer Supported Cooperative Work (CSCW) [19], 
and as informatiori systcrns (c.g for tlic presentation of art in inuseums [76]). 

'I'lic cxpression co~itinuous media (CM) for audio arid video is derived frorn tlie way 
iii wliicli tliey are perceived by liumans. CM consists of consecutive time-dcperident 
inforrnatioii uiiits. 'rirne attributes seinaiitics to tlie mcdia. In tliis seiise CM differs 
froin coininori discrete nierfiu (1)M) proccssed oii coriiputer such as text and 
graphics wliicli coiisist 01' time iridcpciidciit iiiformatioii valucs [26]. 

'I'lic rcpresciitatioii of (:M iii a digital systern is discrete. It consists of logical data 
uiiits ( 1  ,!)\J) bcirig, li>r exainplc, siiiglc audio-sainplcs or video-früines. 'I'lie inforina- 
tion contcrit of tlicse I.I)IJ is a valiie of a basic data type antl it rcprcscnts a piccc of 
tlic origiiial d:rt:i ovcr a ccr-taiii pcriod of tiine. 'l'he triplc m = (V,  'I', \ J )  defines tlic 
(:M-(lata. V is tlic valuc of tlie basic data type, 'I '  is tlic tiinc valuc aiid IJ is tlic 
duratioii ol' tlie <ligit:il strcain. 1;rorii tlicsc pararnctcrs wc caii dcrivc tlie lifc-spaii of' 



the CM-data L = [T,  T + Specificaiiy, CM is characteriied by a pcriodic contin- 
uous data stream. Aperiodic continuous streams can be transformcd into periodic 
streams. 

The digital re~rescntation of CM allows its handlirig by standnrd systern compo- 
nents such as the CPU, main memory, disk, or network. Other applications can be 
processed concurrcntly to the execution of CM opcrations with no adverse effects 
due to contention for hardware resources. Further, C M  and DM can be liandlcd in 
the same softwarc framework (opcrating systems, nctwork protocols, window 
system, programming languages) [23]. 

2.2 Real-Time 
The Gerrnan national institute for standardization DIN dcfines a real-time proccss 
in a computcr system as a process which delivers the resu1t.r o/ tlze processing in a 
given time-span. Programs for the processing of the data have to be availahle dtrrirtg 
the whole run-time of tlze system. The data may require processing to an a priori 
knavn time, or occur at a previouily not known inrtant [14]. 

A real-time system has the permanent task to receive information from thc environ- 
ment and to dcliver it to the environment within timc coristraints [6]. Speed and 
eficiency are not the main characteristics of a real-time system. The correctncss of 
a computation in a real-time system depends not only on  the rcsults of the compu- 
tation but also on thc time at which they are presented [67]. In a multimcdia appli- 
cation a failure occurs wheri the data of a video or a piece of music is prescntecl too 
fast o r  when it is presented with a considerable dclay. 'Therefore, the timc behavior 
of a real-time system has to be both deterministic and prcdictable [22; 241. In par- 
ticular two aspects have to be considered [63]: 

1. The processing of tasks in a strongiy restricted time interval. 

2. Temporal and logical interdependence between two processes that require proc- 
essing at the same timc due to their internal and external restrictions. 

Summarized, a real-time system can not only fail bccause of massive hardware or  
software failures, but also because the system is unable to exccute its critical work- 
load in time 1401. 

In real-time system we have both hard and soft deadlines which represent the latest 
timc for the prcsctitation of a processing result. A soft dcaanline is a deadline which 
cannot be exactly determined and where failitig does not produce an unaccepta\>lc 
result, e.g. starting and arrival times of planes or trains can considered to bc as soft 
deadlines. Ilnrd deadlines are determined by tlie physical characteristic of rcal-titnc 
proccsses. Tliey mark the border betwecn normal and failing behavior. Failing such 
a deadline causcs costs which can be measured in monetary (e.g. inefficient usc of 
raw materials in a process control system), aesthetical (e.g. garbled output from 
audio or  video), or Iiuman and environrncntal tcrms (c.g. accidents due to uritimely 
control in a nuclear power plant or fly-hy-wirc avionics system) [X]. 

l 'he detcrrninistic arid predictablc beliavior of a rcal-time system includes a guar- 
antcc requirement for timc-critical tasks. Such guararitccs cannot bc assured for 
cvents that occur at random intcnrals with unkriowri arrival timcs, processirig 
rcquircmcnts or deadlines. Furtlier, RU givcn guarantccs arc only valid undcr thc 
premisc that no processing machinc collapscs during ruri-tirnc of real-timc processcs. 
Summarized, task scheduling is a mattcr of botli rcliability and performancc [40]. 

2 " ) " indicatcs iliat T + I1 is riot part of tlic valid iirnc spar1 

Miiliiincdia arid Rcal-7'intc 4 
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all time-critical opcrations are pcriodic. Sclicdulability considerations for pcri- 
odic tasks are much easier than for sporadic ones [56]. 

For many applications missing a deadline in a multirncdia systcm is - althougli 
it .should be avoidcd - not a sevcre failurc. It may cvcn be unnoticcd: If an 
uncompressed video framc (or parts of it) are not available on time it can 
simply be dropped. Tlie human viewcr will hardly ~ioticc it, providcd tliis docs 
not happen for a contiguous sequence of frames. For audio, rcquircments are 
higlier because the human ear is more sensitive to audio gaps than the human 
eye is to video jitter. 

l'he fault-tolerante requirements of continuous-rncdia systems are usually lcss 
strict than for those real-time systems that have physical impact. The failure of 
a continuous-media system wiii not directly lead to the destruction of tcchnical 
equipment or  constitute a threat to human life. 

The bandwidth demand of CM is not always that stringent. As some com- 
pression algorithms are capable of usirig different compression ratios - lcading to 
different qualities - the requued bandwidth can be negotiated. If not enough 
capacity for full quality is available the application may also accept a reduccd 
quality (instead of no service at all). The quality may also be adjusted dynam- 
ically to the available bandwidth, e.g., by changing encoding parameters. 

In a traditional real-time system, timing rcquiremcnts rcsult from the physical char- 
acteristics of the technical process to be controlled, i.e., they are providcd externally. 
Some continuous-media applications have to meet external rcquiremerits, too. A 
distributed music rehearsal is a futuristic example: Music playcd by onc musician 
on an instrument connected to his workstation has to bc rnade available to all otlier 
mcmbers of the orchestra within a few rnilliseconds, othcnvise the undcrlying know- 
ledge of a global unique time is disturbed. If human Users are involved in only the 
input or only the output of CM, delay bounds are flexible. Consider the play-back 
of a video from a remote disk. The actual delay of a siriglc video frame to be trans- 
ferred from the disk to the monitor is unirnportant. 1;rarncs must only arrive in a 
regular fashion. l 'he User will notice any difference in delay only in the time it takes 
for the first video frame to be displayed. While tlie traditional real-time scheduling 
problem is to find a schedule for a sct of processes with given delay bouncls, the 
main problem in multimedia systems is to find reasonablc delay bounds so that a set 
of processes is schedulable. 

CM are an addition to - not a substitutc for - the DM alrcady available in com- 
puting systcms. In tlie future multimedia systcms, time-critical continuous-media 
tasks and non-critical discrete-media processes will run concurrently. Such a mixed 
operation imposes new demands on schedulitig as traditional systems usually Iiave 
to support only one class of processes. The operating systcm must fulfiU two con- 
flicting goals: 

l'ime-critical processes must nevcr bc subjcct to priority inversion (i.e., be kcpt 
from running by non-critical processes for an iiidcfinite time) [62]. 

IJncritical proccsscs should not suffer from starva~iotz because time-critical proc- 
csscs are cxecutcd. 

A solutiori to this conflict is possible if multimedia systcms have control ovcr the 
tirnc-critical workload rnaking use of thc rcsourcc mnnagcmcnt [82]. 
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2.4 Resource Management in HeiTS 
A distributed multimedia system requires guaranteed processing of CM. The quality 
ufservice (QoS) requirements depend upon the type of data and the nature of the 
supported applications [74]. We consider three relevant QoS parameters for the 
processing and transfer of CM-data [82]: 

1 .  l'lie throughput parameter determines the data rate a connection needs in order 
to satisfy application requirernents. The maximal achievable throudiput on the 
CI'IJ depends on  the algorithm that is employed to scliedule time-critical tasks. 

2. We distinguish between two kinds of dehys: 

a. 'The delay at the resource is the maximum time span for the completion of 
a certain task at tius resource. 

b. 'l'he end-tu-end delay is the tlie total delay for a data unit to be transmitted 
frorn the sourcc to its destiiiation. It is the sum of the delays of all involved 
resources. 

3.  'I'lie reliability defmes error detection and correction mechanisms used for the 
transrnissiori and processing of multimedia tasks. We distinguish three classes of 
error treatment: ijpore, indicate and correct. It is irnportant to notice that error 
correction tlirough re-transmission is rarely approprkate for time-critical data 
because the re-trarisinitted message will usually arrive late. On the other hand, 
siiiglc or smail errors might not be noticed by the User, and thus, uncompressed 
data miglit not even need any error correction. For compressed data, especially 
encoded video, error detection and the substitution of compted or late packets 
rnight be useful because a single error may have continuing effects. In terms of 
reliability the CPU represents little dZrculties as no errors occur at the proc- 
essing of a task. 

T o  guarantee the QoS-parameters the resource rnanagers docates for each con- 
riection tlie riecessary resources (e.g. CI'IJ, cornmunication network). They ensure 
that a new connection does not violate performance guarantees already given to 
cxistiiig coiinections [27]. DuMg the connection establisliment the QoS parameters 
are usually riegotiated, mediating tlie appiication's needs with tlie currerit capabilities 
OS tlie communication system. There are diirercnt ways to negotiate tlie QoS 
parameters. l'he simplest iiegotiation sclieme is the specification of tlie QoS through 
tlic application. 'l'he resource maiiager checks wlictlier this QoS cari be provided or 
not. A inore elaborate metliod is to optiiiiize single parameters. In this case two 
paraiiietcrs are determuied by tlie appiication (e.g. throudiput and reliability), tlie 
rcsource inanager then calculates tlie best achievable value for tlie third parameter 
(e.g. delay) [82]. 

A resource managcr has four tasks: 

1 .  Scheduluhility Test: 'l'lie resourcc mariager checks with tlie given Q o S  parameter 
if tlicrc is criougli rernauiing resourcc baiidwidth availablc to haiidlc tlie ncw 
coiiiiection. 

2. QoS Crilculution: After the schedulability test tlie rcsource managcr calculatcs 
tlie best possiblc perforrnance the rcsource can provide for the iiew coiiricctioii. 

3 .  Resouvce Ilesei-vation: 'l'he resource rnaiiager allocatcs tlie rcquired capacity in 
ordcs to mcct tlie QoS guaraiitees for cacli corincction is rescrved. 

4. kesource Schedufing: Iricorning messagcs frorn coririeclioris arc sclieduled 
:iccoscluig to tlie givcn QoS guarantccs. 

'I'liis l'our tasks cari bc applicd io eacli rcsource. lior tlic <:I'[), real-time sclieduling 
caii bc coiisidercd to I>c a task o f  thc rcsourcc innnagcr. Hut, in tlic casc OS proccss 
rn:iii;igcrnciit real-time sclicduliiig is a tluty of tlic opcrating systcrn. 'I'licrcf'orz, tlic 
ol>ci;itiiig systcin rnust use sclicduliiig rnctliods \vliicli coiisicler tiiiic coristrairit. 'l'lic 



resourcc managcr lias to perform tasks 1,2 and 3 bcfore tasks can bc sclieduled. 
However, it must be noted that the schedulability test, QoS calculation and resource 
reservation depcnd upon the algorithm used by the schcduler. 

Reservation of rcsourccs can be rnade eithcr in a pessim'.~tic or in an optimi.rtic w:iy: 

The pessimistic approach avoids isource conflicts by makitig rcscrvations for 
thc worst case, i.e. resource bandwidth for thc longcst proccssing time and tlie 
higliest rate necdcd by a task is reserved. 'Tliis leads potetitially to an undcrutili- 
zation of rcsources. In a multimedia systcm thc rctnaining proccssor time (i.c. 
the time reserved for trafic but not uscd) can bc used by DM tasks. I'his 
rnethod results iq a guaranteed QoS. 

The optimistic apprnach reserves according to the average or  rninirnum work- 
load. This results in a best-eflnrt QoS. The CPU is rcscrved for the averagc or 
minimurn processing time and data rate needed by a task for its processing. l'his 
approach overbooks resources with the possibility of a packet loss. 

