
Inside the Heidelberg Multimedia Operating System Support:
Real-Time Processing of Continuous Media in OS12

March 17. 1993

Andreas ~ a u t h e *
Werner SchulzO
Ralf Steinmetz0

"IBM European Networking Center
Tiergartenstraße 8

D-6900 Heidelberg 1

University of Mannheim
Lehrstuhl für Praktische Informatik IV

0-6800 Mannheim I

Contents

2.0 Miiltinidia and Real-Time 3 -
2.1 Multimedia 3
2.2 Real-Time 4
2.3 Rcal-Time in Multimedia 5
2.4 Resource Management in HeiTS 7
2.5 CM-Resource Model 8

3.0 Application of Traditional Real-Time Sclicdiiliiig to Multinialia I>ata
Streams 12

3.1 Real-'Time Scheduling: System Model 12
3.2 Barliest Deadline First Algorithm 14
3.3 Rate Monotonie Algorithm 15
3.4 Other Approaches for Real-Time Scheduling 18
3.5 Preemptive versus Non-Preemptive Task Scheduling 20
3.6 Schcduling of CM-'Tasks: Prototype Works 23

3.6.1 ARTS: A Distributed Real-l'ime Kemel. 23
3.6.2 YARTOS: Yet Another Real-Time Operating System 25
3.6.3 Split-Level Scheduling for CM 26
3.6.4 l'he Iiei'TS-AIX Approach 28

4.0 I-Icidelberg Miilt imdia Operating Systein Siipport 30
4.1 I-Iooks for Real-Time Processing in OS12 30

4.1.1 OS12 Process Management 3 1
4.1.2 Provision of Real-Timc Capabilities by Physical Dcvice Drivers
4.1.3 Provision of Real-Time Capabilities by Timc-Critical Threads

4.2 Schcduling Continuous Media in the I-IeiMOS Environment 33
4.2.1 Interaction with Resource Management 33
4.2.2 CM Scheduling: Goals 33
4.2.3 CM Scheduling: Issues to be Considered 34

4.3 IIeiMOS OS12 Approach 34
4.3.1 Qucue Moiutoring 35
4.3.2 Distributed Access Control and Process-Time Monitoring 37
4.3.3 Ilcsign of tlie Actual Implementation 38
4.3.4 Evaluation of the IIeiMOS Solution 40

5.0 Conclusion 42

.~:,a!o~d s!ql .jo l.rl?d sr? paur~oj-lad sr?~ r[:,!r1~ PIP~UI snc>riri!~
-[Ion 01 pa!ldde 3rr!lnparlns aur!i-~~a~ ji:rro!l!pli.rl jo rro!ir?Joqr?la ar\!lsnr?qxa rir: 1rrasn.itI
3M L~~rzr~~!~!ppv .3~aq1ap!n1 I II! pa1traura1dr11! SEM rp!ilM iro!lnlos r? sarrglno .13cli?d
s!rl,L .(.:,ja 'uo!ldwaa.rd jo L1!l!cl!sw>d 'rro!lnlosaJ ~aur!i) sitpasrron IF?liiauiiro.i!Aiia
arll irrnon:,r? oly ayR1 1snui urrll!~o8lr! s!il.l, .pa.r!nba~ s! awaqns Li!~o!~d alqt:l!~:~v
arll prre Byssano~d aur!l-lr?a.r ,.rar11 riaam13q rrrili!.ro31r? 3qdcir?ur le~auaz V .ssa3o.itI r?

rr!ili!" pealrl1 rlnea Lq arrop aq ur?:, sa!lpo!.rd ysei jo Brr!~las arIL1> .L~uo!~d ~r?ln3!vi?d
SI! 01 Brnp~onnr? yse1 qnr!a solnparlns 11 .uaA!.rp Ai!.roud s! Jalnparlns wa1sLs Z/SO ar~,~,

.ssa.18o.id
U! s! ~alnpar~nsawy-pa~ .rno rll!M Z/M<II/VI/\I aqi jo uo!~rz.fia~u! arlLL .~uaunio~!~rr:,
paymmlarr rz u! 8u!ssa3o.~d v1ep oap!A pur! o!pnr! 01 paldepe sa!3qod Buqnpaqns airr!l
-1r?aqo asn Bugrzw 8umn?fio~d IaAal Jasn .r?j SMOW 11 '1uauruyAua Z/SO 9'11
olu! 4u!ssa~o~d aur!l-lrza~ a1eaod~o3rn 01 rfi!sap .In0 jo Ma!A ap!sq rrv aleloqqn aM
luarrrnnop sy1 rrI .pasn aq IIR~ ~a~npaqns aru!1-lea~ i? "AI~A!~RuJ~~[~ .~II!UILUI?.I~O.I~
.raA!lp a:,!Aap (0 %!J) laulay jo asn Buqr?ur J~~SZIRJ~ e~r?p oap!A pur? o!pnr? ~enol arli rio
sn3oj suo!suaixa sp1.L 'z/s() J?! „z/~a3eur!lly iro!lr?lrrasaJ,I e!pauqlnpy„ arl1 se alqe
-!!ehe an? uralsLs Bu!le~ado arI1 jo dol uo P!parrr!llnur ~oj s~uau~a3rrerprg .PIEP oap!~
pue o!pna jo Brr!ssano~d aui!l-lea~ jo iloddns aysuaixa aql JOJ pa~!a3rron s! waq1
jo ~aqi!a~ 'XIV pm , Z/SO "J'? ~,~,!al I JO surais~s-pua aql U! su1a1sLs Bu!ir?~ado arl,l,

.pqnba~ s! slvp oapp prm oypni? JOJ paloprzi 8yssa~o~d avi-pal jo ~~oddns
uounuo3 v 'a~ojalaq~~ .s1uauoduro:, rpns jo saldurexa an suo!1a3gdde e!paur!jlnur
jo sadAl r@ pm uo!1i?iuasa~d 1uaurn3op e!paunlInur a~!13e~aiu! 'aseqeivp e!paur!llnur
a wo~j p~aula~ elep oap!A prn? o!pnv .war11 jo auo lsn! s! uralsAs u0!1i?3pnuruio3
aqi 'sluauodwo~ uralsAs e!paunilnw 1eJaAas Lq papaau s! %yssa3o~d auq-pm s!rl,l,

3rnssa3o~d ayl-lea~ saJ!nbal Arz~ap prra-01-pua puyi?w rz jo aalue~vn4 nrl,l,
.eli?p arll jo siua!d!:,al rrp: jo rraa~3s aqi ~rz inajqo a~ynadsal ayl uo paxld aq isnur
~alrnod arll luawour s!q1 1~ aas aM lnajqo s!rp ?B Byiu!od,, XRS 01 iasn .Ieln
-n!~d e JOJ lap.10 y lnjasn aq Leur SII~~J~S~IO~ 8u!ury 'asm sy~ u~ .MO~~M pa.rr?r]s rz
y ~aiyodalal e jo aldmxa arli .rap!srron .8u!ssa3o~d p3!?!~3 ayi 01 13akqns aq oslr?
Arzur eiep oapy-uou prrv o!pne-uo~ .sipIr!l aw!l ripwa3 yill!~ ssapoua pa~a~yap
S! eirzp J! Alu0 pue J '1naJ.ro3 aq 01 p!es s! i?ir?p rpn~ 'r!lr!p oap!A pm o!pne jo 3ri!ssa
-3o~d ayl-pa~ ~oj pueurap suo!lrz3qdde r?!payiInw prro!~es~a~uo:, pue aA!i:,r!JairrI

.oap!A pm o!pne ~r!lP!p jo lajsm.11 aq] n~nzy.r~?d 'uo!le3!unur
-ur03 t?!paur!qnuJ poddns ol pa&!sap s! 11 =><I<Iv 10 so!qla~ '41-d~~~ a>m swa1sAs
uo!le3pnwuro:, parls!Iqeisa-naM aqi rIl!M slspa03 SL!aII -aIoqM e si? ura~sAs
rro~~e~pnunuo~ palefiaiu! ue ol spea1 ylomlau aql rr! uo!ie.€!aiy sy~ '~1p.11 snou
-0q3uAs pm snouon~nuAse sl~oddns 'alduirzxa ~oj 'jaad .paAlasqo aq ui?3 sadL1
~!F@JJ iualagp JO uo!lrzfiaiy ue sq.romlau paads-rpq Mau UI .Apo ng~e.11 elep snou
-0q3uLse JOJ par@!sap a1aM '1auJarIlg 3.a 'sy.ro~1au uo!le3!unwuron Ir!rro!luaAuoC)

.srro!lnunj uo!ie3~rrnunuo3 Aemaii?8 prre
ura1sAs-pua rlioq sa1e.rod.ro3u! 11 .syJoMlau r!a~i?-ap!~ pue 'mlqodo~iaw '1r!3ol Bri!Ll
-1apun jo Ala?~ e pue swalsLs Rrr!ie~ado luaJajj!p rp!M s~a~ndruoz~ @JaAas Bu!s!.rd
-ur03 1uawuo.Aua snoaua8o~alarl r? ~r? paw!r? s! S,L!~II .B~aqlap!a~ rn (3~7J) J31tT3:)
Brny~o~ia~ rnrado~ng jqg~ agl lr! ~uaurdola~ap Japun Lliuaun3 uralsAc rio!li?n!u
-nunuo:, pua-01-pua uo!~e~auaB-~au V s! (S,I,!~II) ura1sLs IJO~SKJEJ,I, 8~aqpp!aj I ai~,~,

'I'his document is organized in five chapters. In cliaptcr two we discuss multimedia,
real-time and their mutual relationship. This chapter also includes a bricf preserita-
tion of the related resource management. Sevcral traciitional real-timc scheduling
algoritlims, their suitability towards continuous mcdia processing and implcmetited
multimedia prototypes are introduced in cliapter thrce. Cliapter four starts witli a
bricf summary of the OS12 real-time capabilitics. Subsequently we introducc two
altcrnativc concepts to schedule continuous media tasks unclcr O S / 2 , prcsent our
actual design and the experiences with the runniiig prototype. 'The final chapter
summarizes the work presented in this paper.

2.0 Multimedia and Real-Time

2.1 Multimedia
Multimedia represents a growing area of interest in business, engineering and
sciencc. Multimedia in computer science refers to tlie einployment of different
mcdia ui computers. Computers are used as communication tools. The communi-
cation is either between humans and the computer or among liumans using the
computer [26]. We distinguish between four major types of computer processed
data: Text, gaphics, audio and video. Text and gapliics are the traditional media
witli a time-uidependent presentation. Otlier media, such as audio and video have
time-dependeiit data values. Therefore, their processing requireinents on a com-
puter system are different. On computer networks, for example, they are character-
ized by their sensitivity to delays, high bandwidth requuements arid tolerance of
high error rates [84].

A multimedia system should be able to handle eacli type of media independently.
Multimedia systems have to be distinbuished from other technologies such as tele-
vision, duc to the ability to allow the User more interaction witli the system [57].

Spccificdy, a niuftirnedia sjstem is defined as a syslem thui is characterized by [he
conlpuler-conlroiied generulion, manipulaiion, preseniation, slorage and comrnuni-
cation of independerzt discrere and conlinuous media [72]. hdultimediu is perceived as
tlie lqicul, ineviluble convergence of four major lechnologies: lelecommunicution, pub-
lishing, felevision und computing [83]. In the view of these authors a niultimedia
systenl is a desktop or network application which uses at least three of the following
mcdia types: video, graphics, text, audio and animation. IIence, a computer system
for tlie processing of multimedia application has to be able to handle many different
kiiids of media. Tlie innovation that is provided by multirnedia systems is the inte-
gration of all these media into a single system, obscuring tlie liiies between com-
putirig, telecominunicatio~is, and even mass media. Since a gseat deal of experience
lias bcen gleaned over tlie past forty years the major chdenge remabi is the incor-
poration of contuiuous media into cornputer systems [26].

'I'lic inairi developments in computer science and electrical engineeriig that support
multirnedia systems are fast processors, higli-speed networks, large-capacity Storage
devices, new algorithms and data structures, graphics systems, innovative metliods
for human computer interaction, real-time systeins, object oriented prograrnming,
etc. [16].

Dxisting multimcdia systeins are, for exarnple, employed in cducation (e.g. as
liypcrniedia systems [65]), Computer Supported Cooperative Work (CSCW) [19],
and as informatiori systcrns (c.g for tlic presentation of art in inuseums [76]).

'I'lic cxpression co~itinuous media (CM) for audio arid video is derived frorn tlie way
iii wliicli tliey are perceived by liumans. CM consists of consecutive time-dcperident
inforrnatioii uiiits. 'rirne attributes seinaiitics to tlie mcdia. In tliis seiise CM differs
froin coininori discrete nierfiu (1)M) proccssed oii coriiputer such as text and
graphics wliicli coiisist 01' time iridcpciidciit iiiformatioii valucs [26].

'I'lic rcpresciitatioii of (:M iii a digital systern is discrete. It consists of logical data
uiiits (1 ,!)\J) bcirig, li>r exainplc, siiiglc audio-sainplcs or video-früines. 'I'lie inforina-
tion contcrit of tlicse I.I)IJ is a valiie of a basic data type antl it rcprcscnts a piccc of
tlic origiiial d:rt:i ovcr a ccr-taiii pcriod of tiine. 'l'he triplc m = (V, 'I', \ J) defines tlic
(:M-(lata. V is tlic valuc of tlie basic data type, 'I ' is tlic tiinc valuc aiid IJ is tlic
duratioii ol' tlie <ligit:il strcain. 1;rorii tlicsc pararnctcrs wc caii dcrivc tlie lifc-spaii of'

the CM-data L = [T, T + Specificaiiy, CM is characteriied by a pcriodic contin-
uous data stream. Aperiodic continuous streams can be transformcd into periodic
streams.

The digital re~rescntation of CM allows its handlirig by standnrd systern compo-
nents such as the CPU, main memory, disk, or network. Other applications can be
processed concurrcntly to the execution of CM opcrations with no adverse effects
due to contention for hardware resources. Further, C M and DM can be liandlcd in
the same softwarc framework (opcrating systems, nctwork protocols, window
system, programming languages) [23].

2.2 Real-Time
The Gerrnan national institute for standardization DIN dcfines a real-time proccss
in a computcr system as a process which delivers the resu1t.r o/ tlze processing in a
given time-span. Programs for the processing of the data have to be availahle dtrrirtg
the whole run-time of tlze system. The data may require processing to an a priori
knavn time, or occur at a previouily not known inrtant [14].

A real-time system has the permanent task to receive information from thc environ-
ment and to dcliver it to the environment within timc coristraints [6]. Speed and
eficiency are not the main characteristics of a real-time system. The correctncss of
a computation in a real-time system depends not only on the rcsults of the compu-
tation but also on thc time at which they are presented [67]. In a multimcdia appli-
cation a failure occurs wheri the data of a video or a piece of music is prescntecl too
fast o r when it is presented with a considerable dclay. 'Therefore, the timc behavior
of a real-time system has to be both deterministic and prcdictable [22; 241. In par-
ticular two aspects have to be considered [63]:

1. The processing of tasks in a strongiy restricted time interval.

2. Temporal and logical interdependence between two processes that require proc-
essing at the same timc due to their internal and external restrictions.

Summarized, a real-time system can not only fail bccause of massive hardware or
software failures, but also because the system is unable to exccute its critical work-
load in time 1401.

In real-time system we have both hard and soft deadlines which represent the latest
timc for the prcsctitation of a processing result. A soft dcaanline is a deadline which
cannot be exactly determined and where failitig does not produce an unaccepta\>lc
result, e.g. starting and arrival times of planes or trains can considered to bc as soft
deadlines. Ilnrd deadlines are determined by tlie physical characteristic of rcal-titnc
proccsses. Tliey mark the border betwecn normal and failing behavior. Failing such
a deadline causcs costs which can be measured in monetary (e.g. inefficient usc of
raw materials in a process control system), aesthetical (e.g. garbled output from
audio or video), or Iiuman and environrncntal tcrms (c.g. accidents due to uritimely
control in a nuclear power plant or fly-hy-wirc avionics system) [X].

l 'he detcrrninistic arid predictablc beliavior of a rcal-time system includes a guar-
antcc requirement for timc-critical tasks. Such guararitccs cannot bc assured for
cvents that occur at random intcnrals with unkriowri arrival timcs, processirig
rcquircmcnts or deadlines. Furtlier, RU givcn guarantccs arc only valid undcr thc
premisc that no processing machinc collapscs during ruri-tirnc of real-timc processcs.
Summarized, task scheduling is a mattcr of botli rcliability and performancc [40].

2 ") " indicatcs iliat T + I1 is riot part of tlic valid iirnc spar1

Miiliiincdia arid Rcal-7'intc 4

'anrranbos vlep e rjnns jo sur31! arli 8rr!sm~o.1~1 ri! 'nnrrq 1 'lari8!s a8vrrn .io prrnos
e 3ri!ldures L~len!po.rad uro.1.~ sllns3.1 nlr?p wpaur-snonir!lrron lel!8!p ~o a3rranbas V .

