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ABSTRACT
Activity recognition represents the cornerstone in realizing
intelligent services such as energy conservation and ambient
assisted living in smart environments. The problem statement
of most activity recognition research assumes that only mu-
tually exclusive activities occur in smart environments. The
majority of research projects in this field focus on single-user
environments where only one user performs a single activity
at a given time. Such solutions are not applicable in real-world
scenarios where multiple users reside in a home performing
co-temporal activities. Our work addresses the problem of
activity recognition in multi-user environments by utilizing
the techniques of multi-label classification. It is based on a
multi-label activity recognition dataset which we collected
by deploying appliance-level power sensors as well as envi-
ronmental sensors in a two-person apartment. In this dataset,
a feature vector of sensor readings can have more than one
label indicating the occurrence of more than one activity at
a given time. In this work, we show that recognizing activi-
ties in smart environments can be achieved solely based on
fine-granular power consumption data and without the need
for installing any other sensing modality. Moreover, we prove
that extracting and utilizing dependency relations between
concurrent activities as well as temporal relations between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IoT’16, November 07-09, 2016, Stuttgart, Germany

© 2016 ACM. ISBN 978-1-4503-4814-0/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2991561.2991563

subsequent activities provide a crucial enhancement of the
predictive accuracy of activity recognition models.
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INTRODUCTION
Activity recognition in smart environments provides ways to
improve several aspects of users’ life. It is applied in many
fields such as elderly care [13], health care, energy conserva-
tion [2] [10] [3] and so on. Major research projects include
body wearable sensors that help to provide elderly care and
health care [8]. Wearable body sensors along with environ-
ment sensors give more precise information in localization
and recognition of a person’s activity. However, it is always a
case of discomfort to carry gadgets stuck to the body all the
time. The scope of this paper confines to using only power
sensors in order to avoid this discomfort to the users.

In recent times, wide research has been done on activity recog-
nition in single-user environments. Nonetheless, the common
scenario in real world is that multiple users live in a common
place. This paper aims at building a model for multi-user ac-
tivity recognition which is able to detect the current activities
of more than one user. Considering the multi-user scenario,
there is scope for a user to perform more than one activity at a
given time. For example, a user could be working at PC, later
go off to cooking while listening to music and come back to
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working at PC. The second user could be watching movie and
then decide to make tea and come back to watching movie.

In our work, we propose a new approach for building a multi-
user activity recognition model based on the techniques of
multi-label classification [12]. We identify dependency re-
lations between concurrent activities as well as temporal re-
lations between subsequent activities. Based on a compre-
hensive evaluation study, we show the essential role of these
relations in enhancing the predictive performance of multivari-
ate activity recognition models.

The rest of this paper is organized as follows: We present a
group of research projects in the field of activity recognition in
multi-user environments in Section 2. We introduce the dataset
used in this work along with the process of feature extraction
in Section 3. Our first approach for building a model for ac-
tivity recognition in multi-user environments is presented in
Section 4. We introduce our approach for identifying depen-
dency relations between concurrent activities and for building
a multivariate activity recognition model in Section 5. We
conclude the paper in Section 6.

RELATED WORK
Several research projects are available in the field of activity
recognition although with limited assumptions [4][5][7][14]
[11]. A single user performing only one activity at a given
time is a common assumption among many research projects.
Few projects have worked on recognizing multiple activities
occurring parallel in a multi-user environment.

The first work we discuss is conducted by Crandall et al. [5].
It primarily focuses on addressing the two main problems of
tracking and identifying multiple residents in a home. To know
which activity belongs to which user, differentiating between
the behaviors of users is vital. The temporal features such as
hour of the day, part of the day, day of the week, and part of the
week (weekend or weekday) are used to study users’ behaviors.
Motion sensors and user interaction with lighting devices are
used to record events. The data gathered consisted of date,
time, sensor serial number, event message and annotated class
which resembles the resident ID. Bayesian classifier was used
to model the data. Evaluation of models that include sensors
with temporal features shows good results in differentiating the
users. The dataset was randomly split into training and testing
sets. The classifier was trained on 90% and tested on 10%
of each class. Although this scenario even though considers
multiple users, it does not consider parallel activities.

