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Abstract—In disaster situations or on emergency terrains,
Internet and Cloud access may be restricted; it may still be
important to process complex resource-intensive tasks and to
acquire distributed information for emergency response, using
ad-hoc networks among, e.g., first responder mobile devices.
Corresponding approaches towards coordination, resource uti-
lization, and interoperability are still challenging. This paper
introduces the concept of adaptive task-oriented message tem-
plates (ATMT) as a basis for overcoming these issues and for
enabling cooperative in-network processing without additional
synchronization overhead for mobile devices. An ATMT serves
as a self-encapsulated message containing the operation chains
that need to be executed as well as the required data. In order
to address heterogeneity and interoperability issues, we integrate
a lightweight ontology. Depending on the current utilization,
devices can autonomously decide whether to participate in
the network or not. We evaluate our approach in an indoor
testbed with 8 wireless mesh nodes. The results confirm that our
approach efficiently supports cooperation among heterogeneous
devices towards utilizing available in-network resources while
reducing network traffic.

I. INTRODUCTION

In recent years, the development and the proliferation of
networking mobile devices have enabled the vision of Internet
of Things (IoT) [1]. The IoT paradigm leverages various
heterogeneous devices with specialized sensors to capture their
environments as well as powerful hardware which enables
processing of the sensor data locally [2]. This supports the
development of new application types, e.g., smart cities. Due
to the limited battery lifetime of these mobile devices, many
IoT research applications rely on a centralized approach, where
a cloud platform acts as central management or computational
offloading unit [3]. However, in emergency situations such as
disaster scenarios with limited or no access to the cloud due
to impaired infrastructures, other techniques for decentralized
communication and computational analysis of sensor data are
required to support emergency response operations [4].

In the literature, several techniques on collecting and pro-
cessing data directly in the network (termed in-network pro-
cessing) have been proposed, especially in the research field
of wireless sensor network (WSN) [5]. However, in-network
processing for WSN focuses on resource-constrained sensor

motes and only considers simple aggregation operations such
as max, min, or average. In contrast, the available resources
(e.g., smartphones, robots, or home routers) in emergency
scenarios enable the in-network processing of complex multi-
stage operations such as voice or image processing. State of
the art works like [6] or [7] show how mobile devices are
able to create an ad-hoc network and efficiently exchange data.
However, none of the related works addresses delay-tolerant
in-network processing of complex multi-stage data analysis in
mobile ad-hoc mesh networks.

In this paper, we present an adaptive task-oriented message
template (termed ATMT) as well as an entire set of possible
operations and associated roles to address the issues of emer-
gency response. The message template supports delay-tolerant
in-network processing and allows participatory mobile devices
to autonomously cooperate for accomplishing complex multi-
stage tasks. We further integrate the ICE ontology (Information
processing self-Configuration and Exchange) [8] to ensure
interoperability of heterogeneous devices.

The major contributions of this paper are threefold:

• We propose an adaptive task-oriented message template
that allows devices to dynamically participate in the
delay-tolerant in-network processing. Our message tem-
plate is self-encapsulated, logically separated and hierar-
chically constructed using direct acyclic graph represen-
tation. We also provide an entire set of graph operations
to efficiently handle or modify messages as well as a
system model with associated roles.

• To enable interoperability of heterogeneous devices, we
present and integrate the ICE ontology.

• We provide a reference implementation supporting the
proposed operations and associated roles, which is eval-
uated in a small testbed with 8 mesh nodes. Our results
show the feasibility of our message template and its
applicability in mobile ad-hoc mesh networks.

The remainder of this paper is organized as follows. First,
we give an overview of the related work. Second, we describe
the design of our proposed message template and the system
model. To enable interoperability for heterogeneous participa-



tory devices, we briefly elaborate on our used ontology. The
paper closes with evaluation of the reference implementation,
result discussion and conclusion.

II. RELATED WORK

In this section we discuss the related work in the relevant
research disciplines, namely in-network processing, service
discovery, and service composition in ad-hoc mesh networks.