:slrraura.r!nba~ aur!l-lear (alqi?.ronq 3.rorir
'log rr!) 1rra.ra.pp anKr1 ~213 '1~?3!dAl a.ie (si.rqla 8u![nparjns aur!l-lea.r oi inr:.rnlrrnon
IT?IIM~UIOS 1~111) s~II~uI~.I!~~~J onrre.ralol-llny~ rP!rl pire 'pallo~liron acl ol ssaoo.rd
1e3!rrtjnal aijl r11!~ an~j.raly ol sm!,\ap 011 jo e~orllald e 'sysel awy-1ca.r ~o /C~~!.IEA
a%ej t? 'srro!lenqddr! asai[i .ro!l .8u!lo[!d !jr:ln.i!e .ro uo!leuiolne L~olnr!.~ sr! ijnns sna.ir!
uo!lr?n!ldde U! stualstls lo~luo> prln puvwudon .ro.j pasn Llpuo!l!prr.rl s! 8rrqnparlns airi!l
-~r!av 'M:) i~oddns 01 payns lIaM lorr a.1~ suralsLs aur!i-leal Bu!isya 'L[ai~unl.ro~jrr(l

.alnpaqnsparrrn?ld Lnnja.r~n ririt? u!n.r rrw
'.Fa 'uralsLs Lrouraur jr:nl.r!n r! jo sllnq a8ed ~o sarlnl!ri\s ssa3o~d '8rr!rlni?n jo slna.lja
a1qeln!pa.rdu(l 'p~~nnra aq 01 seq uralsris 8rye.rado ayl jo Jo!Af:ilaq n!ls!rr!ur.i?lap
r: ls~alnparlns asaql jo uo!lc~unj arll ~~oddns o~ 'nt13 341 yRno.rrj1 „sseci,,
uana iorr Af:w elep e!paur-snonu!iuo:, 's.rallo11rro3 jo sa!l!l!qede:, vm(j rji!~ ..rail!r
prre rie~ap ol L~~ur!:,rprclf!s alnq!Jlrron ualjo sys!p pur! syJoMlaN 'nt13 arll lsnr lou
'pan[onz! s! rlled eiep pua-oj-pua ayria arl,L .Rrr!ssano.rd elep-~~ aql y panlonrn
san~nosa~ uralsris nr? ol paqdde aq 01 aneil sanb~irqnai asayj, .sanbnrqnai Zu!l?zpayns
auq-lval asn lsnw walsLs 8Uyl?13d0 aill '~3 JO quawa~!nba.r Wrnrry arji pgnj o,~,

'(e:,!iu3-aui!l lorr s! jo 8ypuerl aqi '(al!] oap!A
e Bu!ridon uaqM '.Ba) 011 lnorli!M '[SI] uo!lf:nqdde aill rr! panlonu! s! (I! jo 1uo.1
U! Brnli!s lasn muinrl auros 'Ljsno!nqo 'prre) iuawd!nba 011 auros j! papunoq 3q
01 aneq ~3 jo 8u!lpirerl ayi 1oj alt!/ pur? Lnlap 'Z?yur!l ina~~on alnsua o,~ 'Lljvuo!l
-rrai?rn riadderl lorr lsnw prrv sn!iueuras eivp lerr$i!~o aql jo uo!ie31jpour f: [I! ljnsaJ
pap~oaa~ 10 paAeld a.n! sanp q3y~ le sauy ayl T sa8my3 .aql jo UO!~~RJJ auros
JOJ UO!IRWIOJ~ wf:aJp slrrasa~da~ waqs oap!A ~o o!pnt! ue anp apu!s q:,r!g
:eiep ~43 jo anle" 8u@ueq3 A1ji13!pouad 391 wo~j rJqnsaJ ~vyl suralsAs ~alndwon uo
spuewap XZJ!.~ asodq ~3 'quawa"nba~ tndyXno~y? r@q wolj ~redv .py3 Bu!lp
-mq 1oj lua!~r~ns~ s! uoual!m sq,~ .rro!le.rlsnmrrpv a:,~nosa~ JOJ uo!~alu3 yvur arll
y l,ssaury~„ 'XIN~ SV rpns suralsris 811qsf:i!ilnu1 I~UO!I!PVJI UI .SI~!IJLIO~ anJnosaJ
~AIOWJ lsnw I! prn! paau Asyl sanJnosaJ uralsAs arIl III!M wayl ap!AoJd ol serI uralsLs
Ryl~lado arIl 'aunpaw auo aJ.eqs MCI pue ~3 8qprif:rl sassa3o~d luasrnnuon 31

.e!paw!l~nur
prn? Ky:,ua~a~rro:, ~alndwon an! suralsris aur!l-leal loj seaJe MaN '[ob] slur!ld ~a~od
napnu jo 10~1~03 aill pue swalsAs Ku!ye~q ynol-!lue apqouroine '~e~:,ne ~J!M-AC~-LU
y ura1sAs lo~luo:, prn! pwunuo:, se pasn osp a1-e suraisAs ayl-pax .lo~iuo:, puf:
Krruo1~orrr aw!l-If:aJ ~oj a~q!suodsa~ s! uralsris lo~luon ssa:,o~d e rpn~ 'suraisLs aury
-IWJ JO asn aql 103 eaJe uo!ie3![dde u!ew V s! iuaura8eueu1 ssa3o~d 8uun~3t?jnua1,q

.Jalses!p le!lualod e p!o~f:
ol JapJo U! po!~ad paur-jap-na~ T: uryi!~ ~nmo isnw rroynunpuI e ol asuodsa~
arIl "8.a 'luqd ~a~od ~f:apnu e jo uralsris lo.rluo3 aql u1 ~sauql asuodsa~ asaijl
uo pasodur! aq ol aney anp a8e~a~e rre JO punoq ~addn ue sri qnns syeJisrro3
-iro~~tnu~q/ij! Xijnu!~ a1vrnnn pirn szuann lnqr!.4n-aiu?z oz asirodsa~ ~syf Ajqnzn!pa~~ ' 1

all time-critical opcrations are pcriodic. Sclicdulability considerations for pcri-
odic tasks are much easier than for sporadic ones [56].

For many applications missing a deadline in a multirncdia systcm is - althougli
it .should be avoidcd - not a sevcre failurc. It may cvcn be unnoticcd: If an
uncompressed video framc (or parts of it) are not available on time it can
simply be dropped. Tlie human viewcr will hardly ~ioticc it, providcd tliis docs
not happen for a contiguous sequence of frames. For audio, rcquircments are
higlier because the human ear is more sensitive to audio gaps than the human
eye is to video jitter.

l'he fault-tolerante requirements of continuous-rncdia systems are usually lcss
strict than for those real-time systems that have physical impact. The failure of
a continuous-media system wiii not directly lead to the destruction of tcchnical
equipment or constitute a threat to human life.

The bandwidth demand of CM is not always that stringent. As some com-
pression algorithms are capable of usirig different compression ratios - lcading to
different qualities - the requued bandwidth can be negotiated. If not enough
capacity for full quality is available the application may also accept a reduccd
quality (instead of no service at all). The quality may also be adjusted dynam-
ically to the available bandwidth, e.g., by changing encoding parameters.

In a traditional real-time system, timing rcquiremcnts rcsult from the physical char-
acteristics of the technical process to be controlled, i.e., they are providcd externally.
Some continuous-media applications have to meet external rcquiremerits, too. A
distributed music rehearsal is a futuristic example: Music playcd by onc musician
on an instrument connected to his workstation has to bc rnade available to all otlier
mcmbers of the orchestra within a few rnilliseconds, othcnvise the undcrlying know-
ledge of a global unique time is disturbed. If human Users are involved in only the
input or only the output of CM, delay bounds are flexible. Consider the play-back
of a video from a remote disk. The actual delay of a siriglc video frame to be trans-
ferred from the disk to the monitor is unirnportant. 1;rarncs must only arrive in a
regular fashion. l 'he User will notice any difference in delay only in the time it takes
for the first video frame to be displayed. While tlie traditional real-time scheduling
problem is to find a schedule for a sct of processes with given delay bouncls, the
main problem in multimedia systems is to find reasonablc delay bounds so that a set
of processes is schedulable.

CM are an addition to - not a substitutc for - the DM alrcady available in com-
puting systcms. In tlie future multimedia systcms, time-critical continuous-media
tasks and non-critical discrete-media processes will run concurrently. Such a mixed
operation imposes new demands on schedulitig as traditional systems usually Iiave
to support only one class of processes. The operating systcm must fulfiU two con-
flicting goals:

l'ime-critical processes must nevcr bc subjcct to priority inversion (i.e., be kcpt
from running by non-critical processes for an iiidcfinite time) [62].

IJncritical proccsscs should not suffer from starva~iotz because time-critical proc-
csscs are cxecutcd.

A solutiori to this conflict is possible if multimedia systcms have control ovcr the
tirnc-critical workload rnaking use of thc rcsourcc mnnagcmcnt [82].

Miiliiinc<li;i arid Rcal-'l'inic 6

2.4 Resource Management in HeiTS
A distributed multimedia system requires guaranteed processing of CM. The quality
ufservice (QoS) requirements depend upon the type of data and the nature of the
supported applications [74]. We consider three relevant QoS parameters for the
processing and transfer of CM-data [82]:

1 . l'lie throughput parameter determines the data rate a connection needs in order
to satisfy application requirernents. The maximal achievable throudiput on the
CI'IJ depends on the algorithm that is employed to scliedule time-critical tasks.

2. We distinguish between two kinds of dehys:

a. 'The delay at the resource is the maximum time span for the completion of
a certain task at tius resource.

b. 'l'he end-tu-end delay is the tlie total delay for a data unit to be transmitted
frorn the sourcc to its destiiiation. It is the sum of the delays of all involved
resources.

3. 'I'lie reliability defmes error detection and correction mechanisms used for the
transrnissiori and processing of multimedia tasks. We distinguish three classes of
error treatment: ijpore, indicate and correct. It is irnportant to notice that error
correction tlirough re-transmission is rarely approprkate for time-critical data
because the re-trarisinitted message will usually arrive late. On the other hand,
siiiglc or smail errors might not be noticed by the User, and thus, uncompressed
data miglit not even need any error correction. For compressed data, especially
encoded video, error detection and the substitution of compted or late packets
rnight be useful because a single error may have continuing effects. In terms of
reliability the CPU represents little dZrculties as no errors occur at the proc-
essing of a task.

T o guarantee the QoS-parameters the resource rnanagers docates for each con-
riection tlie riecessary resources (e.g. CI'IJ, cornmunication network). They ensure
that a new connection does not violate performance guarantees already given to
cxistiiig coiinections [27]. DuMg the connection establisliment the QoS parameters
are usually riegotiated, mediating tlie appiication's needs with tlie currerit capabilities
OS tlie communication system. There are diirercnt ways to negotiate tlie QoS
parameters. l'he simplest iiegotiation sclieme is the specification of tlie QoS through
tlic application. 'l'he resource maiiager checks wlictlier this QoS cari be provided or
not. A inore elaborate metliod is to optiiiiize single parameters. In this case two
paraiiietcrs are determuied by tlie appiication (e.g. throudiput and reliability), tlie
rcsource inanager then calculates tlie best achievable value for tlie third parameter
(e.g. delay) [82].

A resource managcr has four tasks:

1 . Scheduluhility Test: 'l'lie resourcc mariager checks with tlie given Q o S parameter
if tlicrc is criougli rernauiing resourcc baiidwidth availablc to haiidlc tlie ncw
coiiiiection.

2. QoS Crilculution: After the schedulability test tlie rcsource managcr calculatcs
tlie best possiblc perforrnance the rcsource can provide for the iiew coiiricctioii.

3 . Resouvce Ilesei-vation: 'l'he resource rnaiiager allocatcs tlie rcquired capacity in
ordcs to mcct tlie QoS guaraiitees for cacli corincction is rescrved.

4. kesource Schedufing: Iricorning messagcs frorn coririeclioris arc sclieduled
:iccoscluig to tlie givcn QoS guarantccs.

'I'liis l'our tasks cari bc applicd io eacli rcsource. lior tlic <:I'[), real-time sclieduling
caii bc coiisidercd to I>c a task o f thc rcsourcc innnagcr. Hut, in tlic casc OS proccss
rn:iii;igcrnciit real-time sclicduliiig is a tluty of tlic opcrating systcrn. 'I'licrcf'orz, tlic
ol>ci;itiiig systcin rnust use sclicduliiig rnctliods \vliicli coiisicler tiiiic coristrairit. 'l'lic

resourcc managcr lias to perform tasks 1,2 and 3 bcfore tasks can bc sclieduled.
However, it must be noted that the schedulability test, QoS calculation and resource
reservation depcnd upon the algorithm used by the schcduler.

Reservation of rcsourccs can be rnade eithcr in a pessim'.~tic or in an optimi.rtic w:iy:

The pessimistic approach avoids isource conflicts by makitig rcscrvations for
thc worst case, i.e. resource bandwidth for thc longcst proccssing time and tlie
higliest rate necdcd by a task is reserved. 'Tliis leads potetitially to an undcrutili-
zation of rcsources. In a multimedia systcm thc rctnaining proccssor time (i.c.
the time reserved for trafic but not uscd) can bc used by DM tasks. I'his
rnethod results iq a guaranteed QoS.

The optimistic apprnach reserves according to the average or rninirnum work-
load. This results in a best-eflnrt QoS. The CPU is rcscrved for the averagc or
minimurn processing time and data rate needed by a task for its processing. l'his
approach overbooks resources with the possibility of a packet loss.

Best-effort processes require the ability to detect and solve resource conflicts.
Resource conflicts occur when a best-effort process excecds its reserved proccssing
time and other critical processes require processing. In this case the schcdulcr has to
detect the resourcc conflict, to preempt the best-effort process, and to schedule
anotlier critical task. The OS12 operating system does not supply the possibility of
measuring pure processing time. Therefore, it is dificult to dctcct and solve rcsourcc
conflicts. Another solution to this problcm is the use of the following prcemptivc
multi-level priority scheme (c.f. [82].)

1. Critical guaranteed processes

2. Critical best-effort processes

3. Processcs not exccuting transport system software (e.g. application processes)

4. Workahead proccsses (both guaranteed and best-effort)

A request from a guaranteed task will preempt every mnning best-effort task even if
the deadline of the best-effort task is closer. Hence, bcst-cffort tasks can fail to meet
their deadlines although they did not exceed thcir rescrved proccssing time and tliere
would have been a feasible schedule. 'To use guarantecd processes and best-cffort
processes concurrcntly one must to accept this flaw, although it is certaiiily not
ideal.

2.5 CM-Resource Model
The resource modcl for IIciTS is based on the modcl of Linear Bounded Arrival
Processes (1,BAP) as descrihcd in 131. In tliis rnodel a distributcd systcm is dccom-
posed into a chain of rcsourccs traverscd by the rnessagcs ori tlicir cnd-to-end trips.
Exarnples of sucli resources are single schedulable deviccs such as CI'IJ, or com-
bined entities such as nctworks.

A LBAP is a mcssagc arrival process at a resourcc dcfincd by thrce fixccl paratnctcrs.

M = Maximum rnessagc size (bytc/mcssage)

R = Maxirnurn mcssagc rate (rncssagc/sccond)

ß = Maximum IIurstincss (mcssage)

A burst consists o f inessages which have arrived "alicad of schcdulc"

In tlic following this 1,BAl' modcl is discussed in tcrrns of a spccific cxainplc:

Two w o r k s t a t i o n s a r e in te rconnec ted by a LAN. A CD-player i s
a t tached t o one w o r k s t a t i o n . Mono-audio da ta i s t r a n s f e r r e d f rom t h i s CD-player
over t h e network t o t h e o t h e r Computer. There t h i s aud io d a t a i s d e l i v e r e d
t o a speaker.
Th is mono aud io s i g n a l i s sampled w i t h 44.1 kHZ. Each sample i s coded w i t h
16 b i t .
Up t o 12000 by tes a r e assembled i n t o one packet and
transni i t t e d over t h e LAN.
Th is r e s u l t s i n a d a t a r a t e o f

The samples on a CD a r e assembled t o frames. Th is frames a r e t h e aud io messages
t o be t ransmi t t e d .
75 messages p e r second a r e t r a n s m i t t e d .

I n a packet o f 12000 b y t e we can then have n o t more than

12000 b y t e
s 10 niessage

1176 bytelmessage

I t o b v i o u s l y f o l lows:

M = 1176 byte/message

R = 75 message/s

B = 10 message

During a time interval of the length t , the n lax in ra l n u m b e r oj'messages arriving at a
resource must not exceed

B + R X t (message)

Assume t = 1 s

10 message + 75 ~iiessoge/s x 1 s = 85 message

'I'he Hitrst iness B introduces shod time violations of the rate constraint. 'This aiiows
the modcihg of programs and devices that generate burst of inessages. Bursts are,
e.g., generated when data is transferred from disks in a bulk transfcr mode or -as
above- wheri frames are assembled to large ppackets. Tlie ~naximum average data
rate of a I,I3AI' is:

I t is guaraiitccd tliat mcssages are processed accordiiig to tlieir rate. Messages wllicli
ari-ivc "alicacl of'schedule" Iiave to be qucued. For dclay 5 pcrioJ tlic b u j j k r size is:

M X (U + 1) (byte)

M i i I I - I 9

1176 byte/message X 11 message = 12936 byte

The function b(m) rcpresents the lngical hacWog of mcssages. This is the numbcr of
messages which already have arrived "ahead of schcdule" at thc arrival of message
m . Ix t ai be the actual arrival time of message mi; 0 5 i 5 11: then b(i) is defined by:

-
E ai_, = I.OOs;a,= 1.013s; b(m,-l) = 4 s

b(mi) = max(0.4 message - (1.013 s - 1.00 s) X 75 messagels + 1) = 4 message

The l@cal awival time of a message mi can thcn dcfincd as:

4 message
1.013s + = 1.06,

75 messagels

Equivalent by it can be computed as:

1 message
max(l.013 s, 1.053s +) = 1.06s

75 message/s

Intuitively I(m) is the earliest titne the message m coulcl have arrived if all messages
had obeyed their rate.

'The ~t~aranteed Iogical dclay of a message m dcnotcs tlic maximum time betwccn
the logical amval time of m and its latcst cornpletioii. It results from tlie servicing
time of the messages and thc compctition among different scssions for resourccs, i.c.
the waiting timc of the messages. If a mcssagc arrivcs "alicad of schcdulc" the actual
dclay is the sum of the logical dclay and tlic timc hy wliich it arrivcs to carly, it is
thcn grcatcr thcn thc guarantced logical dclay. It can also bc lcss thcn the logical
delay when it is completed "ahcad of sclicdulc". 'I'lic rlcndlinc d(m) is derivcd from
the dclay for thc proccssing of a messagc tnt at a rcsourcc. 'l'he dcadlinc is thc sum o f
tlic logical arrival time and its logical dclay.

If a incssagc arrives "ahead of schcdulc" aiid tlic rcsourcc is in an idlc statc, tlic
mcssagc can bc processcd immcdiatcly, i.c. i t is \vork;~Iicad. 'I'hc mcssagc is tllcn

R,Iiiliinicdia and Rcnl-l'itnc 10

called a workahead message, the process is a workahead process. A maximum
~vorkahead time A can be specified (e.g. from the application) for each process. This
results in a maximum workahead linrit W.

0.4 s X 75 messagels = 3 message

If a message is processed "ahead of schedule" the logical backlog is greater then the
actuai backlog.