Doryab et al. [7] proposed an approach that considers joint
recognition of activities in clinical work. Multiple wearable
and embedded sensors are placed in the operating rooms. Raw
data is collected from these sensors. Base activities are rec-
ognized from this data. Apriori algorithm [1] is used to mine
frequent patterns from the dataset. These frequent patterns
give insight into which base activities occur together. Thus,
artificial joint activities can be formed. These joint activities
are used to transform multi-label data into single-label data.
A virtual evidence boosting algorithm is used to capture the
temporal dependencies between actions. The data used in
this work was recorded from 10 laparoscopic surgeries. It is

estimated that 6 clinicians participate in a surgery. Sensors
were placed to know the location of clinicians, the location
of objects and their use by different clinicians. All the sensor
values were transformed to binary values. It was observed
that more than 70% of the data had more than 2 activities. A
Conditional Random Field (CRF) was used to model the data.
Initially, model A was built that included all the combinations
of joint activities. This model was very slow and showed poor
performance. This is due to the huge number of joint activities
that were considered as single labels. In the next step, the
anaesthesia and operating team were separated. Model B was
trained on each team. This model showed better performance
than the previous one. However, the concurrent activities
occurring between the two teams could be missed out. To
overcome this problem, an additional model C was built and
trained on these concurrent activities occurring between the
two teams.

Wu et al. [14] proposed a method for joint recognition of activ-
ities in a multi-user home. The authors used House_n dataset
which was provided by the Massachusetts Institute of Technol-
ogy (MIT). The data was recorded everyday from 9 AM to 1
PM. The sensors used in this project were switch, light, and
current sensors. The dataset was later annotated with labels
based on ground truth of multiple activities and location infor-
mation provided by the users and sensors respectively. The
availability of data was less because the data was collected for
only four hours everyday. Therefore, the researchers focused
mainly on location information for recognizing activities. The
dataset was divided into 18 parts each of 10 minutes. 89 ac-
tivities were clustered into 6 classes. These 6 classes could
happen to overlap with each other thus enabling multi-user
activity recognition. A Factorial Conditional Random Field
(FCRF) was used to build the data model.

Compared to previous projects, this work aims at building a
multivariate activity recognition model that is able to recog-
nize several activities of multiple users simultaneously. This is
achieved without the need for converting the data into single-
label as done by other projects that combined concurrent ac-
tivities into joint activities.

DATASET, DATA PREPROCESSING AND FEATURE EX-
TRACTION
We collected the multi-user dataset used in this work from
an apartment with two students residing in it. The collection
spanned for a duration of 23 days. Pikkerton smart energy
meters 1 were attached to power devices. The devices that
were monitored are listed in Table 1. These sensors collected
measurements in terms of current, voltage, frequency and
power for each device. Fibaro environmental multi-sensors 2

were placed in two locations, namely sitting room and corridor.
These locations are depicted in the layout as shown in Figure
1. Each Fibaro sensor measures temperature in Celsius, light
intensity in LUX and motion as Boolean (motion or no mo-
tion). Both types of sensor nodes provided new measurements
every 28 seconds. A smartphone enabled both users to report

1http://www.pikkerton.com/
2http://www.fibaro.com/



their current activities. These activities are listed in Table 2.
We monitor a set of 11 activities for each user. When the
user performs an activity which does not belong to the list of
monitored activities, he has to provide Ignore as a feedback.
The collected dataset includes 335000 sensor readings and 677
user’s feedback.