Best-effort processes require the ability to  detect and solve resource conflicts. 
Resource conflicts occur when a best-effort process excecds its reserved proccssing 
time and other critical processes require processing. In this case the schcdulcr has to 
detect the resourcc conflict, to preempt the best-effort process, and to schedule 
anotlier critical task. The OS12 operating system does not supply the possibility of 
measuring pure processing time. Therefore, it is dificult to dctcct and solve rcsourcc 
conflicts. Another solution to this problcm is the use of the following prcemptivc 
multi-level priority scheme (c.f. [82].) 

1. Critical guaranteed processes 

2. Critical best-effort processes 

3. Processcs not exccuting transport system software (e.g. application processes) 

4. Workahead proccsses (both guaranteed and best-effort) 

A request from a guaranteed task will preempt every mnning best-effort task even if 
the deadline of the best-effort task is closer. Hence, bcst-cffort tasks can fail to meet 
their deadlines although they did not exceed thcir rescrved proccssing time and tliere 
would have been a feasible schedule. 'To use guarantecd processes and best-cffort 
processes concurrcntly one must to accept this flaw, although it is certaiiily not 
ideal. 

2.5 CM-Resource Model 
The resource modcl for IIciTS is based on  the modcl of Linear Bounded Arrival 
Processes (1,BAP) as descrihcd in 131. In tliis rnodel a distributcd systcm is dccom- 
posed into a chain of rcsourccs traverscd by the rnessagcs ori tlicir cnd-to-end trips. 
Exarnples of sucli resources are single schedulable deviccs such as CI'IJ, or com- 
bined entities such as nctworks. 

A LBAP is a mcssagc arrival process at a resourcc dcfincd by thrce fixccl paratnctcrs. 

M = Maximum rnessagc size (bytc/mcssage) 

R = Maxirnurn mcssagc rate (rncssagc/sccond) 

ß = Maximum IIurstincss (mcssage) 

A burst consists o f  inessages which have arrived "alicad of schcdulc" 

In tlic following this 1,BAl' modcl is discussed in tcrrns of a spccific cxainplc: 



Two w o r k s t a t i o n s  a r e  in te rconnec ted  by a LAN. A CD-player i s  
a t tached  t o  one w o r k s t a t i o n .  Mono-audio da ta  i s  t r a n s f e r r e d  f rom t h i s  CD-player 
over  t h e  network t o  t h e  o t h e r  Computer. There t h i s  aud io  d a t a  i s  d e l i v e r e d  
t o  a speaker. 
Th is  mono aud io  s i g n a l  i s  sampled w i t h  44.1 kHZ. Each sample i s  coded w i t h  
16 b i t .  
Up t o  12000 by tes  a r e  assembled i n t o  one packet and 
transni i  t t e d  over  t h e  LAN. 
Th is  r e s u l t s  i n  a d a t a  r a t e  o f  

The samples on a CD a r e  assembled t o  frames. Th is  frames a r e  t h e  aud io  messages 
t o  be t ransmi  t t e d .  
75 messages p e r  second a r e  t r a n s m i t t e d .  

I n  a packet  o f  12000 b y t e  we can then  have n o t  more than 

12000 b y t e  
s 10 niessage 

1176 bytelmessage 

I t  o b v i o u s l y  f o l  lows: 

M = 1176 byte/message 

R = 75 message/s 

B = 10 message 

During a time interval of the length t ,  the n lax in ra l  n u m b e r  oj'messages arriving at a 
resource must not exceed 

B + R X t (message) 

Assume t = 1 s 

10 message + 75 ~iiessoge/s x 1 s = 85 message 

'I'he Hitrst iness B introduces shod time violations of the rate constraint. 'This aiiows 
the modcihg  of programs and devices that generate burst of inessages. Bursts are, 
e.g., generated when data is transferred from disks in a bulk transfcr mode or -as 
above- wheri frames are assembled to large ppackets. Tlie ~naximum average data 
rate of a I,I3AI' is: 

I t  is guaraiitccd tliat mcssages are processed accordiiig to tlieir rate. Messages wllicli 
ari-ivc "alicacl of'schedule" Iiave to be qucued. For dclay 5 pcrioJ tlic b u j j k r  size is: 

M X (U  + 1) (byte) 
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1176 byte/message X 11 message = 12936 byte 

The function b(m) rcpresents the lngical hacWog of mcssages. This is the numbcr of 
messages which already have arrived "ahead of schcdule" at thc arrival of message 
m .  Ix t  ai be the actual arrival time of message mi; 0 5 i 5 11: then b(i) is defined by: 

- 
E ai_, = I.OOs;a,= 1.013s; b(m,-l) = 4 s  

b(mi) = max(0.4 message - (1.013 s - 1.00 s) X 75 messagels + 1) = 4 message 

The l@cal awival time of a message mi can thcn dcfincd as: 

4 message 
1.013s + = 1.06, 

75 messagels 

Equivalent by it can be computed as: 

1 message 
max(l.013 s, 1.053s + ) = 1.06s 

75 message/s 

Intuitively I(m) is the earliest titne the message m coulcl have arrived if all messages 
had obeyed their rate. 

'The ~t~aranteed Iogical dclay of a message m dcnotcs tlic maximum time betwccn 
the logical amval time of m and its latcst cornpletioii. It results from tlie servicing 
time of the messages and thc compctition among different scssions for resourccs, i.c. 
the waiting timc of the messages. If a mcssagc arrivcs "alicad of schcdulc" the actual 
dclay is the sum of the logical dclay and tlic timc hy wliich it arrivcs to carly, it is 
thcn grcatcr thcn thc guarantced logical dclay. It can also bc lcss thcn the logical 
delay when it is completed "ahcad of sclicdulc". 'I'lic rlcndlinc d(m) is derivcd from 
the dclay for thc proccssing of a messagc tnt at a rcsourcc. 'l'he dcadlinc is thc sum o f  
tlic logical arrival time and its logical dclay. 

If a incssagc arrives "ahead of schcdulc" aiid tlic rcsourcc is in an idlc statc, tlic 
mcssagc can bc processcd immcdiatcly, i.c. i t  is \vork;~Iicad. 'I'hc mcssagc is tllcn 
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called a workahead message, the process is a workahead process. A maximum 
~vorkahead time A can be specified (e.g. from the application) for each process. This 
results in a maximum workahead linrit W. 

0.4 s X 75 messagels = 3 message 

If a message is processed "ahead of schedule" the logical backlog is greater then the 
actuai backlog. 

A message is critical if it has passed its logical arrival time. 

'i-liroudiout the rest of the paper the I,13AI'-model is used to describe the arrival 
processes at each resource. The resource must ensure that the arrival processes at tlie 
output interface obeys the LBAP-parameters. 

M i d i  I I - i r r  1 1 



3.0 Application of Traditional Real-Time Scheduling to 
Multimedia Data Streams 

In computer scicnce the problem of real-time processing is widcly known [6; 20; 60; 
661. The Rate-monotonic algoritlim to schcdulc pcriodic real-time tasks, for 
example, was introduced by J,iu and Layland in 1973 [47]. In industrial process 
managcment and operation research (OR) schcduling is uscd in ordcr to find an 
optimal schedule for the processing of jobs on a singlc processor or on multiple 
machines [17]. It differs from real-time schcduling in that it operates in a static 
environment and must not adapt to any change of workload [85]. Tiere, task dead- 
lines are not hard. 'i'he major task is to get an optimal utilization of the machiries. 
Nevertlieless, there are scheduling methods and modifications of the base algorithms 
applied which are also used in computer science for real-time proccssing, e.g. 
sliortest processing time schedulig, earliest due data and Moor's Algorithm [42]. 

There are many proposals to solve real-time scheduling problems with many vari- 
ations of the basic problem. In order to find the best solution for our problcm we 
analyzcd various algorithms and discussed their advantages and disadvantages. In 
this chapter we focus on the most relevant algorithms. Most of tliese approaches 
aim to solve non-multimedia problems but, their basic idcas can be used for our 
pu rpo se . 

Tlie goal of traditional schcduling is optimal througliput, optiinal rcsourcc utiliza- 
tion, and fair queueing. In real-time scheduling the major task is to provide a 
schedule according to the constraints of time-critical tasks. 

The scheduling algorithm has to map tasks onto resources such that all tasks meet 
their time requiremcnts. Therefore, it must be possible to show, or  to proof, tliat a 
scheduling algorithm applied for real-time systems fulfills the timing requirements of 
the task. 

3.1 Real-Time Scheduling: System Model 
In this section we dcscribe the system model for thc scheduling of real-timc tasks. 
All schcduling algorithms to be introduced are based on this model. 'T'he modcl con- 
sists of thrce components: 

Resourccs: A resource is an entity with a finite capacity that is required by the tasks 
for their processing. 'There are active resources iike tlie CPU, and passive rcsourccs 
like the main mernory. A resource can be used exclzisive$ by onc process or can be 
shared with other processes. Active resources are always exclusive. Each resource 
has a capacity which results from its ability to perfonn a certain function in a given 
time-span. For real-time scheduling only the temporal diversion of thc rcsourcc 
capacity is of interest. If a resource exists only oncc in tlie system, it is callcd a sin~le 
resource, othenvise it is a multiple resource. In our case wc have to deal with an 
crcdve, exclrrsivc, single resource -the CI'IJ. In a real-time systcm thc sclicdulirig 
algorithm Iias to detcrmine a schedule for cxclusive, lirnited rcsources that arc uscd 
concurrcntly by different processes sucli that all of thcm can hc proccsscd without 
violatirig any dcad l in~s .~  

Tasks: A task is the schcdulablc entity of thc systcm. It can bc invokcd to perforrn a 
particular function. J r i  a hard real-time systcm, a task is charncterizcd by its tirnirig 

3 'I'liis notion can hc cxicnclcd to a niodcl witli niiiltiplc rcsoilrccs (c .g .  (3'U's) o f  Llic samc lypr. I t  c:iri ;ilso Iic 

cxicndcd to Cover difrercni rcsoiirccs sucti as nicniory and haridwidtli ior  cornmiiiiic:iiioii. 
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constraints as weii as resource requirements [12]. In our case we consider on1y peri- 
odic tasks witliout precedence constraints, an appropriate characteristic of CM-data 
processing. 

l 'he time constraints of tlie periodic task T are cliaracterized by the following 
parameters (s, e, d, p) described in [43]: 

s: Starting point 

e: Processing time of T 

d: Deadline of T 

r :  Rate o f T  ( r =  l/p) 

0 < e I d l  p. The starting point s is the first time wliere the periodic task requires 
processing. Afterwards, it requires processing in every period p with e processing 
time. At s + (k - 1)p the task T is ready for the k-processing. The processing of T in 
period k has to be finished at s + (k - 1)p + d. For CM-tasks we can assume that 
the deadline of the penod (k - 1) is the ready time of period k, this is cailed con- 
gestion avoidirig deadlines: The processing time for each data unit is the period of the 
respective data rate. 

Figurc 1. (:tiaracterization of Periodic Tasks 

l'asks can be precmptive or non-pree~nptive. A preemptive task can be interrupted 
I>y tlie request of any task with a iugher priority. I'rocessing is continued later on. If 
a task is non-preemptive, the processing can not be interrupted. Any high-priority 
task lias to wait until the low priority task is finished. l'he high-priority task is then 
subject to priority inversion. We consider CM-tasks on tlie CPU as preexnptive. 

0l)jecfivc.s of Scli&duling Algorithriis: 'I'lie function of a scheduling algoritlun is to 
dclcrinine for a give~i task set wliether or not a scliedule for executing tlie tasks 
exists, such tliat tlie tirnirig and thc resource constraints of the tasks are satisfied. 
l~urtlier, it Iias to calculate a schedule if one exists. A scliedulirig aigoritlim is said to 
guarantee a newly arrived task if tlie algorithin can lind a sclicdule where tlic new 
task and all previously guaraiiteed tasks can firiish processing in every peiiod over 
thc wliole I-un-tirne to tlieir deadlines. If a sclieduling algoritlim guarantees a task, it 
ciisuscs tliat tlie Lask fuiishes processi~ig prior to its deadliiie [12]. 'I'o guarantce 
tüsl<s i t  inust be possible to clicck tlic scliedulability ol' tlic iiewly arrived tasks. 



A major performance metric for a real-time scheduling algorithm is the guarantee 
i-atio. The guarantee ratio is the total number of guararitecd tasks versus the number 
of tasks whicli could be processed. Another performancc metric is the pvoccssor- 
utilization. 7'liis is the amount of processing time uscd by guarantced task vcrsus 
the total amount of proccssing time [47]: 

Earliest Deadline First Algorithm 
The Earliest Deadline First (EDF) algorithm is one of the best known algorithms 
for real-time processing. At every new ready Status the processor executes the ready 
task with the earliest deadline [13; 171. It gets access to the requested resource. At 
any arrival of a new task, E D F  must be computed immediately heading to a new 
order -i.e. the running task must be preempted for this scheduling process. 7'he 
new task is processed immediately if its deadline is carlier thcn the one of thc inter- 
rupted task. The processing of the interrupted task is continucd according to the 
BDF algorithrn later On. EDF is not only an algoritkin for periodic tasks but also 
for tasks with arbitrary requests and dcadlines. Also, the service execution times of 
the tasks must not be known 1131. In this case no guarantee about the proccssing of 
any task can bc givcn. 