A message is critical if it has passed its logical arrival time.

'i-liroudiout the rest of the paper the I,13AI'-model is used to describe the arrival
processes at each resource. The resource must ensure that the arrival processes at tlie
output interface obeys the LBAP-parameters.

M i d i I I - i r r 1 1

3.0 Application of Traditional Real-Time Scheduling to
Multimedia Data Streams

In computer scicnce the problem of real-time processing is widcly known [6; 20; 60;
661. The Rate-monotonic algoritlim to schcdulc pcriodic real-time tasks, for
example, was introduced by J,iu and Layland in 1973 [47]. In industrial process
managcment and operation research (OR) schcduling is uscd in ordcr to find an
optimal schedule for the processing of jobs on a singlc processor or on multiple
machines [17]. It differs from real-time schcduling in that it operates in a static
environment and must not adapt to any change of workload [85]. Tiere, task dead-
lines are not hard. 'i'he major task is to get an optimal utilization of the machiries.
Nevertlieless, there are scheduling methods and modifications of the base algorithms
applied which are also used in computer science for real-time proccssing, e.g.
sliortest processing time schedulig, earliest due data and Moor's Algorithm [42].

There are many proposals to solve real-time scheduling problems with many vari-
ations of the basic problem. In order to find the best solution for our problcm we
analyzcd various algorithms and discussed their advantages and disadvantages. In
this chapter we focus on the most relevant algorithms. Most of tliese approaches
aim to solve non-multimedia problems but, their basic idcas can be used for our
pu rpo se .

Tlie goal of traditional schcduling is optimal througliput, optiinal rcsourcc utiliza-
tion, and fair queueing. In real-time scheduling the major task is to provide a
schedule according to the constraints of time-critical tasks.

The scheduling algorithm has to map tasks onto resources such that all tasks meet
their time requiremcnts. Therefore, it must be possible to show, or to proof, tliat a
scheduling algorithm applied for real-time systems fulfills the timing requirements of
the task.

3.1 Real-Time Scheduling: System Model
In this section we dcscribe the system model for thc scheduling of real-timc tasks.
All schcduling algorithms to be introduced are based on this model. 'T'he modcl con-
sists of thrce components:

Resourccs: A resource is an entity with a finite capacity that is required by the tasks
for their processing. 'There are active resources iike tlie CPU, and passive rcsourccs
like the main mernory. A resource can be used exclzisive$ by onc process or can be
shared with other processes. Active resources are always exclusive. Each resource
has a capacity which results from its ability to perfonn a certain function in a given
time-span. For real-time scheduling only the temporal diversion of thc rcsourcc
capacity is of interest. If a resource exists only oncc in tlie system, it is callcd a sin~le
resource, othenvise it is a multiple resource. In our case wc have to deal with an
crcdve, exclrrsivc, single resource -the CI'IJ. In a real-time systcm thc sclicdulirig
algorithm Iias to detcrmine a schedule for cxclusive, lirnited rcsources that arc uscd
concurrcntly by different processes sucli that all of thcm can hc proccsscd without
violatirig any dcad l in~s .~

Tasks: A task is the schcdulablc entity of thc systcm. It can bc invokcd to perforrn a
particular function. J r i a hard real-time systcm, a task is charncterizcd by its tirnirig

3 'I'liis notion can hc cxicnclcd to a niodcl witli niiiltiplc rcsoilrccs (c .g . (3'U's) o f Llic samc lypr. I t c:iri ;ilso Iic

cxicndcd to Cover difrercni rcsoiirccs sucti as nicniory and haridwidtli ior cornmiiiiic:iiioii.

Application o f 'l'radiliorial I lcal~l ' i r r ic Schcdiiling 10 Mii l i imcdi:~ I>;iia Strcanis 12

constraints as weii as resource requirements [12]. In our case we consider on1y peri-
odic tasks witliout precedence constraints, an appropriate characteristic of CM-data
processing.

l 'he time constraints of tlie periodic task T are cliaracterized by the following
parameters (s, e, d, p) described in [43]:

s: Starting point

e: Processing time of T

d: Deadline of T

r : Rate o f T (r = l/p)

0 < e I d l p. The starting point s is the first time wliere the periodic task requires
processing. Afterwards, it requires processing in every period p with e processing
time. At s + (k - 1)p the task T is ready for the k-processing. The processing of T in
period k has to be finished at s + (k - 1)p + d. For CM-tasks we can assume that
the deadline of the penod (k - 1) is the ready time of period k, this is cailed con-
gestion avoidirig deadlines: The processing time for each data unit is the period of the
respective data rate.

Figurc 1. (:tiaracterization of Periodic Tasks

l'asks can be precmptive or non-pree~nptive. A preemptive task can be interrupted
I>y tlie request of any task with a iugher priority. I'rocessing is continued later on. If
a task is non-preemptive, the processing can not be interrupted. Any high-priority
task lias to wait until the low priority task is finished. l'he high-priority task is then
subject to priority inversion. We consider CM-tasks on tlie CPU as preexnptive.

0l)jecfivc.s of Scli&duling Algorithriis: 'I'lie function of a scheduling algoritlun is to
dclcrinine for a give~i task set wliether or not a scliedule for executing tlie tasks
exists, such tliat tlie tirnirig and thc resource constraints of the tasks are satisfied.
l~urtlier, it Iias to calculate a schedule if one exists. A scliedulirig aigoritlim is said to
guarantee a newly arrived task if tlie algorithin can lind a sclicdule where tlic new
task and all previously guaraiiteed tasks can firiish processing in every peiiod over
thc wliole I-un-tirne to tlieir deadlines. If a sclieduling algoritlim guarantees a task, it
ciisuscs tliat tlie Lask fuiishes processi~ig prior to its deadliiie [12]. 'I'o guarantce
tüsl<s i t inust be possible to clicck tlic scliedulability ol' tlic iiewly arrived tasks.

A major performance metric for a real-time scheduling algorithm is the guarantee
i-atio. The guarantee ratio is the total number of guararitecd tasks versus the number
of tasks whicli could be processed. Another performancc metric is the pvoccssor-
utilization. 7'liis is the amount of processing time uscd by guarantced task vcrsus
the total amount of proccssing time [47]:

Earliest Deadline First Algorithm
The Earliest Deadline First (EDF) algorithm is one of the best known algorithms
for real-time processing. At every new ready Status the processor executes the ready
task with the earliest deadline [13; 171. It gets access to the requested resource. At
any arrival of a new task, E D F must be computed immediately heading to a new
order -i.e. the running task must be preempted for this scheduling process. 7'he
new task is processed immediately if its deadline is carlier thcn the one of thc inter-
rupted task. The processing of the interrupted task is continucd according to the
BDF algorithrn later On. EDF is not only an algoritkin for periodic tasks but also
for tasks with arbitrary requests and dcadlines. Also, the service execution times of
the tasks must not be known 1131. In this case no guarantee about the proccssing of
any task can bc givcn.

E D F is an optimal, dynarnic algorithm. It produces a valid schedulc whenever onc
exist. A dynamic algorithm schedules every incoming task according to its specific
demands. Tasks of periodic processes have to be scheduled in each period. With n
tasks which have arbitrary ready-times and deadlines the complexity is O(n2) [24].

Most of the available scliedulers work with priorities. Rach task is assigned a priority
according to specific policy. The order of the tasks results from this priorities. The
task with the highest priority is executed until it is finished or preemptcd by the
requcst from a highcr-priority task. Aftcr each time slice the schcduler may rcar-
range priorities (e.g. in OS12 in the priority-class "rcgular"). The determitiatioti of
the timc slice has the goal to keep the number of context switches low (because thc
check and detcrmination of priorities is also done by tlie CPU and it rcquircs over-
head processing) and to gct a fair and valid schedulc over thc whole run-time of the
system.

The E D F algorithm assigns priorities according to the deadlincs of tasks if the
scheduling is priority driven. The highest priority is assigned to the task with the
earliest deadline, the lowest to the one with the furthest. With cvcry arriving twk,
priorities have to be adjusted.

CDF is used by different models as basic algorithrn. l 'he time-dr-iivn schcdrtl~r-
(-I'IIS) is based on a policy similar to EDF. It extcnts EIIF and handles ovcrload
situations. If a overload situation occurs the scheduler ahorts tasks which can not
mcct thcir dcadlincs any more and thosc whicli liavc a low value dcnsity. 'Thc value
dcnsity corresporids to tlie irnportance of a task [80]. I t i our systcrn we do not
cxpect to havc ovcrload situations duc to thc usc of pcssirnistic rcsourcc managc-
mcnt schemes prior to sclicduling.

In [50] an T;,l)I; scheduling algorithrn is introduced whicli is also prccmptive and
priority-driven. Iivcry task is divided in to a mnndnior:y and ari opiionnl part. A task
is tcrminatcd accorcling to tlic dcadliric of tlic inantlatory part cvcn if it is not com-
plctcd at tliis timc. 'I'asks arc sclicdiilcd witli rcspcct to tlic tlcadlinc of tlic rnarida-
tory parts. A sct of task is said to bc fcasihlc sclic~liilctl if all tasks cari incct tlic

deadlines of tlieir mandatory parts. 'Fhe optional parts are processed if tlie resource
capacity is not fuily utilized. Applying this to CM the metliod can be used with
layered coding. Referring to uncompressed bitmaps, tlie processuig of the MSB's
(inost significant bit) is mandatosy whereas tlie processing of the LSB's (least signif-
icarlt bit) can be corisidered as optional. Applied to compressed images based on
transforrnation into frequency domain, tlie rnost relevant information is part of the
lower frcquencies. Their processing is maridatory in contrast to tlic processing of the
liiglier frequencies where the proccssing is optional. With this method more proc-
esses can be scheduled and in a overload situation no process has to be discarded.

For a dynamic algorithrn like EDF the upper bound of the processor utilization is
100% [47]. Compared with any static priority assignment, EDF is optimal in a
sense that if a set of tasks can be scheduled by any static priority assignment it can
also be scheduled by EDF. In EDI; thcre is rio processor idle tirne pnor to over-
flow.

Applying EDF for the scheduiing of CM tasks on a single processor machine with
priority scheduling priorities have to be rearranged when the pnority required by a
new task is currently used for anotlier process. This may cause a considerable over-
hcad. Tlie EDF sclieduiing algorithm itself makes no use of the previously known
occurrence of periodic tasks.

3.3 Rate Monotonic Algorithm
'l'lie Rate monotonic sclieduling was first introduced by Liu and Iayland in 1973
[47]. It is an optimal, static, priority-driven algorithm for preemptive, periodic jobs.
Optimal here means that there is no other static algoritlim that is able to schedule a
task set which can not be scheduled by the rate monotonic algoritlim. A process is
scheduled by a static algorithm at the begiiining of the processing. Subsequently,
eacli task is processed with the priority calculated at the beginning. Five assump-
tions are made about the environment [47]:

1. The requests for all tasks with deadlincs are periodic. 1.e. with constant intervals
betweeii consecutive requests.

2. Deadlines consist of mn-ability constraints only. 1.e. each task must be coin-
pleted before the next request occurs.

3. 'I'lie request of tasks are independent. 1.e. tlie requests for a certain task do not
dcperid on tlie initiation or completion of requests for other tasks.

4. Run-time for each request of a task is coiistant. Run-time denotes tlie time
wliich is required by a processor to execute the task without interruption.

5. Any non-periodic task in the systein lias rio required dcadlirie.

1~;uithcr work shows that not aU of tliese assumptions are mandatory for CM-data
pi-ocessing.

Stntic priorities are assigned to tasks once accordiiig to tlieir request rates. 'l'lie pri-
ority corresponds to tlie importarice of a task relatively to other tasks. 'I'asks witli
liiglicr request rates wiil have higlier priorities [47]. 'l'lie task with tlie shortest
pciiod gets tlie liidiest priority aiid tlie task witli tlie longest period tlie lowest pri-
oi-iiy.

A iask will always mcet its deadliiic il' it is pioveii fix tlic loiigest t-esponse time. 'rlie
rcspoiise tiine is tlie tirne spari betwecn tlie rcqucst and tlie end of processirig of a
task. 'l'liis time span is maximal wlicn all proccsscs witli a liiglier priority request
~"i)ccssing at thc samc tiine. l'liis casc is c:illcd criiicul irtsrant. 'I'lie critical time
zonc is tlic tiinc intcrval betwecii tlie criticitl irisiaiit aiicl tlic coinplction of a task.
,411 exainple is sliowii in Iiigurc 2.

Application ol"ri.aditiorial I<cal-'lSiiiic Scliccfiiliiig io Multiriicdia Ilnla SLrcanis 15

Figure 2. Critical Instant

Consider an audio and a video stream scheduled according to the rate monotonic
algorithm. Let the audio stream have a rate of 1/75 and the video stream a rate of
1/25. The priority assigned to the audio stream is tlien higher then the priority
assigned to the video strearn. The arrival of a messages from the audio stream wiii
intempt the processing of the video stream. If it is possible to complete the proc-
essuig of a video message before its deadline which requests processing at the critical
instant, the processing of all video messages to their deadlines is ensured.

The processor utilization of the rate monotonic algoritlim is upper bounded. It
depends on the number of tasks which are schedulcd, their processirig times, atid
their periods. According to C473 there are two issues to consider:

I. The upper bound of the processor utilization which is determined by the critical
instant.

2. Vor each number n of independent tasks t(j? a constellation can be found where
the maxirnum possible processor utilization is minimal. The least upper bound
of the processor utilization is the minimum of all processor utibations over all
sets of tasks tO; j E (1, ... , n) that fully utilize thc CPU. A task set fully utilizes
the CPU when it is not possible to raise the processing time of one task without
violating the schedule.

IJrider this assumptions C471 give an estirnation of the maximal processor utilization
where the processing of each task to its deadline is gt~arnnteed for any constellation.
A sct of r n indepcndent, periodic tasks with fixed priority order will always meet its
deadlirie if:

For large rn the lcast upper bound of the processor utilization is U = In 2 [46].
Ilcnce it is suflicicnt to check if the proccssor utilization is lcss or equal to the givcn
uppcr bound to find out if a task set is schcdulablc or not.

With EDF, a proccssor utilization of 100% can he achicved because all task are
schcdulcd dynamically according to thcir dcadlincs. ITigurc 3 shows an exatnplc
wherc tlic CPIJ can be utiiized to 100% witli 1'I1li but wlierc ratc monotonic
sclicduling fails.

Application of'l'raditional Rcal-TT'irnc Schcduling to Miiltinicdi;i Ilatit Strcarns 16

Figure 3. Rate Monotonic versus EDF: Proccssor Utilization

A related problem is addressed in [69]. In most cases the average task execution
time is considerably lower than tlie worst case execution tune. Therefore, scheduling
algoritlims should be able to handle transient processor overload. Tlie rate
monotonic algonthm on average ensures tliat all deadlines wiil be met even if tlie
bottlerieck utilization is weil above 80%. With one deadluie postponement, the
deadlines on average are met when the utilization is over 90%. C711 mentions an
utilization bound achieved for the Nowy's Insertial Navigation System of 88%. In
the case of CM and DM-data to be processed, the utilization discussed so far only
appiies to CM. Even with a CM-utilization of 69%, the remaining 31% can be used
for DM processing.

Since tlie rate monotonic algoritlm is an optimal static algoritlm no other static
algoritlim can achieve a higher processor utilization.

As shown in Figure 4 there rnight be more context switches witli a scheduler using
thc ratc monotonic algorithm then one using EDF.

6

Low Rate

, - , .,. .-, ,. < . .
[ij;yz@j - -

EDF

-. -. .

Rate Monotone

1:ig~ii.c 4. I<atc Monoloriic vcrsus 1 i , 1) 1 ~ : Coii~cxl SwiLctics

Applicatiori ol"l'radi~iorial Itcal-'l'inic Sclicduliiig 10 Miilliiricclia I)aLa Slrcairis 17

There are scveral extensions to tlus algorithm. Oiic of thcm divides a task in to a
rnandatory and an optional part. The processing of the mandatory part delivcrs a
result which can be acceptcd by the User. Thc optional part only refines the rcsult
(c.f. 3.2). Tlie mandatory part is scheduled according to thc ratc monotoriic algo-
rithm. For thc sclicduling of thc optional part different policics are suegcsted [9; 49;
101.

T o mcct the requircments of periodic tasks and thc rcsponsc timc requircments of
aperiodic requests, it must be possible to schedule botli, aperiodic and periodic
tasks. If the aperiodic request is an aperiodic continuous stream (e.g. video imagcs
as part of a dia-slide show), we have the possibility to transform it into a periodic
stream. Every timed data item can be substituted by n items. Tlie new itcms Iiave
the duration of the minimal life span. The number of streams is increased but since
the life span is dccrcased the semantic remains unchanged. The strcam is now pcri-
odical because every item has the Same life Span [23]. If thc stream is not contin-
uous we can apply a sporadic server to respond to aperiodic rcquests. The server
gets a computation budget. This budget is refreshed t units of time after it has been
exliausted. Earlier refreshing is also possible. 'rhe servcr is only allowed to precmpt
the execution of periodic tasks as long as the computation budget is not exhausted.
hftcnvards it can only continue the execution with a background priority. After
refreshing the budget, the execution can rcsurne at thc scrvers assigncd priority. The
sporadic server is especially suitable for evcnts that occur rarcly but rnust be serviced
quickly (e.g. a telepointer in a CSCW.-application) [M; 71; 701.

The rate monotonic algorithm is applied in real-time systcms and real-time oper-
ating systerns by the NASA and the European Space Agcncy [67]. It is particularly
suitable for CM tasks because it makcs optimal use of tlieir pcriodicity. Sincc it is a
static algorithm there is nearly no rearrangemcnt of priorities and hence no sched-
uling ovediead to deterrnine tlie next task with the highest priority. There are prob-
lems with data streams which have no continuous data rate (e.g. a compresscd video
stream where one of five pictures is a fuli picture and all othcrs are up-dates of a
reference picture). The solution is to schedule this tasks according to their maximum
data rate. In this case the processor u t i b ~ t i o n is dccrcasing. The idle time of the
CPIJ can be used to process DM tasks or other non-time-critical programs.