Lamp Monitor
PC-User1 PC-User2
Oven Stove
Vacuum Cleaner Sound System
TV Water Heater

Table 1. List of monitored appliances

Eating Reading
WorkingAtPc WatchingMovie
WatchingTV Cooking
Cleaning ListenToMusic
Sleeping OutOfHome
MakingTea Ignore

Table 2. List of monitored activities

LIVING ROOM

KITCHENWC

CORRIDOR

ENTRANCE

FIBARO

FIBARO

BALCONY

Figure 1. Placement of Fibaro sensors in the apartment

Feature Extraction
Due to the high sampling rate, it is recommended to reduce the
dataset size and extract the important discriminative features
that help distinguishing the different activities. Therefore, a
windowing technique as specified by Alhamoud et al. [2]
was followed. The feature extraction process consists of the
following steps:

1. The start time is considered for current activity.

2. The start time of next activity is taken as an end time for the
current activity.

3. The time difference between start and end time is taken.

4. It is further divided into 2-minute slots. A time slot length
of 2 minutes has been chosen based on the observations
obtained from our previous work described in [2].

5. In each time slot, we take the maximum reading of each sen-
sor as a representative feature for this slot. This is clarified
in Eq.(1) which shows how to construct feature vectors.

6. The timestamp represented by the hour at which an activity
is being performed is considered as a part of the feature
vector as well.

F(t) =< S1(t),S2(t),S3(t)....Sn(t),H > (1)

Where:

• n: number of sensors
• Si(t): the maximum value for sensor i in timeslot t

• H: Hour

7. A single user can perform more than one activity at a given
time. Hence, a user can be tagged with more than one label.
In order to apply multi-label classification on this dataset,
the activities are converted into binary labels as shown in
Eq.(2). These binary labels indicate if the activity occurs or
not for given sensor values.

L(t) =< L0,L1,L2....Lq > (2)

Where:

• q: number of labels
• L(t) ∈ {0,1}q

8. The dataset consisting of feature vectors along with activi-
ties as labels can be represented as follows:

Dataset =


F(1),< L10...L1q >
F(2),< L20...L2q >
F(3),< L30...L3q >

....................

F(m),< Lm0...Lmq >


As mentioned before, we monitor a set of 11 activities for
each user which results in 11 labels. The process of feature
extraction is applied on the activities of both users. Thus,
two datasets are obtained, namely User 1 and User 2 datasets.
These two datasets are then merged based on the timestamp
to form a unified dataset for both users. Moreover, examples
of activities WatchingTV and ListenToMusic are removed for
User 1 and examples of activities Reading are removed for
User 2 due to very few number of examples. In order to
obtain training and testing sets, we divided the dataset based
on the dates. The days that are placed in training set were
not repeated in testing set. Non-overlapping days were used
to train and test such that the model can be open to real-time
scenarios.

BINARY RELEVANCE AS A MULTI-LABEL CLASSIFICA-
TION TECHNIQUE
In this section, we present our first approach for building
an activity recognition model for multi-user environments.
It is based on the binary relevance (BR) [12] as a problem
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Figure 2. Multi-label data transformation into single-label data

transformation method used in the context of multi-label clas-
sification. BR transforms a multi-label classification problem
into a set of single-label classification problems by building a
separate dataset for each individual label. Any classical single-
label classifier can be used to solve the resulting single-label
classification problems. We use the algorithm of conditional
inference tree (ctree) [9] as a base classifier for our binary
relevance approach.

We build a ctree model for each single-label dataset. The
response of this tree is the label to be predicted while its pre-
dictor variables are the sensor readings comprising the feature
vector as shown in Eq.(1). Time as a feature plays an im-
portant role in differentiating between activities. Therefore,
we incorporate the timestamp of an activity represented by
the hour at which this activity is happening into the feature
vector. The workflow of BR technique is shown in Figure 2.
We conduct an exhaustive evaluation study in order to evaluate
the predictive performance of binary relevance models. We
start our evaluation in Section 4.1 by considering all deployed
sensors, namely power and environmental sensors as parts of
the feature vector. In Section 4.2, we study the effect of tem-
poral relations between subsequent activities on the predictive
performance of binary relevance models. As our main goal
is to recognize users’ activities solely based on fine-granular
measurements of power consumption, we analyze the effect
of excluding environmental sensors from feature vectors on
the overall predictive performance of binary relevance models
in Section 4.3.