E D F  is an optimal, dynarnic algorithm. It produces a valid schedulc whenever onc 
exist. A dynamic algorithm schedules every incoming task according to its specific 
demands. Tasks of periodic processes have to be scheduled in each period. With n 
tasks which have arbitrary ready-times and deadlines the complexity is O(n2) [24]. 

Most of the available scliedulers work with priorities. Rach task is assigned a priority 
according to specific policy. The order of the tasks results from this priorities. The 
task with the highest priority is executed until it is finished or preemptcd by the 
requcst from a highcr-priority task. Aftcr each time slice the schcduler may rcar- 
range priorities (e.g. in OS12 in the priority-class "rcgular"). The determitiatioti of 
the timc slice has the goal to keep the number of context switches low (because thc 
check and detcrmination of priorities is also done by tlie CPU and it rcquircs over- 
head processing) and to gct a fair and valid schedulc over thc whole run-time of the 
system. 

The E D F  algorithm assigns priorities according to the deadlincs of tasks if the 
scheduling is priority driven. The highest priority is assigned to the task with the 
earliest deadline, the lowest to the one with the furthest. With cvcry arriving twk, 
priorities have to be adjusted. 

CDF is used by different models as basic algorithrn. l 'he  time-dr-iivn schcdrtl~r- 
(-I'IIS) is based on a policy similar to EDF. It extcnts EIIF and handles ovcrload 
situations. If a overload situation occurs the scheduler ahorts tasks which can not 
mcct thcir dcadlincs any more and thosc whicli liavc a low value dcnsity. 'Thc value 
dcnsity corresporids to tlie irnportance of a task [80]. I t i  our systcrn we do not 
cxpect to havc ovcrload situations duc to thc usc of pcssirnistic rcsourcc managc- 
mcnt schemes prior to sclicduling. 

In [50] an T;,l)I; scheduling algorithrn is introduced whicli is also prccmptive and 
priority-driven. Iivcry task is divided in to a mnndnior:y and ari opiionnl part. A task 
is tcrminatcd accorcling to tlic dcadliric of tlic inantlatory part cvcn if it is not com- 
plctcd at tliis timc. 'I'asks arc sclicdiilcd witli rcspcct to tlic tlcadlinc of tlic rnarida- 
tory parts. A sct of task is said to bc fcasihlc sclic~liilctl if all tasks cari incct tlic 



deadlines of tlieir mandatory parts. 'Fhe optional parts are processed if tlie resource 
capacity is not fuily utilized. Applying this to CM the metliod can be used with 
layered coding. Referring to uncompressed bitmaps, tlie processuig of the MSB's 
(inost significant bit) is mandatosy whereas tlie processing of the LSB's (least signif- 
icarlt bit) can be corisidered as optional. Applied to compressed images based on 
transforrnation into frequency domain, tlie rnost relevant information is part of the 
lower frcquencies. Their processing is maridatory in contrast to tlic processing of the 
liiglier frequencies where the proccssing is optional. With this method more proc- 
esses can be scheduled and in a overload situation no process has to be discarded. 

For a dynamic algorithrn like EDF the upper bound of the processor utilization is 
100% [47]. Compared with any static priority assignment, EDF is optimal in a 
sense that if a set of tasks can be scheduled by any static priority assignment it can 
also be scheduled by EDF. In EDI; thcre is rio processor idle tirne pnor to over- 
flow. 

Applying EDF for the scheduiing of CM tasks on a single processor machine with 
priority scheduling priorities have to be rearranged when the pnority required by a 
new task is currently used for anotlier process. This may cause a considerable over- 
hcad. Tlie EDF sclieduiing algorithm itself makes no use of the previously known 
occurrence of periodic tasks. 

3.3 Rate Monotonic Algorithm 
'l'lie Rate monotonic sclieduling was first introduced by Liu and Iayland in 1973 
[47]. It is an optimal, static, priority-driven algorithm for preemptive, periodic jobs. 
Optimal here means that there is no other static algoritlim that is able to schedule a 
task set which can not be scheduled by the rate monotonic algoritlim. A process is 
scheduled by a static algorithm at the begiiining of the processing. Subsequently, 
eacli task is processed with the priority calculated at the beginning. Five assump- 
tions are made about the environment [47]: 

1. The requests for all tasks with deadlincs are periodic. 1.e. with constant intervals 
betweeii consecutive requests. 

2. Deadlines consist of mn-ability constraints only. 1.e. each task must be coin- 
pleted before the next request occurs. 

3. 'I'lie request of tasks are independent. 1.e. tlie requests for a certain task do not 
dcperid on tlie initiation or  completion of requests for other tasks. 

4. Run-time for each request of a task is coiistant. Run-time denotes tlie time 
wliich is required by a processor to execute the task without interruption. 

5. Any non-periodic task in the systein lias rio required dcadlirie. 

1~;uithcr work shows that not aU of tliese assumptions are mandatory for CM-data 
pi-ocessing. 

Stntic priorities are assigned to tasks once accordiiig to tlieir request rates. 'l'lie pri- 
ority corresponds to tlie importarice of a task relatively to other tasks. 'I'asks witli 
liiglicr request rates wiil have higlier priorities [47]. 'l'lie task with tlie shortest 
pciiod gets tlie liidiest priority aiid tlie task witli tlie longest period tlie lowest pri- 
oi-iiy. 

A iask will always mcet its deadliiic il' it is pioveii fix tlic loiigest t-esponse time. 'rlie 
rcspoiise tiine is tlie tirne spari betwecn tlie rcqucst and tlie end of processirig of a 
task. 'l'liis time span is maximal wlicn all proccsscs witli a liiglier priority request 
~"i)ccssing at thc samc tiine. l'liis casc is c:illcd criiicul irtsrant. 'I'lie critical time 
zonc is tlic tiinc intcrval betwecii tlie criticitl irisiaiit aiicl tlic coinplction of a task. 
,411 exainple is sliowii in Iiigurc 2. 
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Figure 2. Critical Instant 

Consider an audio and a video stream scheduled according to the rate monotonic 
algorithm. Let the audio stream have a rate of 1/75 and the video stream a rate of 
1/25. The priority assigned to the audio stream is tlien higher then the priority 
assigned to the video strearn. The arrival of a messages from the audio stream wiii 
intempt the processing of the video stream. If it is possible to complete the proc- 
essuig of a video message before its deadline which requests processing at the critical 
instant, the processing of all video messages to their deadlines is ensured. 

The processor utilization of the rate monotonic algoritlim is upper bounded. It 
depends on the number of tasks which are schedulcd, their processirig times, atid 
their periods. According to C473 there are two issues to consider: 

I. The upper bound of the processor utilization which is determined by the critical 
instant. 

2. Vor each number n of independent tasks t(j? a constellation can be found where 
the maxirnum possible processor utilization is minimal. The least upper bound 
of the processor utilization is the minimum of all processor utibations over all 
sets of tasks tO; j E (1, ... , n) that fully utilize thc CPU. A task set fully utilizes 
the CPU when it is not possible to raise the processing time of one task without 
violating the schedule. 

IJrider this assumptions C471 give an estirnation of the maximal processor utilization 
where the processing of each task to its deadline is gt~arnnteed for any constellation. 
A sct of r n  indepcndent, periodic tasks with fixed priority order will always meet its 
deadlirie if: 

For large rn the lcast upper bound of the processor utilization is U = In 2 [46]. 
Ilcnce it is suflicicnt to check if the proccssor utilization is lcss or equal to the givcn 
uppcr bound to find out if a task set is schcdulablc or not. 

With EDF, a proccssor utilization of 100% can he achicved because all task are 
schcdulcd dynamically according to thcir dcadlincs. ITigurc 3 shows an exatnplc 
wherc tlic CPIJ can be utiiized to 100% witli 1'I1li but wlierc ratc monotonic 
sclicduling fails. 
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Figure 3.  Rate Monotonic versus EDF: Proccssor Utilization 

A related problem is addressed in [69]. In most cases the average task execution 
time is considerably lower than tlie worst case execution tune. Therefore, scheduling 
algoritlims should be able to handle transient processor overload. Tlie rate 
monotonic algonthm on average ensures tliat all deadlines wiil be met even if tlie 
bottlerieck utilization is weil above 80%. With one deadluie postponement, the 
deadlines on average are met when the utilization is over 90%. C711 mentions an 
utilization bound achieved for the Nowy's Insertial Navigation System of 88%. In 
the case of CM and DM-data to be processed, the utilization discussed so far only 
appiies to CM. Even with a CM-utilization of 69%, the remaining 31% can be used 
for DM processing. 

Since tlie rate monotonic algoritlm is an optimal static algoritlm no other static 
algoritlim can achieve a higher processor utilization. 

As shown in Figure 4 there rnight be more context switches witli a scheduler using 
thc ratc monotonic algorithm then one using EDF. 
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There are scveral extensions to tlus algorithm. Oiic of thcm divides a task in to a 
rnandatory and an optional part. The processing of the mandatory part delivcrs a 
result which can be acceptcd by the User. Thc optional part only refines the rcsult 
(c.f. 3.2). Tlie mandatory part is scheduled according to thc ratc monotoriic algo- 
rithm. For thc sclicduling of thc optional part different policics are suegcsted [9; 49; 
101. 

T o  mcct the requircments of periodic tasks and thc rcsponsc timc requircments of 
aperiodic requests, it must be possible to schedule botli, aperiodic and periodic 
tasks. If the aperiodic request is an aperiodic continuous stream (e.g. video imagcs 
as part of a dia-slide show), we have the possibility to transform it into a periodic 
stream. Every timed data item can be substituted by n items. Tlie new itcms Iiave 
the duration of the minimal life span. The number of streams is increased but since 
the life span is dccrcased the semantic remains unchanged. The strcam is now pcri- 
odical because every item has the Same life Span [23]. If thc stream is not contin- 
uous we can apply a sporadic server to respond to aperiodic rcquests. The server 
gets a computation budget. This budget is refreshed t units of time after it has been 
exliausted. Earlier refreshing is also possible. 'rhe servcr is only allowed to precmpt 
the execution of periodic tasks as long as the computation budget is not exhausted. 
hftcnvards it can only continue the execution with a background priority. After 
refreshing the budget, the execution can rcsurne at thc scrvers assigncd priority. The 
sporadic server is especially suitable for evcnts that occur rarcly but rnust be serviced 
quickly (e.g. a telepointer in a CSCW.-application) [M; 71; 701. 

The rate monotonic algorithm is applied in real-time systcms and real-time oper- 
ating systerns by the NASA and the European Space Agcncy [67]. It is particularly 
suitable for CM tasks because it makcs optimal use of tlieir pcriodicity. Sincc it is a 
static algorithm there is nearly no rearrangemcnt of priorities and hence no sched- 
uling ovediead to deterrnine tlie next task with the highest priority. There are prob- 
lems with data streams which have no continuous data rate (e.g. a compresscd video 
stream where one of five pictures is a fuli picture and all othcrs are up-dates of a 
reference picture). The solution is to schedule this tasks according to their maximum 
data rate. In this case the processor u t i b ~ t i o n  is dccrcasing. The idle time of the 
CPIJ can be used to process DM tasks or other non-time-critical programs. 