3.4 Other Approaches for Real-Time Scheduling
In these study phase wc evaluated furtlier schedulirig algoritlims toward tlicir suit-
ability for CM proccssing. In thc foliowing we descrihc briefly tlic approaches and
enumcrate tlie reason for thcir "non suitability". Compared with EDI: and rate
monotonic all of tliern have severe disadvantages for our problem.

licast 1,axity First (1,1,F): The task witli the shortcst rcmaining laxity is schcdulcd
first [l l ; 461. 7'he laxity is the tirnc bctweeri thc actual timc t and tlie dcadlinc
minus thc remaining processing time. The laxity in period Ic is:

1,I,F is not only an optimal, dynamic algorithm for exclurivc resozcrces likc EIIF but
also for multipke resources if their ready-times arc tlic sainc [21]. 'l'lic laxity is a
function of deadlinc, processing-time and tlic currcnt timc. Siricc thc proccssing-tirnc
is not kriown, worst-casc is assurned. 'Thercforc, tlic dctcrrninatioii of thc laxity is
inexact. 7'hc laxity of the waiting processes is dyriamically changing ovcr time.
During run-time of a task, anothcr task may gct a lowcr laxity. 'l'his task lias thcn to
prcempt the rurinirig task. Conscqucntly, tasks can prccmpt eacli otlicr scvcral
timcs witliout dispatching a ncw task. IIcricc, thcrc rnay bc rnorc contcxt switclics
thari with 17111i. At cach sclicduling point, thc laxity o f c;icli task lias to hc ncwly
dctcrmincd. 'l'liis Icads to an additioiial ovcrlicad coinp:irc<l witli I;1)1;. Siiicc wc

t[nm ~o pua ar[l]V .rro7!.1or[~!u!J e rro alnnn 9Jn)n.l rlnr?:, 8rr!~np passano.rd aq ol paarr
1eiIi slpn 11 ~"1:) ptre I sse1:) .jo mqwnir arIi rrqrron 1er11 JalnprIns arll Xq pnirir:~
-rr!r:ur sapparlns OM~ a~e a.rarl,l, .irrr?lsrron iday s! rln!rIm 11 ~alaurvmd arI1 sasoorln
ls.r!j ~a1npar1nsq1, '11 5 "'W + "'W + 'H ~I!M "'~'''~~"JV sra1aurv~ed aql Xq parrgap s!
aln/Cn arli ~o 1118~31 urnar!xeur 311~1, .sa1nX3qns 0121! p3p!~!p .r3yIJn.j SI alnh r13eg 'sllan
11 oi dn JO Bri!is!suo:, rpea 'salnXn pallen spo!~ad oly pap!A!p s! aury arlj, .eiep-w(l
S! 111 se13 'oap!~ pue o!pne ayq elnp-W'J 1rrasa~da.r 11 prn: I sse(:) -qep jo sasseln
aaJrll a.re aJarl,l, .saporr Brr!rlnl!~s paseq 8u!~erls aurg snorro~rlnrrXse ~o.1 padol3~3p
SVM UIII~!JOI%IR 8uqnparlns s!rlLl, :iiiill!.io%lv %11!1npa119~ ~III!,~,-I~;>H 11 J~II%RJ~ :SHVI/V

.lna!o~d S,],I~II 3211 ~oj paXoldura suralsXs arll jo Xrrv U! auop aq
lorr Iren Brr!.rol!rrour aur!l-p?a>l .swaisXs Bu!ie.rado 8uys.a Xpea.qe I[I!M luaunr(M!Arra
~euo~~ua,~uon V I! S~SBI-JAJI) jo 3u!ssano.rd 1111 l~oddns ol parr8!sap s! rria1sAs .in()
.~rrauraZeririur an~nosa.1 ayl r? pearl.raAo 38.1~1 e ol peal Avur uralsXs ~3lndU10:, arll jo
sa!i!i\!ine arIl rro r!)ep 3111 jo Bu!ssano.rd aqLL .n~q!wod lou s! 8u!.rol!uoru an!srraIxa
ue rpns suiaisAs Byir!.rado Bu!ls!xa 3111 jo ISOUI UI .liroddns anmp.rerl pw a.mm!jos
p!nads sa~!nba~ 11 .porliauI Bqnpayns 3yeuXp pzxa rrv s! Bupolpow auq-Ir?ax
.pazpr!uyur an samnosaJ jo saui!i aIp1 'pajnpaynss! I! 'ywm eppqnsol A1grq!wod
Xue s! alarli JI 'Al~sva pa~prmg aq uen sluaAa a~qep!pa~dun .Bqprrey-ljnej alprrr?rl
oi pw alnparps pa.1~03 e aqr!!ly ol uo!leurJoF serl uayl iuauraBewur a3~nosa.r
J '[oz] (q:,auqi~oq a3rmrmojJad .Z.a) Jo!Aeyaq .r!arli lnoqe viep hessanau
11z s1aB ssano~d 8u!~ol!uou1 ayi asnwaq pap!oAe aq ue3 sysel arI1 jo Xlq!qelnparlns
arli uo suo!s!3ap 13auo3u1 .palirasaJd pur? passa3o~d 'pai3e~lxa aJr? uralshs ~qnd
-uron ar11 jo sa!l!~!pe ysel uo alep 'waisAs Rupol!uour e u~ :%ii!~oi!iio~4 aii~!~~-lm~

's~s~I-N~ jo Ru!lnpaq:,s ayl JOJ poylaw 1ua!nr~~nsy ue
s! I! 'a.roja~ar~,J~ .uahp aq w3 sauqpvap .ayi 0) 8rIIp~o3ne ysel Aue jo Bu!ssa3o~d ay1
JOJ aair1emr-8 ou s~=),J yl!~ 'sysei-~3 jo iro!Aeyaq alqep!pa~d pue 3!lsv!ur~a1ap
r! .roj pueurap 9 a~a"q -peayJaAo luawa3~mw SS~~OJ~ Aue aAey iou saop X8alv~ls
S!IIJ, .p3!1u3 S! I! lt?rll 13ej ayl jo mda ysvl ayl inoqr! a8palmouy Jarlio ou s! a.rayi
J! pagdde aq ptnorls y3y~ 1C4alr!~ls 8rrgnpayns a~!ldwaa~d-uou r? s! sd3,~ 'wury
~e~!.x.xe ~3901 JO saq pun> 'saw!~ Byssa3o.rd 'saqpilap ~ap!suon lou saop porllaur
sy~, 'lsq pain~axa s! ISJ!~ salipn y3!y~ ysei arlL :(sJ~B) aua~ JS.I!~I aiiio3 ~s.i!~l

'qsei-n3 JO Bu!jnparlns arIl ~oj urrll!~o8le qqr!
-l!ns e lou s! ~IS ar1.L .(luawa8eww a3~nosa~ ysvssad arll jo asnmaq) uo!lcnl!s
peol~a~o aAey lou op pw saqpeap pnba p.raua8 T Jaiunonu:, aM a3u1l; .aqpeap
aus arIl anvy waqi jo p J! 'uo!leni!s peopaAo w lapun saqpeap J!aql laaur alq!s
-sod SE sysel Amw SB 1eql saalwmn8 wr~luo9~rr sq~ '[LI !I I] 11o!in3axa JOJ uasorln
s! aur!~ uo!ielndwo3 8yyewa~ isaeroys ayl ~I!M ysel aqjd :(J~s) PJ!J qor ~s;>~~oilc;

.UIql!J
-OB@ zy.~olouow alw arll 01 Btrrp~o33e auo aql se ams ayl s! unp!~oB[e auolouour
arrgpeap aqi 01 Bu1p.1033~ payu1~3lap alnpay3s aqi lasen s!yi u1 -aiw J!aili 01
pnba an sysel-n3 jo saqpeap arIl teyi aurnssv aM SL!aH u1 .App!nb auop aq ol
sar1 uo!luaAJalu! arIl anp leaJ puv pvou uaamlaq a3ua~app Arm a~e aJayl9 '~nu
.MOI S! aleJ qep naqL .walsAs ~oquo:, B a~nssald JO amle~adura) jo luawaJnseaw
ayl le asue alm ayi rrayl Javoys aqpvap e ql!~ S~SBJ, .[M] 111~1sy p3!l!J3 q! 01
rro!ln3axa sa.ynba~ I! uarIM aqpeap SI! laaw ue3 I! J! ywl qnea J~J pay3ay3 aq 01 serl
I! 'las yse1 e jo Alg~qelnparps arli awalap oi 1apJo u1 -slsya urrlluo8la auoiouour
arrgpeap arll J~J lsal AlgIqvlnpar13s aA!paga ON .'p > p J! 2 ysei B SI? A1~0pd
~ar@l e slaB !J ysvl V .purydo s! sysel jo sarqpeap 01 Bup~on3e luaurrr9!sse AI!JO
-r~d paxy e as~3 sq 1x1 .paAoldwa aq ~ou rren wrlipo8p 3nrolorrow aleJ aqi (Id > 'p)
a1R.x ?ayl uarIl ~avoqs an sysel jo aqpeai ayl j1 :iiii11!mQv ~UOJOMOJ~ aii!~pe;)<~

~SEI-JAJ~ ~oj urrlip
-081~ Bugnpar13~ alqel!ns e syl ~ap!suo:, ~ou op am 'a~oja~ay,~ -pearpar\o Bu!lnparlns
~ayB!q ur! sey lnq gag uarll aie~nnn~ aJow lou s! 11 'dag rli!~ pandu.103 j-1'1'1
JO luawAoldura ayl rn aZ~lur!~pc orr s! a~aqi aInpay3sol a3~nosa~ apu!s e Apo amrl

cycle the schedulcs are updated by taking into account the number of new cells that
got ready during the previous cycle. The minimum amount of resources that satisfy
tlie Class I and Class I1 QoS requircments is allocated to each class, the QoS
requirements of Class I must always be met. If thc remaining resources are not suf-
ficient for Class I1 tasks, the exceeding Class I1 cells are clipped. If tliere is resource
capacity left it is allocated to Class 111 tasks. 'T'hc decision is always made at the end
of cycle times [28]. The Class I cells are guaranteed.

I'he MARS-algorithm was designed to schcdule real-time trafic on a network. The
resource is the network, the scheduler is integrated in thc packet switch. It runs on a
own CIJU and does not have to consider tlie generated scheduling overhcad. In our
case tlie scheduler runs on the resourcc it has to schedule. It has to minimize sched-
uling overhead. Therefore, the MARS-algorithm is too complex for the
CM-sclieduling in our envisaged environment.

.Scarcli Heuristics for Scliduling: The problem of finding a feasible schedule can bc
conceived as a search problem. The normal search-algorithms can be employed to
solve this problem. In C751 the guarantee algorithm is introduced. This algorithm
uses a search tree to find a feasible schedule. The root of the search trce is the empty
schedule. An intermediate vertex of the search tree is a partial schedule and a leaf is
a complete schedule. Not aU complete schedules arc feasible scliedules. The problem
is to find a feasible schedule. A heuristic function 1-1 was developed. On each level of
the search the function H is applied to find the task with the minimum valuc of I-I.
'This task is selected to extend the current, partial schedule. The complexity of this
search is not exponential.

An algorithm based on the network flow tccliniquc is developed in [68]. This algo-
rithm divides a task in a mandatory and in an optional part. With the network flow
algorithm a schedule where aii mandatory tasks and as many optional tasks as pos-
sible can meet their deadlines is determined. The optimal schedule is the one with
the maximum flow in the network. The complexity to find an optimal feasible
schedule is ß(n310gn). The disadvantage of the network flow technique and tlie
search heuristic is their complexity. Those algorithms can be applied if the schedule
has to be determined only once and must not be altered during run-time. Our
system runs in a dynarnic environment. At run-time often new connection may be
establislied or rcleased. Every time a new schedule has to bc determined. 'Thcrefore,
no search algorithms or methods based oti network flow techniques are not appro-
priate to schedule CM-tasks.

All of the described methods and algorithms may be applied for the solution of our
problem. Some of them arc general algorithms, some are algorithms for special
problems. Various other methods and algorithms to schedule real-time tasks are
described in literature. E.g., an on-line scheduler for tasks with unknown ready times
[29]. In [7] a technique is introduced which is based on the network-flow model for
uniform processors. In [86] the Virtual Clock, Fair Queucing, Delay Barliest Due
Data, Stop and Go and IIierarchical Round Robin are described. 'Those are
methods for the queueing in a packet switched data network which also could be
uscd with somc variatioiis for the scheduling of real-timc tasks on the CPU. Most of
thesc approaches are variations of the algorithms described above, some use
mcthods (e.g. round robin) that can not bc considcred as a rcal-time scheduling
strategy at all [21].

3.5 Preemptive versus Non-Preemptive Task Scheduling
Real-timc tasks can be prccmptive and non-prccinptive. If a task is non-preernptive
it is processctl and not interruptcd until it is fiiiishcd or rcquircs further resourccs. If
tasks arc prcemptivc, the proccssing of any task is iiitcrruptcd imrncdiatcly by a
rcquest for any Iiighcr priority task [21].

Application of 'l'raditional Rcal-7'inic Sclicdiiling io Miiliimcdia 1)al.a Strcarns 20

In most cases where algorithms are treated as non-preemptive, tlie arrival times,
processing times and deadlines are arbitrary and unknown to the scheduler tili the
task actualiy arrives. The best algoritlm is the one which maxirnizes the number of
completed tasks. It is not possible to give any processing guarantees or do resource
management [85]. This metliods are used in schedulers for hard real-time tasks with
unpredictable occurrence of tasks.

T o guarantee the processing of periodic processes and to get a feasible schedule for a
periodic task set, tasks are usually treated as preemptive. One reason is, tliat high
preemptability minimizes priority inversion [53]. Another reason is that for some
non-preemptive task Sets no feasible sclieduled can be found, whereas preemptive
scheduling is possible. Figure 5 shows an example where tlie scheduling of
preemptive tasks is possible but non-preemptive tasks can not be scheduled.

Figure 5. Preemptive versus Non-Preeniptive Schcduling

lri this case, tasks with high rates arid tasks witli low rates and long processing tirnes
are running concurrently in the same systcm.

In [47] 1,iu and Layland show tliat a task set of m periodic, preemptive tasks with
processing tirnes ei and request periods p,Vi E (1, ..., m) is schedulable

with fixed priority assignment if:

aiid for deadline driven scliedulirig if

IIcrc, all tasks in the task set have to be preernptive to check thcir scliedulability

'Ilic first scliedulability test for tlic sclieduling OS non-jireetnj~live tasks was iiitro-
cluccd by Nagarajan and Vo@ i r i [5 8] . Assumc, witliout loss OS gciicrality, tliat
strcain Ad Iias liighest priority aiid strciiin 1 lowcst. 'l'licy prooS tliat a sct O S ni pcri-

Applicaliori of 'l'radiliorial I<cal-'l'iiiic Sclicdiiliiig io Muliiiricdia I > i i i i l Skcnrris 2 1

odic streams with periods p,, deadlines d-, proccssing tiines q and di <piVi(l , ..., m) is
schedulable with the non-preemptive fixed priority scherne if

X where F(x,y) = ceil(-) + 1.
Y

This means that the time between the logical arrival time and the deadline of a task
ti has to be larger, or equal to the sum of the own processing time and the proc-
essing time of any higher priority task that requircs execution during that time
interval plus the longest processing time of all lower priority tasks that might be ser-
viced at the arrival of li.

Figure 6. Deadline Requirements for Non-Prcemptive Schcdiiling

The schedulability test is an extension of 1,iu's and layland's. Given rn periodic
streams with periods pi and unit processing times E pcr mcssage. Ixt di = p + B be
the dcadline for stream i. Thcn ihe streams arc schcdulablc

with thc non-preemptive rate monotonic schemc witli:

with deadline-based scheduling, the saine Iiolds with:

'lau~aq ar1i U! 1onoio~d anmluailri! L~!.ro~rd aill K[I!M

air!ld!ns!p p3sr?q-nl!.ro!.id ?? /Cq pan??[da.r SRM au!~d!ns!p ananb ~II!~!)?,M L.13~3 IS~UI[R

'~r!lnn!~r~d "1 qs"1 ~~o!lr!n!rrnururon Brrorrir! rro!sJariu! L1!.1oud paprrnoqrin ~riana~d
ol pasn SVM 1ono)o.id rro!sJaAu! L~!.Io!J~ sgLr- .pa~dopr? SEM lonolord antiei~aqir!
L~!Jo!.I~ r! rp!~ (~(1~1,) A;>lnp2Y"s u&t?.'p-aul!] arll su1alqo~d 8u!lnparlns aill anlos 0.1,

mraisAs 8rnlr?.rado s j,~ V 341
jo wsvynaw ayi sap!~old y3q~ si3arq0 Iaway ayl jo slysu03 Iaruay S,I,HV a~l,~,

'[zs] uo!pindwon @uJaiq Bqop 305 luasa~d aq oSle Avw suo!le~ado yl!~ pale
-!~OSSB ~OU an qnyM spr?a.rqi prIoy!ppv .pa!qo ayi Aq pavodxa uo!lR~ado arli jo
y3ea 01 pa&!sse aq FM SpvaJqi aJow JO auo .suo!ie~ado vodxa jo las e prn: 'uo!inn
-axa jo speaqi aJow JO auo 'e~vp jo pasodwo:, s! lapow syl V palqo V .padola~ap
SEM Iapow BvBo~d paseq palqo e 'S,L>~V UI 'A?!SJ~AF~ uonafl a!Baurq
ayi jo luawwdap a3ua!ns 33lndw03 ayl Aq lauraylg pur? 8u1~ uayoL s'z08'ggg1
ayl uo pasvq yJoMlau ag-pa~ 'r! Aq pal3arnro3 suo!ielsy~o~ CNnS uo pado
-1aAap seM 31 .luaunroJ!rzua palnqup!p I? JOJ waisAs Bqle~ado awy-@aJ R s! S,~,XV

-1au~an a~!l-~ea~ pawwls!a V :SIUV G-9-1

Thc integraled tiine-driven scheduling (ITDS) modcl is applied which providcs pre-
dictability, flexibility, and ease of modi-fication for hard and soft real-tirne activities
in various real-time applications. It allows to predict wliether the given task of hard
real-time activities can meet their deadlines or not. 7'hc processor cyclcs are divided
into hard and soft rcal-time tasks. First, the processor utili7xltion of the hard pcriodic
and spradic activities are deterrnined and the rate monotonic algorithm is applied,
then the remaining processor time is assign to soft aperiodic activities. It allows also
to check tlie schedule for more general task sets which accesses shared rcsources. As
long as there exists a schedulability test, the I'TDS can adopt othcr scheduling poli-
cies like EDF.