Power and Environmental Sensors
This section discusses in detail the predictive performance
of binary relevance models. In this evaluation setting, we
consider the feature vectors to contain values of power and
environmental sensors combined with the hour at which an
activity has occurred as represented by Eq. (1). Figure 3 and
4 show the f-measure values achieved by binary relevance
models in recognizing activities of User 1 and User 2 respec-
tively. The activities followed by “.x” are for User 1 and by
“.y” are for User 2. As we can see from both figures, binary
relevance models were able to predict the activities of both
users with good predictive performance. However, they were

0 0.2 0.4 0.6 0.8 1

Eating.x

Reading.x

WorkingAtPc.x

MakingTea.x

Cooking.x

WatchingMovie.x

Sleeping.x

OutOfHome.x

ListenToMusic.x

Figure 3. F-measure values of environmental-power binary relevance
models with regard to User 1
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Eating.y

WorkingAtPc.y

MakingTea.y

Cooking.y

WatchingTV.y

WatchingMovie.y

Sleeping.y

OutOfHome.y

ListenToMusic.y

Figure 4. F-measure values of environmental-power binary relevance
models with regard to User 2

not able to predict any instance of the activity MakingTea.
This is due to the very few number of instances for this activity
in comparison with other activities. In Section 5, we intro-
duce a solution for this problem by studying and identifying
dependency relations between the different activities.

Temporal Relations
Users tend to follow a certain routine in performing their daily
activities. In such a routine, they are used to do their activities
in a sequence that repeats itself everyday. In this section, we
study the effect of such temporal patterns on the predictive
performance of activity recognition models. To achieve this
goal, we transform the dataset so that the previous activity
for a given time slot is added as a feature. The dataset will
then consist of instances such that each instance consists of a
feature vector comprised of values of power and environmental
sensors, timestamp and activity previously performed by the
user as shown in Eq. (3).

F(t) =< S1(t),S2(t),S3(t)....Sn(t),H, prevAc > (3)

Where:

• n: number of sensors

• Si(t): the maximum value for sensor i in time slot t

• H: hour
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WorkingAtPc.x

MakingTea.x

Cooking.x

WatchingMovie.x

Sleeping.x

OutOfHome.x

ListenToMusic.x

With temporal
relations

Without temporal
relations

Figure 5. The improvement in f-measure after encoding temporal rela-
tions as extra features for the activities of User 1
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Eating.y

WorkingAtPc.y

MakingTea.y

Cooking.y

WatchingTV.y

WatchingMovie.y

Sleeping.y

OutOfHome.y

ListenToMusic.y

With temporal
relations

Without temporal
relations

Figure 6. The improvement in f-measure after encoding temporal rela-
tions as extra features for the activities of User 2

• prevAc: previous activity

Figures 5 and 6 show the improvement achieved in f-measure
values for the activities of both users after the inclusion of
temporal patterns into the feature vectors. As we can see from
both figures, activities such as Eating, Cooking, OutOfHome
and ListenToMusic have seen a very good improvement for
both users. However, it is still not possible for the model to
predict any instance of the activity MakingTea. Figure 7 shows
an improvement of 24%, 19%, 13% and 3% achieved in the
average values of precision, f-measure, recall and accuracy
respectively. Average values have been calculated with respect
to all activities of both users.

Power Sensors
Our main goal in this work is to build a model that recog-
nizes users’ activities in multi-user environments solely based
on fine-granular sensing of power consumption and without
the need for deploying any other sensing modality. There-
fore, this section studies the effect of excluding the values
of environmental sensors from feature vectors on the overall
performance of binary relevance models. Figures 8 and 9
compare the f-measure values of power-environmental and
power-only models. Both figures show that the exclusion of
environmental sensors has not caused any significant decrease
in f-measure values for both users. It has even caused an in-