3.4 Other Approaches for Real-Time Scheduling 
In these study phase wc evaluated furtlier schedulirig algoritlims toward tlicir suit- 
ability for CM proccssing. In thc foliowing we descrihc briefly tlic approaches and 
enumcrate tlie reason for thcir "non suitability". Compared with EDI: and rate 
monotonic all of tliern have severe disadvantages for our problem. 

licast 1,axity First (1,1,F): The task witli the shortcst rcmaining laxity is schcdulcd 
first [ l l ;  461. 7'he laxity is the tirnc bctweeri thc actual timc t and tlie dcadlinc 
minus thc remaining processing time. The laxity in period Ic is: 

1,I,F is not only an optimal, dynamic algorithm for exclurivc resozcrces likc EIIF but 
also for multipke resources if their ready-times arc tlic sainc [21]. 'l'lic laxity is a 
function of deadlinc, processing-time and tlic currcnt timc. Siricc thc proccssing-tirnc 
is not kriown, worst-casc is assurned. 'Thercforc, tlic dctcrrninatioii of thc laxity is 
inexact. 7'hc laxity of the waiting processes is dyriamically changing ovcr time. 
During run-time of a task, anothcr task may gct a lowcr laxity. 'l'his task lias thcn to 
prcempt the rurinirig task. Conscqucntly, tasks can prccmpt eacli otlicr scvcral 
timcs witliout dispatching a ncw task. IIcricc, thcrc rnay bc rnorc contcxt switclics 
thari with 17111i. At cach sclicduling point, thc laxity o f  c;icli task lias to hc ncwly 
dctcrmincd. 'l'liis Icads to an additioiial ovcrlicad coinp:irc<l witli I;1)1;. Siiicc wc 



t[nm ~o pua ar[l ]V .rro7!.1or[ ~!u!J e rro alnnn 9Jn)n.l rlnr?:, 8rr!~np passano.rd aq ol paarr 
1eiIi slpn 11 ~"1:) ptre I sse1:) .jo mqwnir arIi rrqrron 1er11 JalnprIns arll Xq pnirir:~ 
-rr!r:ur sapparlns OM~ a~e a.rarl,l, .irrr?lsrron iday s! rln!rIm 11 ~alaurvmd arI1 sasoorln 
ls.r!j ~a1npar1nsq1, '11 5 "'W + "'W + 'H ~I!M "'~'''~~"JV sra1aurv~ed aql Xq parrgap s! 
aln/Cn arli ~o 1118~31 urnar!xeur 311~1, .sa1nX3qns 0121! p3p!~!p .r3yIJn.j SI alnh r13eg 'sllan 
11 oi dn JO Bri!is!suo:, rpea 'salnXn pallen spo!~ad oly pap!A!p s! aury arlj, .eiep-w(l 
S! 111 se13 'oap!~ pue o!pne ayq elnp-W'J 1rrasa~da.r 11 prn: I sse(:) -qep jo sasseln 
aaJrll a.re aJarl,l, .saporr Brr!rlnl!~s paseq 8u!~erls aurg snorro~rlnrrXse ~o.1 padol3~3p 
SVM UIII~!JOI%IR 8uqnparlns s!rlLl, :iiiill!.io%lv %11!1npa119~ ~III!,~,-I~;>H 11 J~II%RJ~ :SHVI/V 

.lna!o~d S,],I~II 3211 ~oj paXoldura suralsXs arll jo Xrrv U! auop aq 
lorr Iren Brr!.rol!rrour aur!l-p?a>l .swaisXs Bu!ie.rado 8uys.a Xpea.qe I[I!M luaunr(M!Arra 
~euo~~ua,~uon V I! S~SBI-JAJI) jo 3u!ssano.rd 1111 l~oddns ol parr8!sap s! rria1sAs .in() 
.~rrauraZeririur an~nosa.1 ayl r? pearl.raAo 38.1~1 e ol peal Avur uralsXs ~3lndU10:, arll jo 
sa!i!i\!ine arIl rro r!)ep 3111 jo Bu!ssano.rd aqLL .n~q!wod lou s! 8u!.rol!uoru an!srraIxa 
ue rpns suiaisAs Byir!.rado Bu!ls!xa 3111 jo ISOUI UI .liroddns anmp.rerl pw a.mm!jos 
p!nads sa~!nba~ 11 .porliauI Bqnpayns 3yeuXp pzxa rrv s! Bupolpow auq-Ir?ax 
.pazpr!uyur an samnosaJ jo saui!i aIp1 'pajnpaynss! I! 'ywm eppqnsol A1grq!wod 
Xue s! alarli JI 'Al~sva pa~prmg aq uen sluaAa a~qep!pa~dun .Bqprrey-ljnej alprrr?rl 
oi pw alnparps pa.1~03 e aqr!!ly ol uo!leurJoF serl uayl iuauraBewur a3~nosa.r 
J '[oz] (q:,auqi~oq a3rmrmojJad .Z.a) Jo!Aeyaq .r!arli lnoqe viep hessanau 
11z s1aB ssano~d 8u!~ol!uou1 ayi asnwaq pap!oAe aq ue3 sysel arI1 jo Xlq!qelnparlns 
arli uo suo!s!3ap 13auo3u1 .palirasaJd pur? passa3o~d 'pai3e~lxa aJr? uralshs ~qnd 
-uron ar11 jo sa!l!~!pe ysel uo alep 'waisAs Rupol!uour e u~ :%ii!~oi!iio~4 aii~!~~-lm~ 

's~s~I-N~ jo Ru!lnpaq:,s ayl JOJ poylaw 1ua!nr~~nsy ue 
s! I! 'a.roja~ar~,J~ .uahp aq w3 sauqpvap .ayi 0) 8rIIp~o3ne ysel Aue jo Bu!ssa3o~d ay1 
JOJ aair1emr-8 ou s~=),J yl!~ 'sysei-~3 jo iro!Aeyaq alqep!pa~d pue 3!lsv!ur~a1ap 
r! .roj pueurap 9 a~a"q -peayJaAo luawa3~mw SS~~OJ~ Aue aAey iou saop X8alv~ls 
S!IIJ, .p3!1u3 S! I! lt?rll 13ej ayl jo mda ysvl ayl inoqr! a8palmouy Jarlio ou s! a.rayi 
J! pagdde aq ptnorls y3y~ 1C4alr!~ls 8rrgnpayns a~!ldwaa~d-uou r? s! sd3,~ 'wury 
~e~!.x.xe ~3901 JO saq pun> 'saw!~ Byssa3o.rd 'saqpilap ~ap!suon lou saop porllaur 
sy~, 'lsq pain~axa s! ISJ!~ salipn y3!y~ ysei arlL :(sJ~B) aua~ JS.I!~I aiiio3 ~s.i!~l 

'qsei-n3 JO Bu!jnparlns arIl ~oj urrll!~o8le qqr! 
-l!ns e lou s! ~IS ar1.L .(luawa8eww a3~nosa~ ysvssad arll jo asnmaq) uo!lcnl!s 
peol~a~o aAey lou op pw saqpeap pnba p.raua8 T Jaiunonu:, aM a3u1l; .aqpeap 
aus arIl anvy waqi jo p J! 'uo!leni!s peopaAo w lapun saqpeap J!aql laaur alq!s 
-sod SE sysel Amw SB 1eql saalwmn8 wr~luo9~rr sq~ '[LI !I I] 11o!in3axa JOJ uasorln 
s! aur!~ uo!ielndwo3 8yyewa~ isaeroys ayl ~I!M ysel aqjd :(J~s) PJ!J qor ~s;>~~oilc; 

.UIql!J 
-OB@ zy.~olouow alw arll 01 Btrrp~o33e auo aql se ams ayl s! unp!~oB[e auolouour 
arrgpeap aqi 01 Bu1p.1033~ payu1~3lap alnpay3s aqi lasen s!yi u1 -aiw J!aili 01 
pnba an sysel-n3 jo saqpeap arIl teyi aurnssv aM SL!aH u1 .App!nb auop aq ol 
sar1 uo!luaAJalu! arIl anp leaJ puv pvou uaamlaq a3ua~app Arm a~e aJayl9 '~nu 
.MOI S! aleJ qep naqL .walsAs ~oquo:, B a~nssald JO amle~adura) jo luawaJnseaw 
ayl le asue alm ayi rrayl Javoys aqpvap e ql!~ S~SBJ, .[M] 111~1sy p3!l!J3 q! 01 
rro!ln3axa sa.ynba~ I! uarIM aqpeap SI! laaw ue3 I! J! ywl qnea J~J pay3ay3 aq 01 serl 
I! 'las yse1 e jo Alg~qelnparps arli awalap oi 1apJo u1 -slsya urrlluo8la auoiouour 
arrgpeap arll J~J lsal AlgIqvlnpar13s aA!paga ON .'p > p J! 2 ysei B SI? A1~0pd 
~ar@l e slaB !J ysvl V .purydo s! sysel jo sarqpeap 01 Bup~on3e luaurrr9!sse AI!JO 
-r~d paxy e as~3 sq 1x1 .paAoldwa aq ~ou rren wrlipo8p 3nrolorrow aleJ aqi (Id > 'p) 
a1R.x ?ayl uarIl ~avoqs an sysel jo aqpeai ayl j1 :iiii11!mQv ~UOJOMOJ~ aii!~pe;)<~ 

~SEI-JAJ~ ~oj urrlip 
-081~ Bugnpar13~ alqel!ns e syl ~ap!suo:, ~ou op am 'a~oja~ay,~ -pearpar\o Bu!lnparlns 
~ayB!q ur! sey lnq gag uarll aie~nnn~ aJow lou s! 11 'dag rli!~ pandu.103 j-1'1'1 
JO luawAoldura ayl rn aZ~lur!~pc orr s! a~aqi aInpay3sol a3~nosa~ apu!s e Apo amrl 



cycle the schedulcs are updated by taking into account the number of new cells that 
got ready during the previous cycle. The minimum amount of resources that satisfy 
tlie Class I and Class I1 QoS requircments is allocated to each class, the QoS 
requirements of Class I must always be met. If thc remaining resources are not suf- 
ficient for Class I1 tasks, the exceeding Class I1 cells are clipped. If tliere is resource 
capacity left it is allocated to Class 111 tasks. 'T'hc decision is always made at the end 
of cycle times [28]. The Class I cells are guaranteed. 

I'he MARS-algorithm was designed to schcdule real-time trafic on  a network. The 
resource is the network, the scheduler is integrated in thc packet switch. It runs on  a 
own CIJU and does not have to consider tlie generated scheduling overhcad. In our 
case tlie scheduler runs on the resourcc it has to schedule. It has to minimize sched- 
uling overhead. Therefore, the MARS-algorithm is too complex for the 
CM-sclieduling in our envisaged environment. 

.Scarcli Heuristics for Scliduling: The problem of finding a feasible schedule can bc 
conceived as a search problem. The normal search-algorithms can be employed to  
solve this problem. In C751 the guarantee algorithm is introduced. This algorithm 
uses a search tree to find a feasible schedule. The root of the search trce is the empty 
schedule. An intermediate vertex of the search tree is a partial schedule and a leaf is 
a complete schedule. Not aU complete schedules arc feasible scliedules. The problem 
is to find a feasible schedule. A heuristic function 1-1 was developed. On each level of 
the search the function H is applied to find the task with the minimum valuc of I-I. 
'This task is selected to extend the current, partial schedule. The complexity of this 
search is not exponential. 

An algorithm based on the network flow tccliniquc is developed in [68]. This algo- 
rithm divides a task in a mandatory and in an optional part. With the network flow 
algorithm a schedule where aii mandatory tasks and as many optional tasks as pos- 
sible can meet their deadlines is determined. The optimal schedule is the one with 
the maximum flow in the network. The complexity to find an optimal feasible 
schedule is ß(n310gn). The disadvantage of the network flow technique and tlie 
search heuristic is their complexity. Those algorithms can be applied if the schedule 
has to be determined only once and must not be altered during run-time. Our 
system runs in a dynarnic environment. At run-time often new connection may be 
establislied or rcleased. Every time a new schedule has to bc determined. 'Thcrefore, 
no search algorithms or methods based oti network flow techniques are not appro- 
priate to schedule CM-tasks. 

All of the described methods and algorithms may be applied for the solution of our 
problem. Some of them arc general algorithms, some are algorithms for special 
problems. Various other methods and algorithms to schedule real-time tasks are 
described in literature. E.g., an on-line scheduler for tasks with unknown ready times 
[29]. In [7] a technique is introduced which is based on the network-flow model for 
uniform processors. In [86] the Virtual Clock, Fair Queucing, Delay Barliest Due 
Data, Stop and Go and IIierarchical Round Robin are described. 'Those are 
methods for the queueing in a packet switched data network which also could be 
uscd with somc variatioiis for the scheduling of real-timc tasks on the CPU. Most of 
thesc approaches are variations of the algorithms described above, some use 
mcthods (e.g. round robin) that can not bc considcred as a rcal-time scheduling 
strategy at all [21]. 

3.5 Preemptive versus Non-Preemptive Task Scheduling 
Real-timc tasks can be prccmptive and non-prccinptive. If a task is non-preernptive 
it is processctl and not interruptcd until it is fiiiishcd or rcquircs further resourccs. If 
tasks arc prcemptivc, the proccssing of any task is iiitcrruptcd imrncdiatcly by a 
rcquest for any Iiighcr priority task [21]. 
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In most cases where algorithms are treated as non-preemptive, tlie arrival times, 
processing times and deadlines are arbitrary and unknown to the scheduler tili the 
task actualiy arrives. The best algoritlm is the one which maxirnizes the number of 
completed tasks. It is not possible to give any processing guarantees or do resource 
management [85]. This metliods are used in schedulers for hard real-time tasks with 
unpredictable occurrence of tasks. 

T o  guarantee the processing of periodic processes and to get a feasible schedule for a 
periodic task set, tasks are usually treated as preemptive. One reason is, tliat high 
preemptability minimizes priority inversion [53]. Another reason is that for some 
non-preemptive task Sets no feasible sclieduled can be found, whereas preemptive 
scheduling is possible. Figure 5 shows an example where tlie scheduling of 
preemptive tasks is possible but non-preemptive tasks can not be scheduled. 