The integrated time-driven scheduler can schedule the tasks based on their deadlines
as well as to the task criticality in the case of transient overload (c.f. 3.2 RL [80]).
The scheduling policy is separated from the scheduling mechanism layer. Thc sched-
uling.policy was implemented as a self-contained kernel object, and tlie mechanism
layer performs dispatching and blocking of the threads.

Figure 8. l'he Structure of the ITDS Scheduler

~ ~ ~ ~ ~ ~ . ~ ~ Q po1ic,yo17i-,Lq:

D[,: Enrliest Tkadline First

Static schcdulirig policies such as rate monotonic are implcmented as well as
dynamic metliods like EDF or least laxity. For comparison with real-time sched-
uling methods common scheduling algorithms iike FII~O, round robin and fixed pri-
ority were also implcmcnted. The ITDS scheduler can guarantec schcdulability of
hard periodic tasks, value function based soft real-time task scheduling, and ovcrload
control bascd on the valuc functions of the aperiodic tasks.

ITDS Srliediiler Objeel

Low-Level Sclietliiliiig Mecliaiusins

The ARTS kernel provides a tool set for predicting the beliavior of the system and
for run-time monitoring. l'he schedulability analyzer - called Schcduler 1-2-3 - is a
X I l'-window bascd interactive schedulability analyzer for creating, manipulating, and
analyzing sets of real-time tasks. It can be used to prcdict the timiiig effccts due to
tlic software and hardware modification arid together with other tools -such as thc
timing tool and the real-time monitor debugger- as a synthctic workload gcnerator.
The objectives are:

LS: Least Slack Time

W - D S : RM will1 Defcrrahle Server
RM-POLL: RM willi Polliiig
W!-DG: RM witli i3ackgroiind

FP: Fixed Frioiily

FIFO: Fist in First nui

RR: Rniind Rohin

Sclieclrilability analysis: Verification of the schedulability of any given hard dcad-
line task set undcr scheduling algorithms like EDF, ratc monotonic etc.

~ 7 8 1

Rcsponsc tinic aiialysis Tor apcriodic tasks: 'rhc pcrforrnancc of soft, apcriodic
tasks can bc computed.

Convciiicnt intcriace: Interface through which thc User cari perforrn tlie
schcdulability analysis.

Syritlictic workloa(l gcncrator: Workload tablc.

Applicaiion of 'l'radiiional llcal-'Lnic Schcdiiling Lo Multinicdia I>aia Sircnnis 24

rrr: s~ri:is ysel r? .ll .r~)!inn3x? ainltirrion ol ys~l arll ~0.j arr!lpmp 3111 s1r1.1, + I = p
air!Ipmp atll '8rr!lnparlns !1(1;[]vt10!1!p~?.q [I! m 'sr?q 11 I au1!1 1" J~SI?~ v JO uo!pn
I t i .san.rnosaJ pa~vrp uo suo!lr!.rado Rti!uuo.pad 1o.j sau!lpvap aisndas iji!~

pap!~o.id aJi? sysv~ tio!s.iaAir! Al!~o!.~d pro~r? 0.1, .sa3.1nosa.1 uo srro!l~~ado jo uo!lnn
-?X? JOJ arro prri? '.1ossa3o~d ar[l jo rro!l!s!nbnr? r(?!l!o arli JOJ auo 'au11pe3p jo s110!1or1
OM~ SEII ~SVI V '[LP] ur:~~!.~oRlr? ![«g a111 1111~ san.1nosa-T pamtls ol ssanx J?] aurmlns
~I~!~R~!ZIO.III~~ILS v JO ZIO!~RJ~~~LI! at11 UI<).IJ sllnsa.1 y~v1 atIl alnpnqns oi urrll!~o81r? atl.~,

.,P,
a + --. + la + "'a =',q

u3rli apon Brr!ir!vrrra~ aar~l .loj aruy rro!lnn?xa urnur!xr!w aql 0'2 pur! uo!~
-~?~3do tpva J~J par!nb?J our!i rro!innaxa urnur!xr!ur aqi se "ja '...'Ia ~I!M :J, ysel jo tro!l
-enoArr! ur! cCq parruq~ad sa3Jnosa.x pa.n?rls rro suo!iv~ado jo Jaqruntr ar[l 3.r~ 'W 11311~

.?lr!.r 3111 UI~.I.~ paArrap ~alauri?Jed auql asuodsa~ I? s! y pur! 'slson lr!tro!ir!induro:,
aill pqp3 w~.~Bo.rd 3141 3~n3axa 01 pal!nba~ auni ~ossa3o~d JO iunoure urnur!xr?ur
arI1 s! ,T ~J~ZIM '3) =J, ~!vd e Aq paqysap s! qwi V .("'py '...''W) san~n0sa.1
lpn alRms 'olqvsnal A~pas ur JO 1asv pue ("J, """'J) qsr!l 3!pr?.'ods U JO 13s i?

10 1ysuon ~~OI~JOM arjj, ~sa:,~nosa~ pue sysr!ijo pasoduron s! ppour Rugnpaqns arlj,

.pado~a~ap osp SEM las ysel ua~? e JYJ isai Al~qelnparps
irr?!nctya trv .os op 01 A~rpq!ssod Luv s! aJarIi Janauarp saairm~en4 OMJ

ar[l ap!no~d rn?n I! lrrr~l asrras ar[l y jsu~!ldo s! 11 '[9~ !SE] padop~ap "M ~ossa"o~d
al4ins r! tro sysvl rpns jo Brq~uanbas JOJ urrli!loR@ a~!lduraa~d 'puqdo ui? 'a~o.ya~at1~~

.qsi?i auo
mrli aJow Aq A1snoauei1nw!s passami? s! an.rnosaJ paserls ou lerli aaiue~vn0 ojA .

:spo8
OM~ serI SOJ,UVA 'PEOMJOM U~A? e .rod 'SO,L>IVA y a3.1nosa.1 e lirasa~da~ sysei
ald!gnur Aq pan?rp an? ieyi sad/Cl elep pe~lsqe an slsarqo anMvoS '(a8essaw e
JO @AUJE ayi 3.a) uralsns arI1 01 puraly sassa3oJd Aq JO '(an!~ap e uro.1~ ldn~~alu! w
533) uralsAs ayl 01 Ii?u.ralxa sassa3o~d Aq palv~aua9 aq Leu1 ietli snlntqis i? s! 1uaAa
uv 'iuar\a ue JO a3ua~~n:,30 aqi 01 asuodsal ri! payoAy s! lerli uleJ8oJd pyuanbas
e s! ysel :,!pe~ods V .sanmosa.r lpn-aprns 'alqi?sna~ Anr!uas jo las e anqs iey1 sysel
3!pe~ods ~o las e oiy papdwo:, an? SOJ,VVA ~apun p3in"axa an? rpqM sureflo~d

'[~cJ oap!A pue o!pne @i!8!p arli
JO Ae~ds!p pm 'uo!ssa~d~~lonap '~Io!ss~J~~o:, 'uo!l!s!nb3e atIl ~oj pasn an? s.raldr!pr!
OSL r!!paM uo!l3v ~?iu~-pqg~ .oap!~ pm o!pne p$?!p poddns ol TJoMlau 8rr~1
UayOL I!qiy91 ?! yl!M pal33UU03J,JalU! (JOSS~~OJ~ 98E08 ~1~1) SUO!li?lSyJOM z/stl
pqg~ uo A~iuamn:, suru SOJJVA '[LEI J~A!W~J a2essaur e o~ apr~o~d lsnw uraisAs
8u!le~ado ue l~yl asuodsa~ auq-lea~ ayl sa!p:,ads l~yl uo!p:,~rnumon ssa3o~d
-Jaly JO :,!imuras e II~!M UI~JSAS 8yssr?d a8essaw F? s! 11 'AlrJea~ @npA U! y:,~r!asa.r
JOJ pasn s! ierli walsAs Ar!lds!p sn!ydefi puo!suaunp-C e slroddns pm 'oap!~ pw
o!pne ~el$!p sasn IerIi suo!ie:,qdd~? 8rn3rra~ayio3 poddns 01 Iaway walsAs Bu!ie~ado
IIE SV n!lI ladet13 ie euqon3 rlpo~ jo Ai!s~a~!un arli lr! pado~a~ap seM SO,I,HVA

uia)sAs 6u!ge~ado aw!l-leaa Jay)ouv)ah :sold~h 1-9-8

'[~LJ sinalqo Iauray sr! paiuauraldv an? sa!ngod ayl asnvnaq Jasn arli Aq
papp aq 11x3 sarro Jarlio JO paZuriy:, aq Avsea ur!:, S,I,XV JO sa!:,qod 8uqnparlns arl,l,

.puriqa.rojaq paiewysa prm paz!rn!y aq ue:, samleaj Zrmnqap/By.roi!uour
aqi 01 anp rro!lepF?fiap a3u~uuoj~ad ay,L :s!sÄleue A~!l!qe.~oj!iio~ .

:aJe sa~!i:,arqo arIcL .aur!i-F~J y sapou ia4.rei ayi jo Jo!r\erlaq auqi-un~
arli aqens!" p11e azAleue oi 1001 e s! (~oipo~ ayL-Fav pa:,ue~pv) pqllv arl.1,

.
operation on a shared resource at time ti then at this time its deadline will be equal
to mjn(t + R, ti + I + R,,,,,); R,,, is the smallest rcsponse time of all tasks which can
access the resourccs. Thcrefore, a task which is invoked at ti and wishes to pcrform
an operation on the samc resource will not precmpt thc othcr task, bccause its dead-
line is necessafdy greater than ti + Rmi,. This metliod ensurcs mutual exclusion on
resourcc operations. It is optimal in the scnsc that it can schedule a sct of tasks,
without inserted idle time, whenever it ki possible.

There is an eficicnt schedulability tcst for tlie algorithm. 'l'hc first rcquirement for a
feasible schedulc is like given in 1471:

I'he sccond demand is:

Vi, 1 _< i I n; Vk, 1 I k I ni;VI„ 2 L I Ri:
i- 1

whereflx) = largest integer I X

IIere, n is the number of tasks, ni denotes the numbcr of operations on shared
resources performed by an invocation of task T„ and RrninSk is the smallest response
time requirement of the tasks wliicli are accessing the rcsource Mk. This condition
applies only to task tliat requires access to resources, and quantifies the processor
demand that occurs when tasks simultaneously try to access a shared resourcc [37].

To ensure that all cotnputational activities are dispatched by the scheduler, tradi-
tional non-dispatched activities like interrupt handlcr are implemcnted as tasks.
They arc scheduled in the same manner as User tasks. The reason for tlus was the
demand to ensure that tasks with near deadlines do not fail. IIere, a traditional intcr-
rupt liandler is a task that is crcated by the uscr and invokcd by a hardware signal.
The deadlincs of these tasks are based on the expectcd inter-arrival time of the intcr-
rupt. Nthough this infortnation may not be reliable it turned out that it is not a
problcm for the YARTOS applications.

According to its dcsigner YAR1'OS is a useful vehiclc for real-time applications that
are primarily concerned with processing of long-living, uniform data-streams in par-
ticularly CM-applications [37].

3.6.3 Split-Level Scheduling for CM
'T'hc split lcvel scheduler was dcvclopcd within tlie DASII-project at thc Univcrsity
of California at ßcrkelcy. Its mairi goal is to providc a bctter support for CM appli-
cations. It was devclopcd to prevent CM applicatioti frorn timing errors and lost
data duc to tlie ovcrhead of uscr/kcrncl interactiori sucli as CPU scheduling and
I/O, or any coricurrcnt systcrn activity. A typical application is thc ACME
(Abstractioiis for CM) I/O sewcr whicli supports applications such as audio/vidco
confcrcricing, editirig, arid browsing. 'Ilic supportcd physical dcviccs arc spcakers,
tnicrophones, vidco displays, and vidco cameras [5] . It allows to crcate logical
deviccs which are associatcd with pliysical 1 /0 dcviccs, and do I/O of CM ovcr
CM-connections. For cacli of thc CM-conncctions n nctwork 1 / 0 proccss cxists
wliicli transfcrs data bctwccn an intcrnal buffcr antl tlie nctwork. Each (:M 1 / 0
devicc is associatcd to a dcvicc I/O proccss.]Tor 11011 rcal-timc cvcnts such as corn-
mands from tlic wiridow scrvcr and rcqiicst for CM-corincctiori cstahlislimciit tlicrc
arc cvcnt-haridlirig proccsscs. lt is iriiplcmcntcd 011 Suri SI'Ali(:statioris. It is

Applicaiion of 'l'raditional Itcal-'l'inic Schctliiling l o Miiliirncdia Ihta Sircanis 26

written in C + + and uses a preemptive lightweidit process iibrary. I/O is done
using UNIX asynchronous I/O [18].

l'he applied scheduiing poiicy is deadiine/workahead scheduiing. The LBAP-model
introduced ui [3] is used to describe the arrival processes. Critical processes have
priority over all other processes and they are scheduled according to the EDF algo-
ritlun preemptively. Interactive processes liave priority over workahead processes as
long as tliey not become critical. 'l'he sclieduiing policy for workahead processes is
unspecified but may be chosen to rninirnize context switchiig. For non real-time
processes a sclieduling strategy like UNIX time-siicing is chosen.

l'he CM appiications are multiple processes that are shariig a virtual address space
(VAS). l 'he so called "split-level scheduler" uses iightweight processes (LWPs).
They have the advantage, that userlkemel interactions are minimized, so that
coiitext switches within a VAS are fast. Figure 9 shows the structure of the split-
level scheduler.

User VAS User VAS

[I81

Figure 9. User-Level and Kernel-Level Parts of the Split-Level Scheduler

@ @ @
- \ t /
User-level ,

Sclieduler (ULS)
Usclied Ksched A

Thcre is one kernel process and multiple LWI's per VAS. A LWP sleeps or clianges
tlie priority by caiiing its User level sclieduler (ULS). l 'he IJLS checks whetlier its
VrlS still contains the globaliy hgliest-priority LWP. 'lliis is done by exarnining an
area of meinory that is shared witli the kernel. If the higliest-priority L,WP is in the
owii VAS tlie LWI' context switch is done without kernel intervention, otherwise, a
kernel trap is done. Tlie kernel-level sclieduler (KLS) decides then according to tlie
irifonnatioii in tlie shared memory segments wliich VAS should now be executed.

Systeiris Calls

Accordirig to tlie designer maiicious or iricorrect prog-ains may keep VAS pre-
cinptioii rnasked uidefuitely, or it may execute indcfinitely without chariging its
dc:ttlline. 7'0 prevent tlie other processes from staßratiori due to tliis behavior tliey
proy>ose tlie i~nplemeiitatiori of a watchdog tirner. 'I'his watclidog is used to detcct
sucli conditions, and to kill or demote the offending process.

Split-lcvel sclicduling is a effective scheduling method. Comparcd witli the pcdorrn-
ancc of tlic normal I JNlX sclieduling mecliariisrn it is bcttcr becausc it reduccs tlic
iiuinbcr of uscr/kerriel interactions [181.

Keriiel-level Scliediiler (KLS)

Area Area

User
Iiiterrupts

-

3.6.4 The HeiTS-AIX Approach
'The Iiei'rS multimedia communication system is designed to run on different plat-
forms. Apart frorn OS12 running on PS/2, we Iiave II3M RISC System/6000 com-
puter running AIX version 3.1. Both have thc task to proccss CM. 'Thc OS12 and
the ATX approacli arc both bascd on the sarne resourcc modcl (L,J3AI'-rnodel), liave
the same QoS-pararnetcrs and the same rcquirements on scheduiing 183.

Bach connection is associatcd with an own system proccss. The commuriication
protocols up to layer 4 are processed in this systcm process. The communication of
the different layers is done by up-calls and down-calls wliich arc implcmentcd as
function calls.

AIX, like UNIX, has a User and a kernel space. Interrupts are processed in the
kernel. I'rocesses can run in the kernel or in the User space. The schcduiing in AIX
is priority driven. Time-critical tasks can be proccssed with 16 different priorities
[33]. Processcs are preemptive. The kernel can be extendcd by additional device
drivers, kernel processes or system calls. I'rogram components can be programmed
as system calls to process tliem in the kernel. Processes in the kernel can not be
interrupted by signds. Kernel processes can only use a restricted set of system calls.

Normal AIX proccsses are used for the processing of tlie CM-data. A data stream is
associatcd with onc process. This process is used only for one connection, it serves
every incoming message from this connection. Sincc the messages can arrive in
bursts, enough buffcr Iias to be provided for each connection. fiach message is
inserted in a queue that is assigned to the process. After thc processing of a mcssage
the next message is taken from the queue.

I 'hc scheduler is implemented as a set of functions that are called during the inter-
rupt processing or by the application programs. The scheduler determincs the priori-
ties according to the rate monotonic algorithm. Thcre are 13 priorities for
guarantecd and best-effort processes (best-effort processes run with a lower priority
than guarantecd processes), one priority for aperiodic processes (13), guaranteed
workahead (14) and best-effort workahead (I 5) processes.

Every incoming messagc is indicated by an interrupt. 'l'he iriterrupt handler dcter-
mines the connection the message belongs to. Subsequently, thc intcrrupt handler
storcs the message in an allocated buffer and qucues thc message. Buffcr is allocated
for the number of messages indicated by the maximum burstincss. All neccssary
infortnation ahout a conricctiori is stored in thc scheduling-cache. Only inessagcs
which obey the 1,ßAI' specification are accepted. The process takcs a message from
the queue and calls the schedulcr. Figure 10 illustrates this processes and shows the
structure of tlie AIX meta-scheduler.

Applicatiori ofl'raditional Ilcal-'l'irric Schcdriling to Muliirncdin I>ain Strcanis 28

6) CaU thc

........................... Schedullng-

4) Ins* thc Message in
thc Anivd Liit

2) Iduitification of
Ihe Connoclion t 1) Intsmipi

Figure 10. Structure of die AIX Meta-Scheduler

Messages which are ahead of schedule are not processed with a workahead priority.
A process checks if a message amved in time or ahead of schedule. If tlie message is
aliead, tlie process starts a tirner and blocks the processing till the logical arrival time
is rcached.