0 0.2 0.4 0.6 0.8 1

Avg. Precision

Avg. Recall

Avg. F-measure

Avg. Accuracy

With temporal
relations

Without temporal
relations

Figure 7. Comparison between temporal and non-temporal models in
terms of average f-measure, accuracy, precision and recall
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Reading.x

WorkingAtPc.x

MakingTea.x

Cooking.x

WatchingMovie.x

Sleeping.x

OutOfHome.x

ListenToMusic.x

Envornmental and
power sensors

Only power sensors

Figure 8. Comparison between power-only and power-environmental
models in terms of f-measure values for activities of User 1

crease in f-measure values for the activities OutOfHome and
Eating of User 2. However, the model is still not able to rec-
ognize the activity of MakingTea due to its very few number
of instances.

In a multi-user environment, it is common that concurrent ac-
tivities may occur between the users or that a single user may
perform multiple activities at a given time. This leads to the
existence of a dependency pattern in which certain activities
occur or never occur together most of the time. A user may
eat and watch TV at the same time. In case of two users, they
usually tend to eat, watch tv and cook at the same time. Binary
relevance algorithm has the main disadvantage of building a
separate model for each individual label ignoring any useful
dependency information that may exist between activities. To
improve the predictive performance of our models, it is impor-
tant to study and identify such dependency patterns. Therefore,
we introduce in Section 5 our approach for identifying and
extracting dependency patterns between activities using the
algorithm of conditional inference trees.

LABEL DEPENDENCY
In this work, we identify and extract two different types of
unconditional label dependency [6]. Two activities are un-
conditionally dependent on each other i.e. correlated if they
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Figure 12. Identifying inter-user label dependency

0 0.2 0.4 0.6 0.8 1

Eating.y

WorkingAtPc.y

MakingTea.y

Cooking.y

WatchingTV.y

WatchingMovie.y

Sleeping.y

OutOfHome.y

ListenToMusic.y

Envornmental and
power sensors
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Figure 9. Comparison between power-only and power-environmental
models in terms of f-measure values for activities of User 2

expose a significant positive or negative association relation-
ship in the way they occur irrespective of the values of feature
vectors. The first type of dependency we study focuses on
dependency relations between the activities of an individual
user and therefore uses individual datasets. The second type
focuses on dependency relations between the activities of both
users and therefore uses the combined dataset. These two
different types can be termed as intra-user dependency and
inter-user dependency respectively. We use the algorithm of
conditional inference trees to study both types.

Figure 11 depicts the technique of identifying intra-user label
dependency for each user. Initially, we define the number of
labels for the respective user. For each individual label, we
build a ctree model with this label as a response and the rest

0 0.2 0.4 0.6 0.8 1

Avg. Precision

Avg. Recall

Avg. F-measure

Avg. Accuracy

Envornmental and
power sensors

Only power sensors

Figure 10. Comparison between power-only and power-environmental
models in terms of average f-measure, accuracy, precision and recall

of labels as predictors. This technique identifies for each label
the set of labels that are statistically associated with it. This
set identifies the dependency patterns for the respective label.
This information helps understanding the occurrence of an
activity given other activities of the same user.

Figure 12 depicts the technique of identifying inter-user label
dependency. For this task, we use the combined dataset which
contains the activities of both users. Our goal is to study the
label dependency of each activity of User 1 with respect to
all activities of User 2 and vice versa. The combined dataset
consists of 22 labels. The first step is to decide which user’s
label dependency is to be studied. If User 1 is selected, then
for each label of User 1 a ctree is built in which the response
is the current label of User 1 and the predictors are all the



Figure 13. Combined dependency ctree for Sleeping activity of User 2 with respect to all activities of User 1
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Current_label<=q
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Response=Current_label

Predictors=Labelset-

Current_label

Stop

Yes

No

Current_label =

Current_label+1

Figure 11. Identifying intra-user label dependency

labels of User 2. The same approach is repeated for the labels
of User 2. This technique studies the co-occurrence of each
user’s activity with respect to all activities of the other user.