Figure 5. Preemptive versus Non-Preeniptive Schcduling 

lri this case, tasks with high rates arid tasks witli low rates and long processing tirnes 
are running concurrently in the same systcm. 

In [47] 1,iu and Layland show tliat a task set of m periodic, preemptive tasks with 
processing tirnes ei and request periods p,Vi E (1, ..., m) is schedulable 

with fixed priority assignment if: 

aiid for deadline driven scliedulirig if 

IIcrc, all tasks in the task set have to be preernptive to check thcir scliedulability 

'Ilic first scliedulability test for tlic sclieduling OS non-jireetnj~live tasks was iiitro- 
cluccd by Nagarajan and Vo@ i r i  [ 5 8 ] .  Assumc, witliout loss OS gciicrality, tliat 
strcain Ad Iias liighest priority aiid strciiin 1 lowcst. 'l'licy prooS tliat a sct O S  ni pcri- 
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odic streams with periods p,, deadlines d-, proccssing tiines q and di <piVi( l ,  ..., m) is 
schedulable with the non-preemptive fixed priority scherne if 

X where F(x,y) = ceil( - ) + 1. 
Y 

This means that the time between the logical arrival time and the deadline of a task 
ti has to be larger, or equal to the sum of the own processing time and the proc- 
essing time of any higher priority task that requircs execution during that time 
interval plus the longest processing time of all lower priority tasks that might be ser- 
viced at the arrival of li. 

Figure 6. Deadline Requirements for Non-Prcemptive Schcdiiling 

The schedulability test is an extension of 1,iu's and layland's. Given rn periodic 
streams with periods pi and unit processing times E pcr mcssage. Ixt di = p + B be 
the dcadline for stream i. Thcn ihe streams arc schcdulablc 

with thc non-preemptive rate monotonic schemc witli: 

with deadline-based scheduling, the saine Iiolds with: 
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Thc integraled tiine-driven scheduling (ITDS) modcl is applied which providcs pre- 
dictability, flexibility, and ease of modi-fication for hard and soft real-tirne activities 
in various real-time applications. It allows to predict wliether the given task of hard 
real-time activities can meet their deadlines or  not. 7'hc processor cyclcs are divided 
into hard and soft rcal-time tasks. First, the processor utili7xltion of the hard pcriodic 
and spradic  activities are deterrnined and the rate monotonic algorithm is applied, 
then the remaining processor time is assign to soft aperiodic activities. It allows also 
to check tlie schedule for more general task sets which accesses shared rcsources. As 
long as there exists a schedulability test, the I'TDS can adopt othcr scheduling poli- 
cies like EDF. 

The integrated time-driven scheduler can schedule the tasks based on their deadlines 
as well as to the task criticality in the case of transient overload (c.f. 3.2 RL [80]). 
The scheduling policy is separated from the scheduling mechanism layer. Thc sched- 
uling.policy was implemented as a self-contained kernel object, and tlie mechanism 
layer performs dispatching and blocking of the threads. 

Figure 8. l'he Structure of the ITDS Scheduler 

~ ~ ~ ~ ~ ~ . ~ ~ Q  po1ic,yo17i-,Lq: 

D[,: Enrliest Tkadline First 

Static schcdulirig policies such as rate monotonic are implcmented as well as 
dynamic metliods like EDF or least laxity. For comparison with real-time sched- 
uling methods common scheduling algorithms iike FII~O, round robin and fixed pri- 
ority were also implcmcnted. The ITDS scheduler can guarantec schcdulability of 
hard periodic tasks, value function based soft real-time task scheduling, and ovcrload 
control bascd on the valuc functions of the aperiodic tasks. 

ITDS Srliediiler Objeel 

Low-Level Sclietliiliiig Mecliaiusins 

The ARTS kernel provides a tool set for predicting the beliavior of the system and 
for run-time monitoring. l'he schedulability analyzer - called Schcduler 1-2-3 - is a 
X I l'-window bascd interactive schedulability analyzer for creating, manipulating, and 
analyzing sets of real-time tasks. It can be used to prcdict the timiiig effccts due to 
tlic software and hardware modification arid together with other tools -such as thc 
timing tool and the real-time monitor debugger- as a synthctic workload gcnerator. 
The objectives are: 

LS: Least Slack Time 

W - D S :  RM will1 Defcrrahle Server 
RM-POLL: RM willi Polliiig 
W!-DG: RM witli i3ackgroiind 

FP: Fixed Frioiily 

FIFO: Fist in First nui 

RR: Rniind Rohin 

Sclieclrilability analysis: Verification of the schedulability of any given hard dcad- 
line task set undcr scheduling algorithms like EDF, ratc monotonic etc. 

~ 7 8 1  

Rcsponsc tinic aiialysis Tor apcriodic tasks: 'rhc pcrforrnancc of soft, apcriodic 
tasks can bc computed. 

Convciiicnt intcriace: Interface through which thc User cari perforrn tlie 
schcdulability analysis. 

Syritlictic workloa(l gcncrator: Workload tablc. 
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. 
operation on  a shared resource at time ti then at this time its deadline will be equal 
to mjn(t + R, ti + I  + R,,,,,); R,,, is the smallest rcsponse time of all tasks which can 
access the resourccs. Thcrefore, a task which is invoked at ti and wishes to pcrform 
an operation on  the samc resource will not precmpt thc othcr task, bccause its dead- 
line is necessafdy greater than ti + Rmi,. This metliod ensurcs mutual exclusion on 
resourcc operations. It is optimal in the scnsc that it can schedule a sct of tasks, 
without inserted idle time, whenever it ki possible. 

There is an eficicnt schedulability tcst for tlie algorithm. 'l'hc first rcquirement for a 
feasible schedulc is like given in 1471: 

I'he sccond demand is: 

Vi, 1 _< i I n; Vk, 1 I k I ni;VI„ 2 L I Ri: 
i- 1 

whereflx) = largest integer I X 

IIere, n is the number of tasks, ni denotes the numbcr of operations on shared 
resources performed by an invocation of task T„  and RrninSk is the smallest response 
time requirement of the tasks wliicli are accessing the rcsource Mk. This condition 
applies only to task tliat requires access to resources, and quantifies the processor 
demand that occurs when tasks simultaneously try to access a shared resourcc [37]. 

To ensure that all cotnputational activities are dispatched by the scheduler, tradi- 
tional non-dispatched activities like interrupt handlcr are implemcnted as tasks. 
They arc scheduled in the same manner as User tasks. The reason for tlus was the 
demand to ensure that tasks with near deadlines do not fail. IIere, a traditional intcr- 
rupt liandler is a task that is crcated by the uscr and invokcd by a hardware signal. 
The deadlincs of these tasks are based on the expectcd inter-arrival time of the intcr- 
rupt. Nthough this infortnation may not be reliable it turned out that it is not a 
problcm for the YARTOS applications. 

According to its dcsigner YAR1'OS is a useful vehiclc for real-time applications that 
are primarily concerned with processing of long-living, uniform data-streams in par- 
ticularly CM-applications [37]. 

3.6.3 Split-Level Scheduling for CM 
'T'hc split lcvel scheduler was dcvclopcd within tlie DASII-project at thc Univcrsity 
of California at ßcrkelcy. Its mairi goal is to providc a bctter support for CM appli- 
cations. It was devclopcd to prevent CM applicatioti frorn timing errors and lost 
data duc to tlie ovcrhead of uscr/kcrncl interactiori sucli as CPU scheduling and 
I/O, or any coricurrcnt systcrn activity. A typical application is thc ACME 
(Abstractioiis for CM) I/O sewcr whicli supports applications such as audio/vidco 
confcrcricing, editirig, arid browsing. 'Ilic supportcd physical dcviccs arc spcakers, 
tnicrophones, vidco displays, and vidco cameras [5] .  It allows to crcate logical 
deviccs which are associatcd with pliysical 1 /0  dcviccs, and do I/O of CM ovcr 
CM-connections. For cacli of thc CM-conncctions n nctwork 1 / 0  proccss cxists 
wliicli transfcrs data bctwccn an intcrnal buffcr antl tlie nctwork. Each (:M 1 / 0  
devicc is associatcd to a dcvicc I/O proccss. ]Tor 11011 rcal-timc cvcnts such as corn- 
mands from tlic wiridow scrvcr and rcqiicst for CM-corincctiori cstahlislimciit tlicrc 
arc cvcnt-haridlirig proccsscs. lt is iriiplcmcntcd 011 Suri SI'Ali(:statioris. It is 
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written in C +  + and uses a preemptive lightweidit process iibrary. I/O is done 
using UNIX asynchronous I/O [18]. 

l'he applied scheduiing poiicy is deadiine/workahead scheduiing. The LBAP-model 
introduced ui [3] is used to describe the arrival processes. Critical processes have 
priority over all other processes and they are scheduled according to the EDF algo- 
ritlun preemptively. Interactive processes liave priority over workahead processes as 
long as tliey not become critical. 'l'he sclieduiing policy for workahead processes is 
unspecified but may be chosen to rninirnize context switchiig. For non real-time 
processes a sclieduling strategy like UNIX time-siicing is chosen. 

l'he CM appiications are multiple processes that are shariig a virtual address space 
(VAS). l 'he so called "split-level scheduler" uses iightweight processes (LWPs). 
They have the advantage, that userlkemel interactions are minimized, so that 
coiitext switches within a VAS are fast. Figure 9 shows the structure of the split- 
level scheduler. 

User VAS User VAS 

[I81 

Figure 9. User-Level and Kernel-Level Parts of the Split-Level Scheduler 

@ @  @ 
- \  t / 
User-level , 

Sclieduler (ULS) 
Usclied Ksched A 

Thcre is one kernel process and multiple LWI's per VAS. A LWP sleeps or clianges 
tlie priority by caiiing its User level sclieduler (ULS). l 'he IJLS checks whetlier its 
VrlS still contains the globaliy hgliest-priority LWP. 'lliis is done by exarnining an 
area of meinory that is shared witli the kernel. If the higliest-priority L,WP is in the 
owii VAS tlie LWI' context switch is done without kernel intervention, otherwise, a 
kernel trap is done. Tlie kernel-level sclieduler (KLS) decides then according to tlie 
irifonnatioii in tlie shared memory segments wliich VAS should now be executed. 

Systeiris Calls 

Accordirig to tlie designer maiicious or iricorrect prog-ains may keep VAS pre- 
cinptioii rnasked uidefuitely, or it may execute indcfinitely without chariging its 
dc:ttlline. 7'0 prevent tlie other processes from staßratiori due to tliis behavior tliey 
proy>ose tlie i~nplemeiitatiori of a watchdog tirner. 'I'his watclidog is used to detcct 
sucli conditions, and to kill or demote the offending process. 

Split-lcvel sclicduling is a effective scheduling method. Comparcd witli the pcdorrn- 
ancc of tlic normal I JNlX sclieduling mecliariisrn it is bcttcr becausc it reduccs tlic 
iiuinbcr of uscr/kerriel interactions [ 181. 

Keriiel-level Scliediiler (KLS) 

Area Area 

User 
Iiiterrupts 

- 



3.6.4 The HeiTS-AIX Approach 
'The Iiei'rS multimedia communication system is designed to run on  different plat- 
forms. Apart frorn OS12 running on  PS/2, we Iiave II3M RISC System/6000 com- 
puter running AIX version 3.1. Both have thc task to proccss CM. 'Thc OS12 and 
the ATX approacli arc both bascd on the sarne resourcc modcl (L,J3AI'-rnodel), liave 
the same QoS-pararnetcrs and the same rcquirements on scheduiing 183. 

Bach connection is associatcd with an own system proccss. The commuriication 
protocols up to layer 4 are processed in this systcm process. The communication of 
the different layers is done by up-calls and down-calls wliich arc implcmentcd as 
function calls. 

AIX, like UNIX, has a User and a kernel space. Interrupts are processed in the 
kernel. I'rocesses can run in the kernel or in the User space. The schcduiing in AIX 
is priority driven. Time-critical tasks can be proccssed with 16 different priorities 
[33]. Processcs are preemptive. The kernel can be extendcd by additional device 
drivers, kernel processes or system calls. I'rogram components can be programmed 
as system calls to process tliem in the kernel. Processes in the kernel can not be 
interrupted by signds. Kernel processes can only use a restricted set of system calls. 

Normal AIX proccsses are used for the processing of tlie CM-data. A data stream is 
associatcd with onc process. This process is used only for one connection, it serves 
every incoming message from this connection. Sincc the messages can arrive in 
bursts, enough buffcr Iias to be provided for each connection. fiach message is 
inserted in a queue that is assigned to the process. After thc processing of a mcssage 
the next message is taken from the queue. 

I 'hc scheduler is implemented as a set of functions that are called during the inter- 
rupt processing or  by the application programs. The scheduler determincs the priori- 
ties according to the rate monotonic algorithm. Thcre are 13 priorities for 
guarantecd and best-effort processes (best-effort processes run with a lower priority 
than guarantecd processes), one priority for aperiodic processes (13), guaranteed 
workahead (14) and best-effort workahead (I 5) processes. 