'l'liere is no mechanism to observe the mn-time behavior of the processes without
causuig a considerable overhead. This is also the reason why there is no sporadic
Server for tlie processing of aperiodic tasks and why best-effort processes liave to mn
with a lower priority compared to guaranteed processes. The processing time wliich
is reserved for a best-effort process is the average processing time of this process.
Tliere is no reason to give a best-effort process a lower priority than a guaranteed
process as long as it does not exceed the reserved processi~ig tune. Only wlien a
process excecds its processing time, it must run witli a lower priority. Suice it is not
possible to measure the processuig time, best-effort processes liave to run with a
lower prionty tlien guaranteed processes.

Measurements of the system performance show tliat tlie overtiead caused by the
sclieduliiig and context switches are not negligible. A context switch takes between
36ps and 48ps. 'To start and stop the timer tliat indicates the logical arrival time of
messages takes about 82ps. To decrease tlie overliead caused by context switches it
is proposed to build a non-preemptive sclieduler.

4.0 Heidelberg ~ultimedia Operating system ~ u p p o 3

The goal of the Ilcidelberg Multimedia Operating Systcm Support (IIeiMOS) is to
provide the necessary real-time support needed by CM-applications. Figure I I illus-
tratcs the positioti of JIeiMOS within the IIeiTS project. In tliis paper we focus on
CM-sclicduling as the core component of IleiMOS.

Figure I I . IleiMOS and its Relationship to HeiTS

IieiDI
audio/video

distrihutioii

I'he component lJeiDI (Heidelberg audio-video distribution application) is a distrib-
uted audio-video application developed especially for IIeiTS 155; 743. Another
application is I fc iCAAd (Ileidelberg remote camera control) a remote camera
control in a distributed environment [64]. The transport interface of IIeiTS makcs
its services available to all applications. They are implemcnted as function calls.
An object oriented interface to the communication system and other multirnedia
specific functions are provided for the appiications by IfeTeiA4A 7' (Ileidelberg Multi-
media Appiication 'Toolkit).

'I'he processing of time-critical data requires a careful allocation and manipulation of
buffer space. To avoid overhead through copying data the standardized huflev man-
aRernent provides virtual copying. The opcrating system sliielrl (OSS) is a standard-
ized interface to all system extensions and in particular to the buffcr managemerit.

multi~iiedia application toolkit

reso~u-ce
maiiagement

bu rfer HeiMOS

IleiCAM
reinote catiiera

coiitrol

OS12 provides no suficient support for thc proccssing of CM-tasks in real-time.
IleiMOS is intended to provide this support. It is dcsigned to ensure tliat all tiinc-
critical data are processed to meet their deadlines.

Ilei ...

4.1 Hooks for Real-Time Processing in OS12
IIeiMOS is based on the operatirig systcrn OS/2. Iri this section we give a brief over-
view on OS12 and discusses its real-timc capabilitics. OS12 is a multitasking systcrn.
Diffcrcnt tasks can run sirnultaneously either in tlic satnc program, or in different
application programs. Eacli program niris in a virtual addrcss space. 'l'he OS/2 dis-
patclicr coordiriatcs tlic programs so tliat tlicy do riot iriflucncc eacli otlicr. Fl'lic
major cliangc o f thc ncw vcrsion 2.0 is tlic stcp frotn 16-hit prograrnming cnvirori-

Ilcidcll~crg Mi~llitncdia 0pcrai.ing Systcm Siipport 30

rneiit to 32-bit programming model that eiiables applications, sub systems, and the
system itself to utilize the 32-bit register set, and the 32-bit instruction and
addressing rnode, as well as memory objects larger than 64KB [39].

The purpose of the OS12 scheduler design is to optimize response rather than
tlisougliput. The system is not concerned about ensuring that all runable threads
get at least some CPU-time, and the system is not primanly concemed about trying
to keep the dislc busy when tlie highest-priority tliread is compute bounded. Tlus
policy and some other provisions with real-time capabiiities makes OS12 suitable for
the dcsign of time-critical applications on top of it.

4.1 I OS12 Process Management
OS12 was designed as a time-sharing operating system without taking into account
serious red-time applications. Let us start with a short description of tlie available
process management, which was extracted from the available product information
[45; 61; 32; 301

In OS12 tluee levels witliin a multitaslung hierarchy exist:

A session represents a logically separated unit of screen, keyboard, mouse and
tlieir related processes. Sessions can be arranged in parent and child sessions.
Each session contain at least one process.

A process is the logical unit of resources, including memory, files, and devices
tliat are aiiocated to run a process. 1,ike sessioiis, processes can create other
processes leading also to a cliild - parent dependency. A process belongs to
one, and oidy one session. Each process has one or more threads.

'flie dispatcliable unit of execution is cailed a thread. Each thread belongs to
exactly one process. A thread shares tlie resources aiiocated by the respective
process. 'I'hreads are not organized hierarchicdly. Each thread has its own exe-
cution stack, register values and dispatch state (either executing or waiting to
execute).

Whenever a thread is created it belongs to a priority class. Four priority classes
exist:

1 . The time-critical class is reserved for threads that require immediate attention.
Such tlireads wiii be used for communications and real-time appiications.

2. 'I'lie jixed-high class is intended for applications that require good responsiveiiess
without being critical.

3. Tlie rcgular class is used for tlie executing of nonnal tasks.

4. 'I'lie idle-time class runs tlireads with a very low priority. Any Thread in tliis
class is only dispatched if no tliread of aiiy other class is ready to execute.

Witliin each class 32 different priorities (0, ... , 3 1) exist. 'I'lirougli tinie-slicing
tliicads of ecluai priority have equal cliances to execute. A coiitext switch occurs
wlicnever a tliread issues a cail to get access to an otlicrwise allocated resource. l'he
ilircad witli tlie liighest priority is dispatched, tlie time-slice is started again. At the
expiratioti OS the time slice, OS12 can preempt tlie dispatclied tliread if other threads
oi' cclual or higlies priority ase ready to exccute. 'I'lie time slice can be vat-ied
betwccn 32 msec. and 65536 msec. (by setting tlie variable 'fIMI<SI,ICE in tlie file
C0NI'IG.SYS). Tlie dcfault value is 250 rnscc.

'1'lii.cacls o f the rcgular class rnay be subject of a dyriainic rise of priority as a func-
tion of' thc waitiiig time. Whenever tlie variable I'I<IOI<I'I'Y is set to AIJTO-
MA'I'IC in (:ONI;IG.SYS tlus mechaiusin is eiiablcd. OS12 boosts tlie priority of a
iliscad wliicl-i has waited longer than specilied by tlie MAXWAI'l' variable.

1 leidclhcrg Miiliiiiicdia Opcralirig Systcni Support 3 1

Dy dcfinition of tlie variable PRIORITY = FIXE11 tliis mcchanism is prohibitcd,
and regular threads behave as those of any othcr class.

7'hc OS12 schedulcr is priority bascd and prccmptivc, i.c. if a higher-priority thrcad
is rcady to exccutc, tlie schedulcr preempts the lowcr-priority thread and assigns thc
CPU to thc highcr-priority thread. The state of thc precmptcd thrcad is rccordcd so
that execution can bc rcsumed later. -

4.1.2 Provision of Real-Time Capabilities by Physical Device Drivers
OS12 providcs the possibility to dse physical device drivers (I'I>Il) that nin at ring 0
for applications with real-time requiremcnts. These l'III>s can be madc non inter-
mptibie. An interrupt that occurs on a device (e.g. arriving of packets) can be ser-
viced from the PDD immediatcly. As soon as an interrupt happens on a device, the
PDD gcts control and can do all the work service that interrupt. This can also
include tasks which could be done by application processcs running in ring 3. The
task running at ring 0 should leave the kerne1 modc after 4 msec. (called the "4 ms
Rule").

In gcneral, ring 0 applications are considered to service a rcqucst of time-critical
tasks quicker then ring 3 applications because of their lower dispatch times.

'T'he employment of a PDD has several disadvantagcs. Its implemcntation is more
complicatcd thcn the implementation of a ring 3 application. 7'he PD11 is bounded
to its dcvice. It only services requests from its device rcgardlcss to any othcr events
happening in tlie system. Different streams that request real-tirnc schcduling can
only be serviced by their PDDs. They run in competition with each othcr without
the possibility to coordinate or manage them by any Iiiglicr instant. 'This is insuffi-
cient for a multimedia system where messages can amve at different adapter cards
(e.g. DVI, FPC). It would be a reasonable solution for a system whcre streams
amve at only onc device and no other activity in the systcm has to be considered.

4.1.3 Provision of Real-Time Capabilities by Time-Critical Threads
Time-critical tasks can also be processed together with normal application running
in ring 3. The critical tasks can be serviced by threads running in thc priority class
time-critical with onc of tlie 32 priorities within this class. Thc thrcad with the
highest priority gcts access to the CPU. N1 other threads are schcdulcd according to
their prioritics. A thread is interrupted if another thread with higher priority rcquires
pmcessing. Normal applications run as regular threads.

'I'he rnain atlvaritagc of this approach is the control arid coordination of all time-
critical threads. One instance mnning with a higher priority then all otlier thrcads
can perform resourcc rnanagement, obscrve their bcliavior, and dcterminc a schcdulc
according to specificd policy for all time-critical tasks in the systcm. Tlic task may
involve different dcviccs of the systcm. I'heir competition for tlic CPU is rcgulatcd
and through tlie rcsource management and the schcdulcr, a guarantec for thcir proc-
essing within thc required time bounds can be given. Intcrnal timc-critical tasks (e.g.
stored audio or vidco from a disk) can also be considercd.

I'hc normal systcm schcduler is used to schctlulc all tasks. "Normal" applications
do not havc to bc considcrcd by thc rncta-schedulcr. l'hcy will run duririg thc tirnc
wlierc no time-critical thrcads arc rcady for exccution. 'I'hc rcsourcc rnanagcmcnt
should thercfore not usc thc whole processor tirnc for tirnc-critical threads. We
dccided to use timc-critical tlireads witli thc known litnitations.

Ilcidclbcrg h41ilt.imcdia Operating Systcni Siipport 32

4.2 Scheduling Continuous Media in the HeiMOS Environment
Iteal-time sclieduling in IIeiMOS is done through a system process cailed meta-
scheduler. T o employ the introduced algoritlms and to build an application on top
of tlie operating system the tasks have to serve certain requirements. In tliis cliapter
we describe tlus requirements

4.2.1 lnteraction with Resource Management
I'eriodic task such as tlie proccssi~g of CM data have regular interamval times equal
to tlieir periods and deadlines that coincides with the end of their current periods
[71]. Different CM-streams have different requirements concerning tlieir deadlines.
For iristance, the processing of bitmaps is more tolerant to deadline failures then the
processing of compressed video. To meet the deadline requirements of all CM data
types, we consider ail deadline to be hard.

In order to build a feasible scliedule, we have to know the rate and tlie processing
time. From tlie rate we derive the lolrjcal amval time and the deadline of a message
according to its order number. At connection establislunent, the processing time is
iieedeci by the resource management to find out if it is possible to build a feasible
scliedule witli tlie new task.

Witli every new comection the resource management has to perform a
schedulability test. It has to check if it is possible to guaraiitee the required arnount
of processing time witliin tlie given delay bound in every period. Tlie efficiency of a
schedulability test is a major evaluation criterion for a scheduling algorithm. T o
avoid unacceptable delays during tlie comection establishment and to keep the
CI'U-time required by the schedulability test low, it should be simple and easy to
pe~form.

The processing of a CM-task starts with the amval of tlie message at the network
interfcice and includes network hardware interrupt handling, session identification,
protocol arid User level processing. According to Cl] there are five processing steps.

1. l'acket arrival in tlie network interface device

2. 1Iardware iriterrupt to the CPU

3. Sessioii identification

4. I'rotocol proccssing

5. User level processing

'The end of tlie session idciitificatioii is tlie first inoment wliere ail necessary data for
tlie scheduling of tlie message like coiuiection, rate, and processing time is known.
1;roni tliis morneiit on a mcssage can be scheduled according to a spccific policy.
With a preeinptive scheduling sclieine a inessage is processcd fiom its arrival to the
scssioii ideiitificatiori witli the lughest priority. Tlie currently processcd mcssage is
subjcct to priority inversiori when tlie iiewly amved message is belongiiig t o a low
priority task. l'lie rcsource management lias to considcr some laxity.

4.2.2 CM Scheduling: Goals
'I'lic inairi goal of our CM rcal-tune sclieduling is to schedule thc resources (e.g.
CI'IJ) that cnn potcritially bccoine bottleriecks in a wüy that allows reservatioii
(asbociatcd witli per-fc~rmance guaraiitees) to be madc to iridividual cliciits [2]. 7'hc
problcin is to find a feasible scliedule whicli schirdules all time-critical CM-tasks iii a
way tliat eacli of tliein caii rncet tlieir deadlines. 'Tliis must be guarantccd for all
tasks i i i cvc1.y pci-iod ovcr the whole ruii tiinc of tlie system.

I lcidclbci-g Miillirricdia Opcraiirig Sysicrri Siipport 33

l'wo conflicting goals have to be considered:

1. In a multimedia system time-critical CM-tasks and non-critical DM-processes
will nin concurrently. An uncritical process should not suffcr from stawation
because time-critical processes are cxecuted [73] . A multimedia applic a t' ion
relies as mucli on text and graphics as on audio and video. Thercforc, not all
resources should be occupied by the time-critical proccsses and their manage-
rnent processes.

2. On the other hand a time-critical process must nevcr be subject to priority
inversion. This mcans that it should not kept frotn running by non-critical, or
lower priority processes for infinite time. 'I'he sclicduler has to cnsure that any
priority inversion is reduced as far as possible [54].

Apart of the overliead caused by the schedulability lest and the connection establish-
ment, we have to consider the costs for the schcduling of every message. They are
more critical because they occur periodically with every message during the proc-
essing of real-time tasks. The overhead generated by tlie scheduling and the oper-
ating system has to be addcd to the processing time of the real-time tasks.
Therefore, it is favorable to keep them low. Particularly difficult is to obsewe the
timing behavior of the operating system and its influence on the scheduling and the
processing of time-critical data. It can lead to time garbling of the application pro-
grams. Therefore, operating systems in real-time systems can not be viewed detached
from the application programs and vice-a-versa [59].

4.2.3 CM Scheduling: Issues to be Considered
At thc connection establishment thc message rate is indicated. Through the burst
parameter a short time violation of thc rate is possible. With a static priority algo-
rithm a high priority thread would process a message that is ahead of schcdule at the
expense of lower priority tasks. To avoid this, a rate control mechanism has to be
included that assigns early messages a lower priority then critical messagcs or dclays
their processing until their logical arrival time has elapsed.

The second parameter that is indicated by the connection at the connection estab-
lislimeiit is the processing time. A task that permanently excceds its guarariteed
processing time violates tlie calculatcd schedulc. Witli precmptive tasks only proc-
esses with a lower priority then the offcnding proccss are affected. All processes are
affccted if the tasks arc non-preeniptivc. Thcrcfore, thc CPU-time needcd by single
tasks for processing has to bc controlled. Ncither in AIX nor in OS12 tlic pure
CPIJ-time can bc measured. Thc mcasuremcnt of thc processing timc always
includes interrupts and othcr delays.

A problern which should not be undcrestimated is tlie overhead caused by tlie
scheduling itself, the controlling of processes, thc setting and changing of prioritics.
Witli a dynainic algorithm a priority driven schcciulcr miglit have to changc the pri-
orities of all processes at the arrival of a new inessage. 'I'he rcsourcc managcmcnt
and the schcduler havc to be considcrcd as overlicad. 'I'his can citlier be donc by
adding tlic processing time nccdcd for tlie scheduling to tlie processirig time of each
task, or by a spccial process that has to be includcd iii the schedulc.

4.3 HeiMOS OS12 Approach
As a rcsult of our irivestigations on traditional rcal-time sclicduling algorithms and
alrcady implemcritcd prototypcs, wc dcvelopcd two inctliods for thc scheduling of
C M . 'rhe mcthods arc dcsigncd for tlicir implcmcntation on top of thc OS12 opcr-
atiiig systcm [SI]. Wc assurnc that tasks arrivc according to the I B A P model.

I lcidcll~crg Miiliinicdia Opcraiing Syslcm Siipport 34

Iri the end-systems, messages from different connection are processed. Each con-
~iection is associated with a single thread runnirig in the priority class time-critical.
Eacli of this threads are associated witli a own message queue. AU messages from a
connectio~i are processed within tliis tluead up to the transport layer. Tlie comnu-
nication bctween the layers is realized as up- and down-calls. The application pro-
grains run ori top of the transport layer. Apart of the threads for the different
connections, there are speciai threads io perfonn tlie connection estabiislunent and
to coritrol tlie appiication threads. Every incoming message triggers a hardware
interrupt. The second level intempi handler (SLIII) generates then a software inter-
rupt. It runs witli the highest priority witliin tlie priority class tirne-critical. From
tliis point on the scheduler has control over tlie message and is able to scliedule it
accordiiig to a specific policy. The number of threads is restricted by the number of
different time-critical priorities. The upper bound of connections with different pri-
oritics is 27. Priorities 3, ..., 29 are called critical prioritics. We do not distinguish
different p~iority classes for guaranteed arid best-effort processes. If at the connection
cstablislment a best-effort process is indicated by the resource manager, a criticai
priority is assigned to tliat processes. l'he priority is lower then tlie priorities of all
guaranteed processes. Priority 1 is used by workahead processes. I'riority 2 is pro-
vided for threads wliich exceeds tlieir specified processing time. This priority is
cailed perulty priority. If more than 27 connections are nccessary a constant ratio
gr-id could be used for the priority assignment [67]. We consider the number of pri-
orilies as sufficient. Therefore, tlie implcrnentation of a constant ratio grid is not
necessary.

Iii botli inetliods we employ a control meclianism to monitor the behavior of the
CM-tasks. To guarantee the processing of tasks tlie scheduler must have the possi-
bility to monitor their behavior and to ensure that tliey do not violate tlie data con-
straint [4]. This includes a meclianism that is able to observe and react on
offending behavior.