Figure 13 shows an example of inter-user label dependency for
the activity Sleeping of User 2. As we can see from the figure,
there is a significant positive correlation between this activity
and the activity of Sleeping of User 1. Moreover, we notice a
significant negative correlation between it and the activities of
WorkingAtPc and WatchingMovie of User 1.

After building all ctree models for intra- and inter-user depen-
dencies, we get the following information:

Response 

combinations

Inter- & intra-user 

dependency

Intra-user 

dependency

Inter-user 

dependency

OutOfHome.x

OutOfHome.y 

Sleeping.x

Sleeping.y 

MakingTea.x 

MakingTea.y

ListenToMusic.x

WorkingAtPc.x

ListenToMusic.y

WorkingAtPc.y

Cooking.x

Cooking.y

Reading.x

Reading.y

WatchingTV.x

Cooking.y

WatchingMovie.x

WatchingMovie.y

Eating.x

Eating.y

Figure 14. Multivariate activity recognition model

• Each of the activities Sleeping, Reading, WatchingTV, Cook-
ing, OutOfHome, Eating and WatchingMovie is usually done
by both users at same time.

• The activity ListenToMusic usually happens when the user
is WorkingAtPc. This holds true for both users.

• The activities OutOfHome, Sleeping and MakingTea share
a negative correlation i.e. they never happen together.
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Figure 15. Comparison between dependency-based and power-only
models in terms of f-measure values for activities of User 1
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Figure 16. Comparison between dependency-based and power-only
models in terms of f-measure values for activities of User 2

In order to utilize this information, we need to build a set of
multivariate activity recognition models. Each of these models
takes a set of dependent activities as its multivariate response
variable. As the algorithm of conditional inference trees al-
lows multivariate responses, we use it as a base classifier for
building multivariate activity recognition models.

Based on the results obtained from intra- and inter-user de-
pendency models, we combine correlated labels into a set of
multivariate responses as shown in Figure 14. For each of
these combinations, we build a ctree model with the com-
bination of labels as a multivariate response. The predictor
variables for these ctree models are the feature vectors com-
prising power sensors and temporal relations as shown in Eq.
(3) after the exclusion of the values of environmental sensors.
The final activity recognition model is therefore an ensem-
ble of multivariate ctree classifiers. In the next section, we
compare the performance of dependency-based model to the
performance of power-only models. As explained in Section
4.3, power-only models are built using the approach of binary
relevance and based on the feature vectors comprising power
sensors and temporal relations between subsequent activities.

Evaluation
Figures 15 and 16 compare the predictive performance of
dependency-based model to the performance of power-only

0 0.2 0.4 0.6 0.8 1

Avg. Precision

Avg. Recall

Avg. F-measure

Avg. Accuracy

Dependency-based
Model

Power-only  Model

Figure 17. Comparison between dependency-based and power-only
models in terms of average f-measure, accuracy, precision and recall

models. The comparison is done in terms of f-measure values
achieved in recognizing activities of each user. As we can see
from both figures, dependency-based model has significantly
improved the predictive performance of activities Reading and
Cooking for User 1. Moreover, it has increased the predictive
performance of the activity MakingTea from 0% to 66% and
45% for User 1 and User 2 respectively. Figure 17 shows
an overall comparison between dependency-based and power-
only models. We notice from this figure that identifying and
utilizing dependency relations between activities significantly
improved the values of recall and f-measure by 12% and 11%
respectively.

CONCLUSION
In this work, we presented our solution for activity recognition
in multi-user environments. Our system is able to recognize
activities of multiple users solely based on fine-granular mea-
surements of power consumption and without the need for
installing any other sensing modality. By conducting an ex-
tensive evaluation study, we proved the importance of depen-
dency relations between co-temporal activities for enhancing
the predictive performance of activity recognition models in
multi-user environments. We identified, extracted and utilized
these dependency relations for an individual user and between
both users as well. Moreover, our evaluation showed that tem-
poral relations between subsequent activities play an essential
role in enhancing the predictive performance of multi-label
activity recognition models.
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