Every incoming messagc is indicated by an interrupt. 'l'he iriterrupt handler dcter- 
mines the connection the message belongs to. Subsequently, thc intcrrupt handler 
storcs the message in an allocated buffer and qucues thc message. Buffcr is allocated 
for the number of messages indicated by the maximum burstincss. All neccssary 
infortnation ahout a conricctiori is stored in thc scheduling-cache. Only inessagcs 
which obey the 1,ßAI' specification are accepted. The process takcs a message from 
the queue and calls the schedulcr. Figure 10 illustrates this processes and shows the 
structure of tlie AIX meta-scheduler. 
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Figure 10. Structure of die AIX Meta-Scheduler 

Messages which are ahead of schedule are not processed with a workahead priority. 
A process checks if a message amved in time or ahead of schedule. If tlie message is 
aliead, tlie process starts a tirner and blocks the processing till the logical arrival time 
is rcached. 

'l'liere is no mechanism to observe the mn-time behavior of the processes without 
causuig a considerable overhead. This is also the reason why there is no sporadic 
Server for tlie processing of aperiodic tasks and why best-effort processes liave to mn 
with a lower priority compared to guaranteed processes. The processing time wliich 
is reserved for a best-effort process is the average processing time of this process. 
Tliere is no reason to give a best-effort process a lower priority than a guaranteed 
process as long as it does not exceed the reserved processi~ig tune. Only wlien a 
process excecds its processing time, it must run witli a lower priority. Suice it is not 
possible to measure the processuig time, best-effort processes liave to run with a 
lower prionty tlien guaranteed processes. 

Measurements of the system performance show tliat tlie overtiead caused by the 
sclieduliiig and context switches are not negligible. A context switch takes between 
36ps and 48ps. 'To start and stop the timer tliat indicates the logical arrival time of 
messages takes about 82ps. To decrease tlie overliead caused by context switches it 
is proposed to build a non-preemptive sclieduler. 



4.0 Heidelberg ~ultimedia Operating system ~ u p p o 3  

The goal of the Ilcidelberg Multimedia Operating Systcm Support (IIeiMOS) is to 
provide the necessary real-time support needed by CM-applications. Figure I I illus- 
tratcs the positioti of JIeiMOS within the IIeiTS project. In tliis paper we focus on 
CM-sclicduling as the core component of IleiMOS. 

Figure I I .  IleiMOS and its Relationship to HeiTS 

IieiDI 
audio/video 

distrihutioii 

I'he component lJeiDI (Heidelberg audio-video distribution application) is a distrib- 
uted audio-video application developed especially for IIeiTS 155; 743. Another 
application is I fc iCAAd (Ileidelberg remote camera control) a remote camera 
control in a distributed environment [64]. The transport interface of IIeiTS makcs 
its services available to all applications. They are implemcnted as function calls. 
An object oriented interface to the communication system and other multirnedia 
specific functions are provided for the appiications by IfeTeiA4A 7' (Ileidelberg Multi- 
media Appiication 'Toolkit). 

'I'he processing of time-critical data requires a careful allocation and manipulation of 
buffer space. To  avoid overhead through copying data the standardized huflev man- 
aRernent provides virtual copying. The opcrating system sliielrl (OSS) is a standard- 
ized interface to all system extensions and in particular to the buffcr managemerit. 

multi~iiedia application toolkit 

reso~u-ce 
maiiagement 

bu rfer HeiMOS 

IleiCAM 
reinote catiiera 

coiitrol 

OS12 provides no suficient support for thc proccssing of CM-tasks in real-time. 
IleiMOS is intended to provide this support. It is dcsigned to ensure tliat all tiinc- 
critical data are processed to meet their deadlines. 

Ilei ... 

4.1 Hooks for Real-Time Processing in OS12 
IIeiMOS is based on  the operatirig systcrn OS/2. Iri this section we give a brief over- 
view on OS12 and discusses its real-timc capabilitics. OS12 is a multitasking systcrn. 
Diffcrcnt tasks can run sirnultaneously either in tlic satnc program, or in different 
application programs. Eacli program niris in a virtual addrcss space. 'l'he OS/2 dis- 
patclicr coordiriatcs tlic programs so tliat tlicy do riot iriflucncc eacli otlicr. Fl'lic 
major cliangc o f  thc ncw vcrsion 2.0 is tlic stcp frotn 16-hit prograrnming cnvirori- 

Ilcidcll~crg Mi~llitncdia 0pcrai.ing Systcm Siipport 30 



rneiit to 32-bit programming model that eiiables applications, sub systems, and the 
system itself to utilize the 32-bit register set, and the 32-bit instruction and 
addressing rnode, as well as memory objects larger than 64KB [39]. 

The purpose of the OS12 scheduler design is to optimize response rather than 
tlisougliput. The system is not concerned about ensuring that all runable threads 
get at least some CPU-time, and the system is not primanly concemed about trying 
to keep the dislc busy when tlie highest-priority tliread is compute bounded. Tlus 
policy and some other provisions with real-time capabiiities makes OS12 suitable for 
the dcsign of time-critical applications on top of it. 

4.1 I OS12 Process Management 
OS12 was designed as a time-sharing operating system without taking into account 
serious red-time applications. Let us start with a short description of tlie available 
process management, which was extracted from the available product information 
[45; 61; 32; 301 

In OS12 tluee levels witliin a multitaslung hierarchy exist: 

A session represents a logically separated unit of screen, keyboard, mouse and 
tlieir related processes. Sessions can be arranged in parent and child sessions. 
Each session contain at least one process. 

A process is the logical unit of resources, including memory, files, and devices 
tliat are aiiocated to run a process. 1,ike sessioiis, processes can create other 
processes leading also to a cliild - parent dependency. A process belongs to 
one, and oidy one session. Each process has one or more threads. 

'flie dispatcliable unit of execution is cailed a thread. Each thread belongs to 
exactly one process. A thread shares tlie resources aiiocated by the respective 
process. 'I'hreads are not organized hierarchicdly. Each thread has its own exe- 
cution stack, register values and dispatch state (either executing or waiting to 
execute). 

Whenever a thread is created it belongs to a priority class. Four priority classes 
exist: 

1 .  The time-critical class is reserved for threads that require immediate attention. 
Such tlireads wiii be used for communications and real-time appiications. 

2. 'I'lie jixed-high class is intended for applications that require good responsiveiiess 
without being critical. 

3. Tlie rcgular class is used for tlie executing of nonnal tasks. 

4. 'I'lie idle-time class runs tlireads with a very low priority. Any Thread in tliis 
class is only dispatched if no tliread of aiiy other class is ready to execute. 

Witliin each class 32 different priorities (0, ... , 3 1) exist. 'I'lirougli tinie-slicing 
tliicads of ecluai priority have equal cliances to execute. A coiitext switch occurs 
wlicnever a tliread issues a cail to get access to an otlicrwise allocated resource. l'he 
ilircad witli tlie liighest priority is dispatched, tlie time-slice is started again. At the 
expiratioti OS the time slice, OS12 can preempt tlie dispatclied tliread if other threads 
oi' cclual or higlies priority ase ready to exccute. 'I'lie time slice can be vat-ied 
betwccn 32 msec. and 65536 msec. (by setting tlie variable 'fIMI<SI,ICE in tlie file 
C0NI'IG.SYS). Tlie dcfault value is 250 rnscc. 

'1'lii.cacls o f  the rcgular class rnay be subject of a dyriainic rise of priority as a func- 
tion of' thc waitiiig time. Whenever tlie variable I'I<IOI<I'I'Y is set to AIJTO- 
MA'I'IC in (:ONI;IG.SYS tlus mechaiusin is eiiablcd. OS12 boosts tlie priority of a 
iliscad wliicl-i has waited longer than specilied by tlie MAXWAI'l' variable. 
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Dy dcfinition of tlie variable PRIORITY = FIXE11 tliis mcchanism is prohibitcd, 
and regular threads behave as those of any othcr class. 

7'hc OS12 schedulcr is priority bascd and prccmptivc, i.c. if a higher-priority thrcad 
is rcady to exccutc, tlie schedulcr preempts the lowcr-priority thread and assigns thc 
CPU to thc highcr-priority thread. The state of thc precmptcd thrcad is rccordcd so 
that execution can bc rcsumed later. - 

4.1.2 Provision of Real-Time Capabilities by Physical Device Drivers 
OS12 providcs the possibility to dse physical device drivers (I'I>Il) that nin at ring 0 
for applications with real-time requiremcnts. These l'III>s can be madc non inter- 
mptibie. An interrupt that occurs on a device (e.g. arriving of packets) can be ser- 
viced from the PDD immediatcly. As soon as an interrupt happens on a device, the 
PDD gcts control and can do all the work service that interrupt. This can also 
include tasks which could be done by application processcs running in ring 3. The 
task running at ring 0 should leave the kerne1 modc after 4 msec. (called the "4 ms 
Rule"). 

In gcneral, ring 0 applications are considered to service a rcqucst of time-critical 
tasks quicker then ring 3 applications because of their lower dispatch times. 

'T'he employment of a PDD has several disadvantagcs. Its implemcntation is more 
complicatcd thcn the implementation of a ring 3 application. 7'he PD11 is bounded 
to its dcvice. It only services requests from its device rcgardlcss to any othcr events 
happening in tlie system. Different streams that request real-tirnc schcduling can 
only be serviced by their PDDs. They run in competition with each othcr without 
the possibility to coordinate or  manage them by any Iiiglicr instant. 'This is insuffi- 
cient for a multimedia system where messages can amve at different adapter cards 
(e.g. DVI, FPC). It would be a reasonable solution for a system whcre streams 
amve at only onc device and no other activity in the systcm has to be considered. 

4.1.3 Provision of Real-Time Capabilities by Time-Critical Threads 
Time-critical tasks can also be processed together with normal application running 
in ring 3. The critical tasks can be serviced by threads running in thc priority class 
time-critical with onc of tlie 32 priorities within this class. Thc thrcad with the 
highest priority gcts access to the CPU. N1 other threads are schcdulcd according to 
their prioritics. A thread is interrupted if another thread with higher priority rcquires 
pmcessing. Normal applications run as regular threads. 

'I'he rnain atlvaritagc of this approach is the control arid coordination of all time- 
critical threads. One instance mnning with a higher priority then all otlier thrcads 
can perform resourcc rnanagement, obscrve their bcliavior, and dcterminc a schcdulc 
according to specificd policy for all time-critical tasks in the systcm. Tlic task may 
involve different dcviccs of the systcm. I'heir competition for tlic CPU is rcgulatcd 
and through tlie rcsource management and the schcdulcr, a guarantec for thcir proc- 
essing within thc required time bounds can be given. Intcrnal timc-critical tasks (e.g. 
stored audio or vidco from a disk) can also be considercd. 

I'hc normal systcm schcduler is used to schctlulc all tasks. "Normal" applications 
do not havc to bc considcrcd by thc rncta-schedulcr. l'hcy will run duririg thc tirnc 
wlierc no time-critical thrcads arc rcady for exccution. 'I'hc rcsourcc rnanagcmcnt 
should thercfore not usc thc whole processor tirnc for tirnc-critical threads. We 
dccided to use timc-critical tlireads witli thc known litnitations. 
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4.2 Scheduling Continuous Media in the HeiMOS Environment 
Iteal-time sclieduling in IIeiMOS is done through a system process cailed meta- 
scheduler. T o  employ the introduced algoritlms and to build an application on top 
of tlie operating system the tasks have to serve certain requirements. In tliis cliapter 
we describe tlus requirements 

4.2.1 lnteraction with Resource Management 
I'eriodic task such as tlie proccssi~g of CM data have regular interamval times equal 
to tlieir periods and deadlines that coincides with the end of their current periods 
[71]. Different CM-streams have different requirements concerning tlieir deadlines. 
For iristance, the processing of bitmaps is more tolerant to deadline failures then the 
processing of compressed video. To meet the deadline requirements of all CM data 
types, we consider ail deadline to be hard. 

In order to build a feasible scliedule, we have to know the rate and tlie processing 
time. From tlie rate we derive the lolrjcal amval time and the deadline of a message 
according to its order number. At connection establislunent, the processing time is 
iieedeci by the resource management to find out if it is possible to build a feasible 
scliedule witli tlie new task. 

Witli every new comection the resource management has to perform a 
schedulability test. It has to check if it is possible to guaraiitee the required arnount 
of processing time witliin tlie given delay bound in every period. Tlie efficiency of a 
schedulability test is a major evaluation criterion for a scheduling algorithm. T o  
avoid unacceptable delays during tlie comection establishment and to keep the 
CI'U-time required by the schedulability test low, it should be simple and easy to 
pe~form. 