4.3.1 Queue Monitoring
'l'liis method is based on the EDF-algorithm. We consider one system process with
scveral different tlueads for different appiicatioris. A own message queue is assigned
to eacli tliread.

Ar1 cxlcii~ior~ 01' ilic iii<>iIcI iliill D I I < > w s 10 liilvc dilkrcrit syslcrri processcs wtiicli i i l l pcrbrrri Ilic l'uiiclion ol' Uie rneta-
sclicdulcr is ~,ossil)lc. 'l'lic JillCrciii proccsscs ;Are sclf-coordiriatirig Ltiroiigli il iablc i r i a sli;iicd riicriiory segnicrit. For
itic sakc ol'siiiipliciiy wc cxl>liiiii ilic irictliod oiily witti ori systcni proccss.

I lcidelbcrg Multiiiicdiii OpcraLirig Sysicni Support 35

SLIH

Non Realtime Environment.
Application:

Messapeqiieiie KKl
I

Figure 12. Structure of the Queue Monitoring Schediilcr

'The major tasks of tlie meta-scheduler are performed by the mastcr thread that is
not assigned to an application function. It runs with priority 30 in the priority class
time-critical. Every incoming message is queued in tlie messagc qucue of the mastcr
thread. If a message indicates a connection establishment the resource manager has
to check if sufficient CPU-time is left to accept the connection. 7'hc SLIlI sends all
messages to the message queue of the master tliread. Messages that are ahead of
schedule are qucued to their logical arrival time in the message qucue of thc master
thread. At every scheduling-point thc mastcr thread dispatches the message with tlie
earliest deadline to the message queue of its application tliread. 7'he master thread
then slceps for the duration of the guaranteed processing time plus laxity for pos-
sible interrupts. If there is any messagc in the message queue of the master tlircad
tliat becomcs critical during the nin-time of a task and Iias an earlier dcadlinc than
the currcntly proccssed onc the master threaa only slecps to the logical arrival time
of that mcssage. It prcempts the former thrcad calculatcs its proccssing timc and dis-
patches the critical messagc to the message qucuc of its application tlircad. 7'Iie
rnastcr tliread has to ensurc that the applicatiori tlircad of tlic new task has a higlier
systcm priority than thc application tliread of tlie old task. With cvcry incoming
message the rnastcr thrcad dctcnnines immediately a ncw schedule. A nirining thrcad
is preernpted duririg thc rc-schedulirig.

If a thrcad has not finislicd proccssing withiri tlic givcn timc it is precmptcd. A ncw
task is choscri for proccssing. 'I'hc prccmptcd task cari finish proccssing ori a lowcr

priority if there is enough processor time left. Bvery new message of this task is
scheduled according to its deadline. Tasks are oidy processed for the guaranteed
amouiit of processing time with a critical priority. A malicious or incorrect program
does not starve other tasks. Since aii messages are scheduled according to their dead-
liries bursts are no processed at the expense of other tasks. There is no workahead of
messages if the processor is idle.

Our main intention was to keep the scheduling overliead as low as possible. Priori-
ties only have to be changed in exceptional situations. T o reduced this overhead
base priorities can be assigned to each tliread according to their rate. Nevertheless,
the overhead through the scheduling is still dynarnic.

4.3.2 Distributed Access Control and Process-Time Monitoring
'rasks are scheduled according to the rate monotonic scheduling policy. There is
one system process with multiple t h r e a d ~ . ~

'I'lic Ilistributcd Access Control arid I'rocess-l'irne Monitoririg (IIACI'roM) ineta-
sclicdulcr coiisists of a maul tliread, a control thread and several application threads.
'I'lie iilaiii tlircad and tlic coiitrol tlircad are not assigned to application

Non Real-Time Environment
Application

~ ~ ~ l ~ ~ l Real-Time Aiidio Video
Environment

Thread

Main

Thread Qiieue Qiieuc

H Message Qiiciic
A

C~iiiiiecliiiii Tablt:

'I'liis niodcl also cari bc cxLcridcd to Iiavc iriorc Lticn oric syslerri proccss Lo perfoim sctiediilirig liiriclioris.

SLIH
TR

l lcidclhcrg Mul~inicdia Opcraliiig Syslciri Support 37

F1
I I

....

FLIH DU

functioris.The rnain thread runs with priority 0 and tlic control thread with priority
30 in the priority class time-critical. A rnessage that indicatcs a rcqucst for a con-
ncction is send to the rnessage queue of the rnain thrcad. 7'he rnain thread assigns
an application thread to the conncction if the schcdulability tcst was positive. Thc
messagc queue namc of the application thread that is associated with a conncction is
stored in a table that is sharcd with the SLIII. After the connection estahlishment
evcry messagc frorn the connection is qucued in the rnessage qucue of its application
tliread. A uniquc priority is assigned to each corincction according to tlie rate
monotonic algorithm. This priority corresponds witli the systern priority of the
t hread .

In case of bursty traflic a high priority thread would proccss rnessages with thc high
systern priority ahead of schedule. Low priority tasks would miss their deadlines
whilc the rnessages of the high priority thread would be proccssed ahead of schcdule.
T o prevcnt frorn such behavior and to control the rate of the rnessages each thrcad
controls the arrival tirnes of its messages. After each processing a thread sleeps to the
logical arrival time of the next rnessage. Workahead rnessages are queucd till their
logical arrival time is reached. The requests for all tasks are now pcriodic as rcquired
by the rate rnonotonic algorithrn.

7'he control thread observes the processing behavior of thi application threads. 'i'hc
processing time tp(0 of a rnessage is mcasured. During a control period aU proc-
essing tirnes are sumrncd up tp = tp(1) + ... + tp(n). I'eriodically tlie control thread

tP chccks the average processing time df = If df is largcr then the spccified proc-
essing time tlie offending thread is set on the penalty priority by thc control tliread.

l'he scheduling ovcrhcad is kept constant by the assignment of static prioritics to
each connection. I'he rate control is pcrformed through each application tliread
after the processing of every rnessage. The control thread prevents frorn the perma-
nent violation of the schedule through offending tasks.

4.3.3 Design of the Actual lmplementation

4.3.3.1 System Timer Constraints
Two rnain critcrions werc considcred for the assessmcnt of the two alternatives.

1. 'i'he scheduling overhead caused by each rnethod

2. Their adaptability to operating system constrains

The first altcrnative is based on EDF, the theoretical processor utilization of tliis
algorithm is 100%. l 'he overhead of the scheduling is dynamic. The amount of tasks
arid messages influences the arnount of requircd scheduling dccisions and control to
be done by the scheduler. The overhead turncd out to be considcrable

'l'he second alternative is based on the rate rnonoton sclieduling algoritlirn. 'Thc
rnaxirnum processor utilization is 69%.' 'I'hc schcduling ovcrhead is nearly constant.
Sincc we have also non-critical tasks runnirig on the cornputer wliich arc not sched-
ulcd by thc meta-schcdulcr wc do not consider the houndcd processor utilization as
a sevcrc drawback.

During the dcsigii of tlie meta-schcduler wc discovcrcd that tlic tirncrs providetl by
thc opcrating systcrn are iiot suflicicnt for the crnploynicnt in real-timc systcrns.
The OS-tirncr calls are spccified in rniliisccorids. The actual duration of tlic spccificd

9 = nniirnhcr of proccsscd rncssagcs diiring tlic pcriod.

' l l ~ i s boiindary can bc widcly cxlcridcd as dcscribcd in chapfcr 3.3.

I lcidclbcrg Miillirncdia Opcraiing Systcm Siipport 38

time interval wiU be affected by the hardware clock tick. A tick interval lasts approx-
imately 31.25 rniiiiseconds. Any time interval that is specified in milliseconds will
essentiaiiy be rounded up to the next clock tick [34]. Multimedia applications
require a timer granularity in the range of miiliseconds or even fmer [25]. Tliere is
iio reasonable way to vary tlie interval of the hardware clock tick. I'rograms or
device drivers that provide a more accurate time ineasurement are not varying the
interval of the hardware clock tick.

A device driver cailed OS211IIT provides a timer witli a granularity in the
nanosecorid range. The high resolution tirner function has two output Parameters.

l'he limer.fic parameter counts the tick of the time of day clock. This clock is
advanced by one tick approxiunately 18.2 times per second (every 55 rniiiiseconds).
'To obtain a better accuracy the 8253 TimerlCounter coinponent can be used. Timer
0 ruiis continuously counting down from 65536 to 0. Each time it reaches 0, it trig-
gers an interrupt which advances tlie time of day clock by one tick. 'The 16-bit
counter in the 8253 changes every 840 nanoseconds. Tlie timer.count contains tliis
couiiter. Witli tlus device diiver we achieve a granularity of 840 nanoseconds [48].

Tlie time of day clock is not identical witli the liardware tirner. The content of
iimer.coun1 is not tlie number of counts which elapsed since the last Iiardware clock
tick occurred. A hardware clock tick occurs approximately every 3 1.25 miiiiseconds
wliereas the time of day clock tick occurs approxirnately every 55 rniiiiseconds.
I'liercfore, tlie two timer have to be syncluoiiized in order to use them simultane-
ously.

4.3.3.2 Structure of the lmplemented Meta-Scheduler
I3ecause of the insufficient timer support it was not possible two reaiize the intro-
duced alternatives in the proposed way. For the first proposal tlie tirner insuffi-
ciericy is such a severe drawback that it was not possible to find any reasonable
solution for the implemeiitation of it. l'he second design proposal was modified.
'I'lic high-resolution timer is employed whcn the granularity of tlie hardware timer is
iiisufficient.

'I'lie functioris of tlie main thread aiid the control tliread are not affected by the
tiiner problem. 'rhe rate coritrol tlirough a simple OS-sleep is replaced tlirough a
iiiodified mechanism. A thread does not sleep after tlie processing of a message. It
waiis on tlie inessage queue for tlie arrival of a niessage. Every time a message
arrives the thread checks if it is ahead of schcdule. In tliis case it checks witli the
syrichronized tirner if it is possible to sleep to the next tick of tlie Iiardware clock. A
tlircad is set on a workahead priority if tlie iiext hardware tick occurs later thcn the
logical arrival tiine of the message, or if it resurncs processing before tlie logical
arrival tiine is reaclied. Every tliread lias to check at tlic beginning of processing if
tlicrc is any liiglier priority thread running witli the workaliead priority tliat becornes
critical during tlie processing of tlie o\vii task. 111 tliis case tlie priority of tlie
workaliead tluead is reset on its original priority. Il' a tlircad ends processing in a
workaliead state it rcsets its priority.

'1'0 rncasurc tlie processing time of' eacli incssagc, tlie beginriing of its processing is
rccordcd. After tlie end of tlie processirig, tlie differeiice bctween tlie start time aiid
tlic end is calculatcd. If tlie processiiig is intcrruy>tcd 1)y anothcr tliread witli a liiglier
priority tlic liigli priority tliread lias to calculate tlic prcsent processing time and
af'tcr its owii processirig to reset the stai-t time ol'tlic iiitcrrupted thread. l'roblems
occur will1 asyiiclironous 110. A tlirea~i is inactivc zrs long as an asynchronous
cvciit is processed. I.e, tlie tliread givcs up coiitrol ;irid anothcr task caii be proc-
csscd I>y anotlicr tluead duririg tliat tiinc f'r:iine. I t is not possit>lc to measure tlie
~~roccssiiig tiine of' a tliread witli a lower priority tliat stiirts processing in tliat tune

I lcidcll>cig Miiliirricctiii Ol,criiiirig Syslcni Support 39

frarne because the thread that pcrforms the asynchronous actions rcsurnes processirig
imrnediately aftcr the end of the asynchronous event. 7'he prcsent proccssing time
of tlie low priority thread can not be determinatcd wlicn thc high priority thread
resurncs processing. Since we only record the bcginning and the cnd of the proc-
cssitig and calculate thc processing time out of tliis the measurcd processing times
are inaccurate. Apart of interrupts it always includes the tirne wherc a thread was
inactive during an asynchronous event. -

The scheduling rnethod we apply prevents frorn thc proccssing of bursts through
liighcr priority threads at the expense of low priority tlircads. Iiate control was
implernentcd using the tirning tools of the opcrating systcrn. 'l'he overhcad caused
has to be accepted because there is no other way to serve the premises of thc rate
monotonic algorithrn. The rneasured processing times does not reflcct thc exact
CPU-time needed by a task. These are only a rough estirnate of tlie time a task
needs the CPU for processing.

4.3.4 Evaluation of the HeiMOS Solution

4.3.4.1 Performance Measurements of the lmplementation
The rnodified DACProM meta-scheduler was irnplerneiited in C undcr OS12 on a
PS12 with 2 5 M h and a 80486 processor. There arc several changcs frorn OS12
version 1.3 to OS12 version 2.0. We took these clianges into account during tlie
developrnent and kept the programs closely cornpatible for both vcrsions.

A full dcscription of the irnplernentation can be found in [51]. Since the mcta-
scheduler is a basic cornponent of HeiTS we have not yet had the opportunity to
gather experience with genuine rnultimedia data gcnerated and transferred through
IleiTS. Experiments and rneasurernents have been pcrformcd using test programs
especially designed for this purpose. These test prograrns show that the rneta-
scheduler rneets the described requirements.

T o estirnate the perforrnance of the prograrns we rncasured truncated portions of the
programs and irnportant systern calls individually. We found that tlie system call to
change priorities requires approxirnately 73ps whcreas a contcxt switch takes
approxirnately 4 7 ~ s . 7'he processing time control takes for one conriection 0.3 1 nzs.
For two connections 0.4 ms is required at average and cvery additional conncctiori
rcquires anothcr 0.1 ms.

T o set a tlircad on a workahead priority takcs approximately four tirnes thc tirnc
thcn required for sirnplc DosSleep. The ovcrhead for tlie control of thc proccssirig
tirnc is acccptablc but to be a useful tool for controlling it sliould bc mucli morc
precise.

4.3.4.2 Known Limitations of the HeiMOS Solution
Iluring tlic design of tlie meta-scheduler we had to considcr various rcstrictions
mainly through thc operating systern. 'This has negativc cffects on tlic functionality
of tlie mcta-schcdulcr. T o evaluate the solution wc Iiavc to considcr all tlicsc
rcstrictions arid lirnitations. In this section we discuss tlicm and show tlie limits of
our solution.

Each singlc thrcad in the systern is ablc to run with a priority in tlie priority class
timc-critical. A tlircad runtiing in this priority class without tlic knowlcdge of thc
resource maiiagcr violatcs the calculated schedule, the proccssiiig guarantces givcti
by the rcsourcc managcr arc not longcr valid. A rnalicious program can hlock tlic
whole systcrn sirnply by running with thc higlicst priority in thc priority clnss tiinc-
critical witliout giving up tlic control anyrnore.

I r i OS12 i t is not possiblc t o rncasurc tlic exact tirnc a tlircnd is usirig tlic CI'IJ. Any
incnsurcincrit of thc proccssirig tirnc iiicludcs iiitcrrupts. Iiitcrnipts caii not bc ciisa-

l icidclhcrg Mii l l inicdia Opcraiing Sysicrn Siipport 40

bled since they may contain information necessary for the scheduling. If a thread
was intempted by a lugher priority tliread it also includes the time needed for the
coiitext switch. During asynchroiious I/O a thread gives up its control. Another
tliread can use the CPlJ during that time. It is not possible to interrupt the time
rneasurement during the asynclironous event. Therefore, tlie measured time is only a
liint how lang the processing of a task takes and does not reflect tlie time tlie CPU
is rieeded by a task.

'l'lie system timer provided by OS12 is insufficient. The hardware timer is enhanced
by olle clock tick approxirnately every 31.25 milliseconds. For a real-time system an
acceptable ganularity would be in the miliisecond range. Witli the High-Resolution-
Timer we have an accurate measurement tool. The problein is that it only can be
used by an active thread. The granularity of the rate control is therefore determined
by tlie granularity of the system timer. Our main objective was to build the meta-
scheduler on top of the operating systein without iritervening into it. T o improve
our system we need more support from operating system side.

Real-time capabiiities inay be achieved in OS12 by changing the OS itself: Either
tlie sclieduler may be enhanced by a class of fast threads, perhaps witliout time-
slicing with tlie abiiity to mask intempts for a short weil defined period. Those
threads should be reserved for CM-tasks and monitored by a system component
with extensive control faciiities. Pei-forinance enliaxicement of tlie scheduler itseif
incorporatuig some mechanisms of real-time schedulirig iike eariiest-deadline first or
least laxity first would be axiother solution.

'I'he operatiiig system has to provide sufficient timing and measurement tools. l'here
has to bc a possibiiity to measure the pure CI'U-time required by thread for tlie
processing of a task. A kind of watchdog timer would all so be sufficient. A system
timer is ~ieeded that supplies a granularity in the rnillisecond range. This may be
acliieved tlirough a single timer chip with tlie only task of triggering interrupts in a
specified granularity.

'rhe meta-scheduler provides tlie necessary real-time support for CM-appiication. It
does not serve all requireinents of a liard real-time system. Further work has been
done by improving the timer capabiliiies in clianging the OS2IIRT-device driver.

I lcidell>cig Miil~iiriedia Opci-alirig Sysicrri Siippoi-L 41

5.0 Conclusion

Multimedia applications require real-time support cithcr tlirough tlic operating
system or througli another system componcnt. 7'lic opcratirlg systcms uscd in
EIeiTS arc not conceived for the extensive support of rcal-time processing. IleiMOS
is designed to provide this support in the end-systems of FIeil'S. 'I'herefore, a mcta-
scheduler was developed to run on top of OS/2. Timc-critical tasks are scheduled to
serve their process rcquirements as well as their timc requirements.

T o find the best method to schedule time-critical multimedia tasks we evaluated
various real-time scheduling algorithrns. It turned out that EDF and the rate
monotonic algorithm are most suitable for the solution of this problem.

ßased on this two algorithms we developed two meta-scheduler to run under OS/2.
In the design the occurrence of multimcdia data strcams according to the linear
bounded arrival process model and other restrictions had to be considered. One
alternative was implemcnted. It turned out that the system timer providcd by the
operating system are not suficient for real-time applications. 'To solve this problem
we employed a special device driver. With this device driver a timer granularity in
the nanosecond range can be achieved. This timer does not replace the system
timer since it is a measurement tool that only can be used by active tlireads. 'I'hcre-
fore, the necessary rate control is complicated and expensive. A mcthod to control
processing times aiid to react on offending bchavior of tasks was implemented. Since
the operating system does not supply the possibility to mcasure pure CI'U-time thc
measured times include interrupts, context switcli tirnes, and asynchronous 110.
Therefore, it is only a rough estimation of the real CI'U-time needcd by a thread.

An exact and reliable real-time scheduling should be provided, or at lcast supportcd
by the operating system. Either through the modification of the system schcdulcr, or
througli real-time tools that enhance the real-tirnc capabilities of thc operating
system. It should provide an exclusive priority class especially for real-time proc-
esses that is controlled and monitored by a system process. Further, exact time and
measurement tools arc necded.

We gratefully acknowledge the many helpful advices from Wolfgang nurke and
Carsten Vogt. Wc also would like to thank Itigrun 1,ink for the drawings she con-
tributed to this paper.

'ZPC-LZF 'dd ' 1661.130 ipeisili-le(l '8~1.13~
~a8ii!~ds 's%u!paa3o~,i '4iin8wsa~rley ' 12-1 !)
'q!lF?WJ~.Jiil Jap 113~11np113~11~ 3le!p~UI!ll11111
pun uogeq!unuimoyalaLI, .'molj puv dy/~ :n!patu
-!]]niy SPAVMqL :Z);)UIU!>)S .H 'q3!M).IJa11 '3 'H

'XOZI-861 1 'dcl '0661
'130 '01 -ON '9 '10A '811!.13311!~11~~ 3Ji?MlJ@S U0

rro!i~esrir?~ j>-ggg 1 .'Xtr!/npay:),y an!ldtuaarj pirn
sau!]paa '.s/on!AAy uropzrnll ~I!M s>/sn,L AOJ aln,y

uol13+>1 ay,l, :ap!spooAi '1.21 -3 '3!"~3 ',41 '(1

Cszl

Cb21

7661 .qarl '4.iaq11.1n~ na4ii~1.13
nvg '9i~ni!aq~e~a~uaiF?~l piin iiaii!ilnseW
aIl3SpEuiai~F?m JiiJ 1nlgSiJl '~!aq.rv~~io~d!~l

:XI Y snalnpa yn,y-t!azl yng-opws,l
saum 8urua!1uawaldur1 pzrn Jnm~ug :nyJnn M

'96-E6 'dd '6861 'Jdv '2 'ON '21 'IOA 'uinqyads
ygeuiJoju1 :11azly3z~ :q3!MJJJalf '3 'H

Cozl

C611

'LS-15 'dd 'T661
,130 '01 .ON 'b.2 '10~ L~aindwo3-gg~l !W~UW

-ymW uo!~nquonynuds SII puv nannas 011 w,ipa,tq
snonu!tuo3 V :Asiuoll '3 'uos~apuy -,I '(I

'1661 113JWi
'KIYJW "229/ 16 CIS3/83n 'ON 1JodW 1133!1JI133L
'uo!s!ya a3uapi; ~alnduio~) 'e!11~oj!je3 JO h!s
-JaA!un :w!pa~ snonu?luo3 noj surquwynam 3dl
puv 8u?lnpay3~ :uoslapuy -,I .(I 'ui?pu!~o3 .H

'286 1 '~31~aIP!q3 'pal!W!I pOOMJOll S!113
.'doyg qof ayj Jo ss.~wuray~wjq ayl 01 uoynnp
-OA]UI uu :8ylnpayns puv 8zr!3uanbas :qnuaJ~l

'56- t 8 'dd
'1661 'qad ur!ailuueW '4vl~a~ J~~IJ!J~S 's9u!paao
-0Jd '4uIl%4q3i?d-~,~1/13 'U~W~SAS U311!31J3A
u! uogey!unuiuio)l .'suoy~n~uawajdq]O~O]OA~

auqj-lway U! Xuylnpayns puv a~n~~nnls ssa3ord
:q3!M)JJJEI '3 ')I '!ssoJ%I>~~ -1 'UOSJ~PU~~ ',I '(I

J. Ilyman, A. A. Lazar, G. Pacifics: MARS:
The Magnef 11 Real-Time Scheduling Algorithm;
acm-Prcss, Computer Communication Review,
Vol. 21, No. 4, SIGCOMM '91, Zürich, Sep.
1991, pp. 285-294.

K. S. Ilong, J. Y.-T. 1,ciing: On-Line Scheduling
o f Real-Time of Tarlcs; IEEE-Rcal-Time-System
Symposium, Iiunlsvillc, 1988, pp. 244-258.

E. lacohiicci: OS12 Programer's Guid;
McGraw-I-lill. Derkeley. 1988.

IRM Deutschland Gmhll, Redaktion: K. Csikai:
Fachausdrüclce der Informafionsverarbeifung,
Wörterbuch und Glossar; IBM Deutschland
GmbH, 1985.

IRM Carp.: IRM Operafing Sy.srem/l Program-
ming Tools and Informarion Version 1.2: Conrrol
Program Programming Reference; IBM Corp.,
First Edition, Scp. 1989.

IRM Carp.: AIX Version 3.1: Risc Sj>sfem/6000
ar a Real-Time Sysfem; I DM-lntcrnational Tech-
nical Support Center, Austin, March 1991.

IRM Corp.: IRM OS12 Programming Guide,
Volume I, Confrol Program Inferface, Prelimi-
nary Draff; IBM Corp.. First Edition, March
1992.

K. .lciTay: Ana1ysi.s of a Synchronizafion und
Scheduling Discipline for Real-Time Taslcr with
Preemption Constrainfs; IEEE-Real-Time
Systcms Symposium, Santa Monica, 1989, pp.
295-305.

K. .Ieffay: Scheduling Sporadic Tasks wifh
Shared Resources in IJard- Real-Time Syslems;
University of North Carolina at Chapel I-lill,
Department of Computer Scicnce, Technical
Report TR90-039, Nov. 1990.

K. .leffay, D. L. Stone, 1). E. Poiricr: YARTOS:
Kernel Supporf for EfJcienf, Predictahle Real-
Time Systems; Procccdings of IFAC, Workshop
on Real-'Time Programming, Ailanta, May 1991,
Pergamon Press.

K. .Icffay, D. L. Stone, F. D. Smith: Kernel
Support for Live Digital Allfiio and Video;
Second International Workshop on Nctwork and
Operating Systcm Support Tor Digital Audio and
Video, I lcidelberg, 1)cc. 199 1.

M. S. Kogrtn: OS12 2.0 Overview; OS12 Noic-
book, MicrosoR Press, Washingion 1991.

C. M. Krishna, Y. 11. 1,cc: Real-Time Sysrems;
IEIIE-Computer, May 199 1, pp. 10-1 1.

B. I,ampartcr, W. li,ffclsherg: X-Movie: Trans-
mission und Pvesenfafioil of Digifal Movirs under
X ; Second Intcrnational Workshop on Nctwork
and Operating Systcm Siipport Tor Iligital Audio
and Video, I lcidelherg, Nov. 199 1.

C431

C441

C451

~461

C471

C481

C491

~501

CS 1 I

C521

Cs31

1541

CS51

[Sc,]

Management Scicricc, Vo1.19, No. 5, Jan. 1973,
pp.544-546.

.I. Y.-T Lciing, M. L. Mcrrill: A Note on
Preempfive Sched~~ling of Periodic Real-Time
Tmks; Information Proccssing Lcttcrs, Vol. 11,
No. 3, Nov. 1980, pp. 115-1 18.

:I. Y.-T. Leiing, .I. Whitchcad: On the Com-
plexify o f f i cd - Prioriry Schedu fing o f Periodic
Real-Time 7'arks; Performance Evaluation 2,
1982, pp. 237-350.

G. 1,etwin: Insde QS/2; MicrosoR Press,
Washington, 1988.

.I. P. I,ehoczky, 1,. Sha: Performance of Real-
Time Bus Scheduling Algorifhms; ACM Per-
formance Evaluation Review, Vol. 14, No. l ,
May 1986. pp. 44-53.

C. L. Liii, .I. W. 1,ayland: Scheduling Algorifhms
for Mulfiprogramming in a Rard Real-Time
Environmenf; Journal of the Association for
Computing Macliincry, Vo1.20, No.1, Jan. 1973,
pp. 46-61.

M. 11. 1,inchan: Tirner Availabilify, Nofice;
Program dcscripiion of thc OS21 IRT dcvice
driver, Apr. 1984.

.I. W. S. I,iri, K.-.I. I,in, S. Natiirajan: Sched-
uling Real-Tiine, Periodic Jobs IJsing Imprecise
Resulfs; IEEE-Rcal-Time Systems Symposium,
San Jose, 1987, pp. 252-260.

.I. W. S. Liii, K.-.I. I,in, W.-K. Shin, A. C. Yii:
Algorifhms for Schedulirrg Imprecise Compufa-
tions; IEEE-Compiitcr, May 1991, pp. 58-68.

A. Maiithc: Echrzeir- Verarbeitung von
Mulfimedia-Prorolcollen; Diplomarbeit,
Lehrstuhl für Praktische Informatik IV, Prof.
Dr. W. Efrclshcrg, UniverL3ität Manntleim, May
1992.

C. W. Mcrce, I I. Tokiida: The ARTS Real-Time
Objecf Model; 11IEE-Real-'Time System Sympo-
sium, Lake ßiicna Vista, 1990, pp. 2-10.

C. W. Rlerce, 11. 'l'okiicla: Prioriry Consis~ericy
in Prorocol Architcc11~re.s; Sccond lntcrnational
Workshop on Nctwork and Operating Systcm
Support for Iligiial Audio and Video,
1 leidelbcrg, Xov. 1 Y9 1 .

<I. W. Mcrcc, 11. T'okiida: An Evaluafion of Pri-
ority Con.<i.<tanry in Profocol Archifec~urrs;
Carncgie-Mclloii University, PiLsburgh, 1991.

T. Meycr: /~~~ii~crrd~~ng.~.~z~~~aricn fiir verlei/le
M i l l f i r n e d i n - L ~ y I : ~ ~ ~ ~ n c hasicrend 4
Nocligescliu~ii~diglceir.sne~zcn; 1)iplomarbci 1,
1,chrstuhl fiir Praki.isclic Iriformatik IV, Prof.
Ilr. W. EfTclshcrg, UnivcrL~iiät Mannhcim, Jul.
1991.

A. K. Rlok: 7%e 1)esigrr o/ Real-7inw
Prograriziitg .ijlsrcrits 13n.sed on Process Modcls;
IliCE-Real-.l'iinc Systcnis Symposiiini, Aiislin,
1984.

A. D. Narasimhalu, S. Christodoulakis: Mulfi-
media Informafion Sysrems: The Unfolding of a
Reulify; IEEE-Transactiori on Computer, Vol.
24, No.10, Oct. 91, pp. 6-8.

H. Nagarajan, C. Vogt: Guaranfeed-
Performance of Mulfimedia Trafjc over fhe
Token Ring; 'I'ecliriical Report No.439201,
IßM-ENC, I leidelbcrg, 1992.

J. Nehnier: Sysfemarchifekfur von
Reulzeirsysremen; Iriformatik Spektrurn, Vol. 7,
No. 2, Apr. 1984, pp. 65-72.

H. Levin, et all.: Operating Systems Reveiw; ,

ACM Press, Opcratirig Systems Iceview, Vo1.23,
No.3, Jul. 1989.

R. Orfali, D. Ilarkey: Clienf-Server Program-
ming wirh OS/2, Exfended Edirion; Van
Nostrand Ilciritiold, New York, 1991.

H. Rajkumar, I,. Sha, J. I'. 1,ehoczky: Real-
Time Synchronizafion Profocols for Mulfi-
processors; IEEE-Real-Time Systems
Syniposiuin, I luntsville, 1988, pp. 259-269.

I I. Itzchak: Echrzeifkommunikafionssysteme:
Eine Einführung in die Problembereiche und
Lösungsansäfze; 'Ielekommuriikation und
niultirriediäle Ariwendurigen der Informatik,
G - 2 Jatirestagurig, I'rocecdings, Springer
Verlag, Darnistiidt Oct.1991, pp. 631 -642.

I'. Sander: Enfwurf und Realisierung einer
verreilren Videokamerafernsfeuerung auf Baris
eines hlulfimedia- Transpor~sysrems
(Arbeifsiifel); Diploniarbeit, Lehrstuhl für
I'raktische Irilormatik IV, Prof. Dr. W.
Illrelsbcrg, Univertsität Manriheim, Jun. 1992.

E. Sc hoop: IIERMES-Ein Ilypermediasysfem für
die befriet>srvirrschuffliche Ausbildung;
'I'elekornniuriikation und niullimediale
Ariwcridiirigcri der Iriforniatik, GI-21.
Jatircstaguiig, I'iwcecdirigs, Spririger Verlag,
1)üriristadt Oct. 1991, pp. 608-61 7.

I,. Sha, .I. 13. Goodciiough: Real-Time Sched-
uling Theory und ADA; IEEE-Trarisaction on
Computer, Vol. 23, No. 4, Apr. 1990, pp. 53-64.

L,. Slia, It. Rajkiiniar: Real-'iime Sysfetns. A
'Iuroriul of rhe IIuie-Monofonie Scheduling
1.i-utn~tvorlt with 1I~i.s- fteluied Issues; 17uturbus +
1'896.3, Ilrali 4.0, 1989.

W.-K. Shin, .I. W. S. I,iii, .I.-Y. Chung, I). W.
(;illies: Schediclit~g '/ils/ts rvifh Ready 7'imes und
De~id1it1e.s fo Mit~itnize Average Error; ACM
I'ress, Operaliiig Systciris Icevicw, Vol. 23, No.3,
Jii1. 1989, pp. 13-28.

I,. Sha, .I. I'. I,cliocr.l<y, It. ltajkiirnar: Solurions
o f some I'rucriccrf /'roh/en?s in Priorifized
I'reetnprive Sclicduling; I IIEE-Real-'l'inic
Sysleiris Syrril,osi~iiri, Ncw C)rleans, 1986, pp.
181-191.

B. Sprunt, et al: Implemenfing Sporadic Servers
in ADA; Carngie-Mellon University, Piisburgh,
Software Eriginearing Institut, May 1990.

1). Sprunt, L. Sha, J. Lehoczky: Aperiodic 7'ask
Scheduling for llard Real-Time Systems; The
Joiirnal of Real-Time Systems, Vol. 1, 1989, pp.

- 27-60.

H. Steinniet~, J. Rückert, W. Racke:
Mulrimedia-Sysrerne; Informatik Spek'trum,
Spririger Verlag, Vol. 13, No. 5, Oct. 1990, pp.
280-282.

R. Steinmetz, It. C. Ilerrtwich: Integrierte
verfeilre Mulrimedia-Systeme; Informatik
Spektrum, Spririger Verlag, Vol. 14, No. 5, Oct.
1991, pp. 249-260.

Ralf Steinmetz, l'homas Rleyer: Modelling Dis-
fribufed Mulfimedia Applicurions; IEEE Int. WS
on Advariced Comniunications and Applications
for 1-1s Networks, München, March 1992.

J. A. Stankovic, K. Hamamritham: The Spring
Kernel: A new I'aradigma of Real-Time Oper-
afing Sysretns; ACM Press, Operatirig System
Iceview, Vol. 23, No.3, Jul. 1989, pp. 54-71.

'I'. 'I'eshinia: Consfrucfing Image Dafabases for
fhe Collection of Arf Museums;
I clekomrriuriikation und multimediale
Ariwendurigeii der Informatik, GI-21.
Jafirestiigung, Proceedings, Spririger Verlag,
Darnistadt Oct. 1991, pp. 50-56.

W. 'i'awbi, E. Ilorlait, S. Dupuy: High Speed
Profocols: Stare of fhe Arf in Mulfimedia Appli-
cafions; Sccond Iriternational Workshop on
Network arid Operating System Support for
Digital Audio and Video, Ileidclberg, Nov.
1991.

Il. 'l'okiida, C. W. Rlercer: ARTS: A Disfribured
Keal-Time Kernel; ACM I'ress, Operating
Sysleiiis lievicw. Vo1.23, no.3, Ju1.1989, pp.
29-53.

C. 'I'opolocic (Ed.): Experimenral Inferner
Sfream I'rorocol, Version 2 (S T I I) ; Iriternet
Network Workirig Group, I lFC 1190, Oct. 1990

11. 'l'okiicla, J. C\'. Wendorf, 11.-Y. Wang: Imple-
menrafion i ~ f a 'i'inze- Driven Scheduler for Real-
7'inle Operaring Sysferns; IIXEE-lleal-Time
Systcnis Syiriposiuril, San Josc, 1987, pp.
27 1 -280.

S. Vesttal: 'I'he Accuraq of Predicfitig Rufe
A,lonofonic Scheduling Perfortnance; Proceedings
o l '1'111-AI>A '90, Dcc. 1990.

C. Vogt, I . Ilerrtwich, H. Nngarajan:
IleiIiA'l': ?he Ileidelberg Resource Adminis-
lruiion 'Iechniq ue, Llesign I'hilosophy und Goals;
'l'ectiriical I1cporl No. 43.9213, IBM-I!NC,
1 Icidcll>crg, 1992.

C831 Video Logic: Multimedia Developnicnr Tool .~ RL C851 C. M. Wootlsicle, I). W. Craig: Local Non-
Resources; VideoLogic I,imited, I4erliordshirc, Precmptive Scheduling Policies for IIard Real-
1990. Timc Disrrihured Sysfems; I EEE-Rcal-Time

Systems Symposium, San Jose, 1987, pp. 12-1 7.
r841 1 1 . R I . Vin, P. T. Zcllwc~cr. D. C. Swinchart. P. - - .. .

V. Rangan: Mulrinredia Conjiirenciirg in fhe [86] 11. iihang, S. Kcsliav: Compari.von of Rnre-
Erherphone Environment; IEEE-Computer. Vol. Rased Service Dirciplincs; acm-Press, Computer
24, No. 10. Oct. 1991, pp. 69-79. .Communication Review, Vol. 21, No. 4,

SIGCOMM'91, Ziirich, Scp. 1991, pp. 113-122.