The processing of a CM-task starts with the amval of tlie message at the network 
interfcice and includes network hardware interrupt handling, session identification, 
protocol arid User level processing. According to Cl] there are five processing steps. 

1. l'acket arrival in tlie network interface device 

2. 1Iardware iriterrupt to the CPU 

3. Sessioii identification 

4. I'rotocol proccssing 

5. User level processing 

'The end of tlie session idciitificatioii is tlie first inoment wliere ail necessary data for 
tlie scheduling of tlie message like coiuiection, rate, and processing time is known. 
1;roni tliis morneiit on a mcssage can be scheduled according to a spccific policy. 
With a preeinptive scheduling sclieine a inessage is processcd fiom its arrival to the 
scssioii ideiitificatiori witli the lughest priority. Tlie currently processcd mcssage is 
subjcct to priority inversiori when tlie iiewly amved message is belongiiig t o  a low 
priority task. l'lie rcsource management lias to considcr some laxity. 

4.2.2 CM Scheduling: Goals 
'I'lic inairi goal of our CM rcal-tune sclieduling is to schedule thc resources (e.g. 
CI'IJ) that cnn potcritially bccoine bottleriecks in a wüy that allows reservatioii 
(asbociatcd witli per-fc~rmance guaraiitees) to be madc to iridividual cliciits [2]. 7'hc 
problcin is to find a feasible scliedule whicli schirdules all time-critical CM-tasks iii a 
way tliat eacli of tliein caii rncet tlieir deadlines. 'Tliis must be guarantccd for all 
tasks i i i  cvc1.y pci-iod ovcr the whole ruii tiinc of tlie system. 
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l'wo conflicting goals have to be considered: 

1. In a multimedia system time-critical CM-tasks and non-critical DM-processes 
will nin concurrently. An uncritical process should not suffcr from stawation 
because time-critical processes are cxecuted [73 ] .  A multimedia applic a t' ion 
relies as mucli on text and graphics as on audio and video. Thercforc, not all 
resources should be occupied by the time-critical proccsses and their manage- 
rnent processes. 

2. On the other hand a time-critical process must nevcr be subject to priority 
inversion. This mcans that it should not kept frotn running by non-critical, or  
lower priority processes for infinite time. 'I'he sclicduler has to cnsure that any 
priority inversion is reduced as far as possible [54]. 

Apart of the overliead caused by the schedulability lest and the connection establish- 
ment, we have to consider the costs for the schcduling of every message. They are 
more critical because they occur periodically with every message during the proc- 
essing of real-time tasks. The overhead generated by tlie scheduling and the oper- 
ating system has to be addcd to the processing time of the real-time tasks. 
Therefore, it is favorable to keep them low. Particularly difficult is to obsewe the 
timing behavior of the operating system and its influence on the scheduling and the 
processing of time-critical data. It can lead to time garbling of the application pro- 
grams. Therefore, operating systems in real-time systems can not be viewed detached 
from the application programs and vice-a-versa [59].  

4.2.3 CM Scheduling: Issues to be Considered 
At thc connection establishment thc message rate is indicated. Through the burst 
parameter a short time violation of thc rate is possible. With a static priority algo- 
rithm a high priority thread would process a message that is ahead of schcdule at the 
expense of lower priority tasks. To  avoid this, a rate control mechanism has to be 
included that assigns early messages a lower priority then critical messagcs or  dclays 
their processing until their logical arrival time has elapsed. 

The second parameter that is indicated by the connection at the connection estab- 
lislimeiit is the processing time. A task that permanently excceds its guarariteed 
processing time violates tlie calculatcd schedulc. Witli precmptive tasks only proc- 
esses with a lower priority then the offcnding proccss are affected. All processes are 
affccted if the tasks arc non-preeniptivc. Thcrcfore, thc CPU-time needcd by single 
tasks for processing has to bc controlled. Ncither in AIX nor in OS12 tlic pure 
CPIJ-time can bc measured. Thc mcasuremcnt of thc processing timc always 
includes interrupts and othcr delays. 

A problern which should not be undcrestimated is tlie overhead caused by tlie 
scheduling itself, the controlling of processes, thc setting and changing of prioritics. 
Witli a dynainic algorithm a priority driven schcciulcr miglit have to changc the pri- 
orities of all processes at the arrival of a new inessage. 'I'he rcsourcc managcmcnt 
and the schcduler havc to be considcrcd as overlicad. 'I'his can citlier be donc by 
adding tlic processing time nccdcd for tlie scheduling to tlie processirig time of each 
task, or by a spccial process that has to be includcd iii the schedulc. 

4.3 HeiMOS OS12 Approach 
As a rcsult of our irivestigations on traditional rcal-time sclicduling algorithms and 
alrcady implemcritcd prototypcs, wc dcvelopcd two inctliods for thc scheduling of 
C M .  'rhe mcthods arc dcsigncd for tlicir implcmcntation on top of thc OS12 opcr- 
atiiig systcm [SI]. Wc assurnc that tasks arrivc according to the I B A P  model. 
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Iri the end-systems, messages from different connection are processed. Each con- 
~iection is associated with a single thread runnirig in the priority class time-critical. 
Eacli of this threads are associated witli a own message queue. AU messages from a 
connectio~i are processed within tliis tluead up to the transport layer. Tlie comnu- 
nication bctween the layers is realized as up- and down-calls. The application pro- 
grains run ori top of the transport layer. Apart of the threads for the different 
connections, there are speciai threads io perfonn tlie connection estabiislunent and 
to coritrol tlie appiication threads. Every incoming message triggers a hardware 
interrupt. The second level intempi  handler (SLIII) generates then a software inter- 
rupt. It runs witli the highest priority witliin tlie priority class tirne-critical. From 
tliis point on the scheduler has control over tlie message and is able to scliedule it 
accordiiig to a specific policy. The number of threads is restricted by the number of 
different time-critical priorities. The upper bound of connections with different pri- 
oritics is 27. Priorities 3, ..., 29 are called critical prioritics. We do not distinguish 
different p~iority classes for guaranteed arid best-effort processes. If at the connection 
cstablislment a best-effort process is indicated by the resource manager, a criticai 
priority is assigned to tliat processes. l'he priority is lower then tlie priorities of all 
guaranteed processes. Priority 1 is used by workahead processes. I'riority 2 is pro- 
vided for threads wliich exceeds tlieir specified processing time. This priority is 
cailed perulty priority. If more than 27 connections are nccessary a constant ratio 
gr-id could be used for the priority assignment [67]. We consider the number of pri- 
orilies as sufficient. Therefore, tlie implcrnentation of a constant ratio grid is not 
necessary. 

Iii botli inetliods we employ a control meclianism to monitor the behavior of the 
CM-tasks. To guarantee the processing of tasks tlie scheduler must have the possi- 
bility to monitor their behavior and to ensure that tliey do not violate tlie data con- 
straint [4]. This includes a meclianism that is able to observe and react on 
offending behavior. 

4.3.1 Queue Monitoring 
'l'liis method is based on the EDF-algorithm. We consider one system process with 
scveral different tlueads for different appiicatioris. A own message queue is assigned 
to eacli tliread. 

Ar1 cxlcii~ior~ 01' ilic iii<>iIcI iliill D I I < > w s  10 liilvc dilkrcrit syslcrri processcs wtiicli i i l l  pcrbrrri Ilic l'uiiclion ol' Uie rneta- 
sclicdulcr is ~,ossil)lc. 'l'lic JillCrciii proccsscs ;Are sclf-coordiriatirig Ltiroiigli il iablc i r i  a sli;iicd riicriiory segnicrit. For 
itic sakc ol'siiiipliciiy wc cxl>liiiii ilic irictliod oiily witti ori systcni proccss. 
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Figure 12. Structure of the Queue Monitoring Schediilcr 

'The major tasks of tlie meta-scheduler are performed by the mastcr thread that is 
not assigned to an application function. It runs with priority 30 in the priority class 
time-critical. Every incoming message is queued in tlie messagc qucue of the mastcr 
thread. If a message indicates a connection establishment the resource manager has 
to check if sufficient CPU-time is left to accept the connection. 7'hc SLIlI sends all 
messages to the message queue of the master tliread. Messages that are ahead of 
schedule are qucued to their logical arrival time in the message qucue of thc master 
thread. At every scheduling-point thc mastcr thread dispatches the message with tlie 
earliest deadline to the message queue of its application tliread. 7'he master thread 
then slceps for the duration of the guaranteed processing time plus laxity for pos- 
sible interrupts. If there is any messagc in the message queue of the master tlircad 
tliat becomcs critical during the nin-time of a task and Iias an earlier dcadlinc than 
the currcntly proccssed onc the master threaa only slecps to the logical arrival time 
of that mcssage. It prcempts the former thrcad calculatcs its proccssing timc and dis- 
patches the critical messagc to the message qucuc of its application tlircad. 7'Iie 
rnastcr tliread has to ensurc that the applicatiori tlircad of tlic new task has a higlier 
systcm priority than thc application tliread of tlie old task. With cvcry incoming 
message the rnastcr thrcad dctcnnines immediately a ncw schedule. A nirining thrcad 
is preernpted duririg thc rc-schedulirig. 

If a thrcad has not finislicd proccssing withiri tlic givcn timc it is precmptcd. A ncw 
task is choscri for proccssing. 'I'hc prccmptcd task cari finish proccssing ori a lowcr 



priority if there is enough processor time left. Bvery new message of this task is 
scheduled according to its deadline. Tasks are oidy processed for the guaranteed 
amouiit of processing time with a critical priority. A malicious or incorrect program 
does not starve other tasks. Since aii messages are scheduled according to their dead- 
liries bursts are no processed at the expense of other tasks. There is no workahead of 
messages if the processor is idle. 

Our main intention was to keep the scheduling overliead as low as possible. Priori- 
ties only have to be changed in exceptional situations. T o  reduced this overhead 
base priorities can be assigned to each tliread according to their rate. Nevertheless, 
the overhead through the scheduling is still dynarnic. 

4.3.2 Distributed Access Control and Process-Time Monitoring 
'rasks are scheduled according to the rate monotonic scheduling policy. There is 
one system process with multiple t h r e a d ~ . ~  

'I'lic Ilistributcd Access Control arid I'rocess-l'irne Monitoririg (IIACI'roM) ineta- 
sclicdulcr coiisists of  a maul tliread, a control thread and several application threads. 
'I'lie iilaiii tlircad and tlic coiitrol tlircad are not assigned to application 
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functioris.The rnain thread runs with priority 0 and tlic control thread with priority 
30 in the priority class time-critical. A rnessage that indicatcs a rcqucst for a con- 
ncction is send to the rnessage queue of the rnain thrcad. 7'he rnain thread assigns 
an application thread to the conncction if the schcdulability tcst was positive. Thc 
messagc queue namc of the application thread that is associated with a conncction is 
stored in a table that is sharcd with the SLIII. After the connection estahlishment 
evcry messagc frorn the connection is qucued in the rnessage qucue of its application 
tliread. A uniquc priority is assigned to each corincction according to tlie rate 
monotonic algorithm. This priority corresponds witli the systern priority of the 
t hread . 

In case of bursty traflic a high priority thread would proccss rnessages with thc high 
systern priority ahead of schedule. Low priority tasks would miss their deadlines 
whilc the rnessages of the high priority thread would be proccssed ahead of schcdule. 
T o  prevcnt frorn such behavior and to control the rate of the rnessages each thrcad 
controls the arrival tirnes of its messages. After each processing a thread sleeps to the 
logical arrival time of the next rnessage. Workahead rnessages are queucd till their 
logical arrival time is reached. The requests for all tasks are now pcriodic as rcquired 
by the rate rnonotonic algorithrn. 

7'he control thread observes the processing behavior of thi application threads. 'i'hc 
processing time tp(0 of a rnessage is mcasured. During a control period aU proc- 
essing tirnes are sumrncd up tp = tp(1) + ... + tp(n). I'eriodically tlie control thread 

tP chccks the average processing time df = If df is largcr then the spccified proc- 
essing time tlie offending thread is set on the penalty priority by thc control tliread. 

l'he scheduling ovcrhcad is kept constant by the assignment of static prioritics to 
each connection. I'he rate control is pcrformed through each application tliread 
after the processing of every rnessage. The control thread prevents frorn the perma- 
nent violation of the schedule through offending tasks. 

4.3.3 Design of the Actual lmplementation 

4.3.3.1 System Timer Constraints 
Two rnain critcrions werc considcred for the assessmcnt of the two alternatives. 

1. 'i'he scheduling overhead caused by each rnethod 

2. Their adaptability to operating system constrains 

The first altcrnative is based on EDF, the theoretical processor utilization of tliis 
algorithm is 100%. l 'he overhead of the scheduling is dynamic. The amount of tasks 
arid messages influences the arnount of requircd scheduling dccisions and control to 
be done by the scheduler. The overhead turncd out to be considcrable 

'l'he second alternative is based on the rate rnonoton sclieduling algoritlirn. 'Thc 
rnaxirnum processor utilization is 69%.' 'I'hc schcduling ovcrhead is nearly constant. 
Sincc we have also non-critical tasks runnirig on the cornputer wliich arc not sched- 
ulcd by thc meta-schcdulcr wc do not consider the houndcd processor utilization as 
a sevcrc drawback. 

During the dcsigii of tlie meta-schcduler wc discovcrcd that tlic tirncrs providetl by 
thc opcrating systcrn are iiot suflicicnt for the crnploynicnt in real-timc systcrns. 
The OS-tirncr calls are spccified in rniliisccorids. The actual duration of tlic spccificd 

9 = nniirnhcr of proccsscd rncssagcs diiring tlic pcriod. 

' l l ~ i s  boiindary can bc widcly cxlcridcd as dcscribcd in chapfcr 3.3. 
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time interval wiU be affected by the hardware clock tick. A tick interval lasts approx- 
imately 31.25 rniiiiseconds. Any time interval that is specified in milliseconds will 
essentiaiiy be rounded up to the next clock tick [34]. Multimedia applications 
require a timer granularity in the range of miiliseconds or even fmer [25]. Tliere is 
iio reasonable way to vary tlie interval of the hardware clock tick. I'rograms or 
device drivers that provide a more accurate time ineasurement are not varying the 
interval of the hardware clock tick. 

A device driver cailed OS211IIT provides a timer witli a granularity in the 
nanosecorid range. The high resolution tirner function has two output Parameters. 

l'he limer.fic parameter counts the tick of the time of day clock. This clock is 
advanced by one tick approxiunately 18.2 times per second (every 55 rniiiiseconds). 
'To obtain a better accuracy the 8253 TimerlCounter coinponent can be used. Timer 
0 ruiis continuously counting down from 65536 to 0. Each time it reaches 0, it trig- 
gers an interrupt which advances tlie time of day clock by one tick. 'The 16-bit 
counter in the 8253 changes every 840 nanoseconds. Tlie timer.count contains tliis 
couiiter. Witli tlus device diiver we achieve a granularity of 840 nanoseconds [48]. 

Tlie time of day clock is not identical witli the liardware tirner. The content of 
iimer.coun1 is not tlie number of counts which elapsed since the last Iiardware clock 
tick occurred. A hardware clock tick occurs approximately every 3 1.25 miiiiseconds 
wliereas the time of day clock tick occurs approxirnately every 55 rniiiiseconds. 
I'liercfore, tlie two timer have to be syncluoiiized in order to use them simultane- 
ously. 

4.3.3.2 Structure of the lmplemented Meta-Scheduler 
I3ecause of the insufficient timer support it was not possible two reaiize the intro- 
duced alternatives in the proposed way. For the first proposal tlie tirner insuffi- 
ciericy is such a severe drawback that it was not possible to find any reasonable 
solution for the implemeiitation of it. l'he second design proposal was modified. 
'I'lic high-resolution timer is employed whcn the granularity of tlie hardware timer is 
iiisufficient. 

'I'lie functioris of tlie main thread aiid the control tliread are not affected by the 
tiiner problem. 'rhe rate coritrol tlirough a simple OS-sleep is replaced tlirough a 
iiiodified mechanism. A thread does not sleep after tlie processing of a message. It 
waiis on tlie inessage queue for tlie arrival of a niessage. Every time a message 
arrives the thread checks if it is ahead of schcdule. In tliis case it checks witli the 
syrichronized tirner if it is possible to sleep to the next tick of tlie Iiardware clock. A 
tlircad is set on a workahead priority if tlie iiext hardware tick occurs later thcn the 
logical arrival tiine of the message, or if it resurncs processing before tlie logical 
arrival tiine is reaclied. Every tliread lias to check at tlic beginning of processing if 
tlicrc is any liiglier priority thread running witli the workaliead priority tliat becornes 
critical during tlie processing of tlie o\vii task. 111 tliis case tlie priority of tlie 
workaliead tluead is reset on its original priority. Il' a tlircad ends processing in a 
workaliead state it rcsets its priority. 

'1'0 rncasurc tlie processing time of' eacli incssagc, tlie beginriing of its processing is 
rccordcd. After tlie end of tlie processirig, tlie differeiice bctween tlie start time aiid 
tlic end is calculatcd. If tlie processiiig is intcrruy>tcd 1)y anothcr tliread witli a liiglier 
priority tlic liigli priority tliread lias to calculate tlic prcsent processing time and 
af'tcr its owii processirig to reset the stai-t time ol'tlic iiitcrrupted thread. l'roblems 
occur will1 asyiiclironous 110. A tlirea~i is inactivc zrs long as an asynchronous 
cvciit is processed. I.e, tlie tliread givcs up coiitrol ;irid anothcr task caii be proc- 
csscd I>y anotlicr tluead duririg tliat tiinc f'r:iine. I t  is not possit>lc to measure tlie 
~~roccssiiig tiine of' a tliread witli a lower priority tliat stiirts processing in tliat tune 
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frarne because the thread that pcrforms the asynchronous actions rcsurnes processirig 
imrnediately aftcr the end of the asynchronous event. 7'he prcsent proccssing time 
of tlie low priority thread can not be determinatcd wlicn thc high priority thread 
resurncs processing. Since we only record the bcginning and the cnd of the proc- 
cssitig and calculate thc processing time out of tliis the measurcd processing times 
are inaccurate. Apart of interrupts it always includes the tirne wherc a thread was 
inactive during an asynchronous event. - 

The scheduling rnethod we apply prevents frorn thc proccssing of bursts through 
liighcr priority threads at the expense of low priority tlircads. Iiate control was 
implernentcd using the tirning tools of the opcrating systcrn. 'l'he overhcad caused 
has to be accepted because there is no other way to serve the premises of thc rate 
monotonic algorithrn. The rneasured processing times does not reflcct thc exact 
CPU-time needed by a task. These are only a rough estirnate of tlie time a task 
needs the CPU for processing. 

4.3.4 Evaluation of the HeiMOS Solution 

4.3.4.1 Performance Measurements of the lmplementation 
The rnodified DACProM meta-scheduler was irnplerneiited in C undcr OS12 on a 
PS12 with 2 5 M h  and a 80486 processor. There arc several changcs frorn OS12 
version 1.3 to OS12 version 2.0. We took these clianges into account during tlie 
developrnent and kept the programs closely cornpatible for both vcrsions. 

A full dcscription of the irnplernentation can be found in [51]. Since the mcta- 
scheduler is a basic cornponent of HeiTS we have not yet had the opportunity to 
gather experience with genuine rnultimedia data gcnerated and transferred through 
IleiTS. Experiments and rneasurernents have been pcrformcd using test programs 
especially designed for this purpose. These test prograrns show that the rneta- 
scheduler rneets the described requirements. 

T o  estirnate the perforrnance of the prograrns we rncasured truncated portions of the 
programs and irnportant systern calls individually. We found that tlie system call to 
change priorities requires approxirnately 73ps whcreas a contcxt switch takes 
approxirnately 4 7 ~ s .  7'he processing time control takes for one conriection 0.3 1 nzs. 
For two connections 0.4 ms is required at average and cvery additional conncctiori 
rcquires anothcr 0.1 ms. 

T o  set a tlircad on a workahead priority takcs approximately four tirnes thc tirnc 
thcn required for sirnplc DosSleep. The ovcrhead for tlie control of thc proccssirig 
tirnc is acccptablc but to be a useful tool for controlling it sliould bc mucli morc 
precise. 

4.3.4.2 Known Limitations of the HeiMOS Solution 
Iluring tlic design of tlie meta-scheduler we had to considcr various rcstrictions 
mainly through thc operating systern. 'This has negativc cffects on tlic functionality 
of tlie mcta-schcdulcr. T o  evaluate the solution wc Iiavc to considcr all tlicsc 
rcstrictions arid lirnitations. In this section we discuss tlicm and show tlie limits of 
our solution. 

Each singlc thrcad in the systern is ablc to run with a priority in tlie priority class 
timc-critical. A tlircad runtiing in this priority class without tlic knowlcdge of thc 
resource maiiagcr violatcs the calculated schedule, the proccssiiig guarantces givcti 
by the rcsourcc managcr arc not longcr valid. A rnalicious program can hlock tlic 
whole systcrn sirnply by running with thc higlicst priority in thc priority clnss tiinc- 
critical witliout giving up tlic control anyrnore. 

I r i  OS12 i t  is not possiblc t o  rncasurc tlic exact tirnc a tlircnd is usirig tlic CI'IJ. Any 
incnsurcincrit of thc proccssirig tirnc iiicludcs iiitcrrupts. Iiitcrnipts caii not bc ciisa- 
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bled since they may contain information necessary for the scheduling. If a thread 
was intempted by a lugher priority tliread it also includes the time needed for the 
coiitext switch. During asynchroiious I/O a thread gives up its control. Another 
tliread can use the CPlJ during that time. It is not possible to interrupt the time 
rneasurement during the asynclironous event. Therefore, tlie measured time is only a 
liint how lang the processing of a task takes and does not reflect tlie time tlie CPU 
is rieeded by a task. 

'l'lie system timer provided by OS12 is insufficient. The hardware timer is enhanced 
by olle clock tick approxirnately every 31.25 milliseconds. For a real-time system an 
acceptable ganularity would be in the miliisecond range. Witli the High-Resolution- 
Timer we have an accurate measurement tool. The problein is that it only can be 
used by an active thread. The granularity of the rate control is therefore determined 
by tlie granularity of the system timer. Our main objective was to build the meta- 
scheduler on top of the operating systein without iritervening into it. T o  improve 
our system we need more support from operating system side. 

Real-time capabiiities inay be achieved in OS12 by changing the OS itself: Either 
tlie sclieduler may be enhanced by a class of fast threads, perhaps witliout time- 
slicing with tlie abiiity to mask intempts for a short weil defined period. Those 
threads should be reserved for CM-tasks and monitored by a system component 
with extensive control faciiities. Pei-forinance enliaxicement of tlie scheduler itseif 
incorporatuig some mechanisms of real-time schedulirig iike eariiest-deadline first or 
least laxity first would be axiother solution. 

'I'he operatiiig system has to provide sufficient timing and measurement tools. l'here 
has to bc a possibiiity to measure the pure CI'U-time required by thread for tlie 
processing of a task. A kind of watchdog timer would all so be sufficient. A system 
timer is ~ieeded that supplies a granularity in the rnillisecond range. This may be 
acliieved tlirough a single timer chip with tlie only task of triggering interrupts in a 
specified granularity. 

'rhe meta-scheduler provides tlie necessary real-time support for CM-appiication. It 
does not serve all requireinents of a liard real-time system. Further work has been 
done by improving the timer capabiliiies in clianging the OS2IIRT-device driver. 
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5.0 Conclusion 

Multimedia applications require real-time support cithcr tlirough tlic operating 
system or througli another system componcnt. 7'lic opcratirlg systcms uscd in 
EIeiTS arc not conceived for the extensive support of rcal-time processing. IleiMOS 
is designed to provide this support in the end-systems of FIeil'S. 'I'herefore, a mcta- 
scheduler was developed to run on  top of OS/2. Timc-critical tasks are scheduled to 
serve their process rcquirements as well as their timc requirements. 

T o  find the best method to schedule time-critical multimedia tasks we evaluated 
various real-time scheduling algorithrns. It turned out that EDF and the rate 
monotonic algorithm are most suitable for the solution of this problem. 

ßased on  this two algorithms we developed two meta-scheduler to run under OS/2. 
In the design the occurrence of multimcdia data strcams according to the linear 
bounded arrival process model and other restrictions had to be considered. One 
alternative was implemcnted. It turned out that the system timer providcd by the 
operating system are not suficient for real-time applications. 'To solve this problem 
we employed a special device driver. With this device driver a timer granularity in 
the nanosecond range can be achieved. This timer does not replace the system 
timer since it is a measurement tool that only can be used by active tlireads. 'I'hcre- 
fore, the necessary rate control is complicated and expensive. A mcthod to control 
processing times aiid to react on offending bchavior of tasks was implemented. Since 
the operating system does not supply the possibility to mcasure pure CI'U-time thc 
measured times include interrupts, context switcli tirnes, and asynchronous 110. 
Therefore, it is only a rough estimation of the real CI'U-time needcd by a thread. 

An exact and reliable real-time scheduling should be provided, or at lcast supportcd 
by the operating system. Either through the modification of the system schcdulcr, or 
througli real-time tools that enhance the real-tirnc capabilities of thc operating 
system. It should provide an exclusive priority class especially for real-time proc- 
esses that is controlled and monitored by a system process. Further, exact time and 
measurement tools arc necded. 

We gratefully acknowledge the many helpful advices from Wolfgang nurke and 
Carsten Vogt. Wc also would like to thank Itigrun 1,ink for the drawings she con- 
tributed to this paper. 
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