A. In-network Processing

To distribute or offload the computational workload of
resource-limited mobile nodes and to reduce network traffic,
in-network processing has been introduced. For instance, in
wireless sensor networks (WSN), data collected by different
sensors can be aggregated within the network using simple
functions such as filter, min, max, or average to reduce the
amount of redundant information [5]. Other research works
in WSN address network, data format or application repre-
sentation issues. Most of the existing WSN works regarding
network focus on tree-based routing, or on clustering to
enhance the network topology for aggregation. However, these
approaches are designed to work within a stable network and
the performance decreases in dynamic mobile networks [5].
Only a few works target data formats and application repre-
sentation for in-network processing [9]. Under the emergence
of IoT devices, the abstraction on the application layer for
WSN in-network processing gained attention, e.g., T-RES [10].
T-RES utilizes the Constraint Application Protocol (CoAP)
to support dynamic reconfiguration for WSN in-network pro-
cessing. Tasks are modeled as resources on each node. The
REST-like resource requests of CoAP support to model an in-
network processing chain in form of input, processing function
and output destination. Wang et al. introduce CS-Man [3],
which utilizes Named Data Network (NDN) to manage service
deployment: services are represented in a hierarchical dashed
name structure, and service providers have to actively advertise
the services to a service manager. However, T-RES and CS-
Man are designed to work in rather stable networks.

B. Service Discovery

Service discovery comprises several aspects such as service
description, discovery protocol and architecture [11]. Common
service description formats (e.g., WSDL1) can only be used
in stable networks. In scenarios where the connection among
devices is intermittent, the service description should be
lightweight to cope with the frequently changing environment.
DEAPspace [12] - a framework targeting service discovery
for an 1-hop ad-hoc network - uses a hierarchically structured
service description including name, attribute, input, output and
service details. In contrast, Chitchat [7] provides a context
representation suite based on Bloom filters to further reduce
the message size and to facilitate the context exchange between
devices. Despite the reduction of representation size, Chitchat
introduces false positives, which is not desired in terms of task
allocation. Discovery architectures often rely on distributed

1https://www.w3.org/TR/wsdl (accessed: 2016-12-01)
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Fig. 1: Mobile ad-hoc mesh network consisting of hetero-
geneous (mobile) devices that piecewise process the task-
oriented messages propagating through the network

services directory and require that the service providers ac-
tively advertise their services [13]. However, such approaches
are infeasible to apply in a highly dynamic environment, where
the providers and their offered services change frequently.

C. Service Composition

A service composition is an aggregation of services col-
lectively composed to execute specific tasks. In mobile ad-
hoc networks, most research on services composition focuses
on designing algorithms and protocols to solve the graph
mapping problem (e.g., [14], [15]). In [14], the authors follow
a demand-based approach for service composition, i.e., the
services are dynamically activated at runtime. This approach
requires synchronization to obtain the service overlay. In [15],
the authors propose the construction of a goal-oriented service
composition workflow. The service composite is built by
traversing the service overlay graph. Following an auction-
based approach, the initiator coordinates the allocation of
individual services in the composite workflow. However, such
an approach is not suitable for a dynamic environment.

III. ADAPTIVE TASK-ORIENTED MESSAGE TEMPLATE

In this section, we first elaborate on two scenarios to show
the need for our proposed message template. Afterwards,
we analyze the requirements and describe the design of the
template and the system model that enables autonomous
participation for in-network processing.

A. Application Scenarios

Figure 1 shows the network scenario targeted by our pro-
posed message template. The heterogeneous mobile devices
form an ad-hoc mesh network to exchange and process the
task-oriented messages, which propagate through the network.

In emergency situations, the communication between de-
vices and to remote services is limited. Nevertheless, the
devices can form a decentralized ad-hoc mesh network to
recover and maintain communication [6]. However, this type
of network makes the coordination of rescue operations more
difficult. Instead of transferring all data to a central server,
the processing should be performed in a decentralized manner.
Therefore, operation chains describing the required processing
steps can be defined by the authorities, such as fire services.
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Fig. 2: Adaptive Task-oriented Message Template (ATMT) for in-network processing

For instance, victim detection based on thermal images can
be defined as the following operation chain: edge detection
→ object detection → victim detection. The thermal image is
provided by a rescue robot equipped with an infrared camera;
the resulting image and the operation chain are combined to
a message and forwarded to the network. This enables the
processing by participatory devices within the network. The
first operation edge detection extracts the required features
for object detection. Afterwards, object detection is used to
extract objects. The last operation, i.e., victim detection applies
heuristics to determine if an object is a victim. The fire services
will then receive only the final result. Since the operations
required for the example chain are complex, not all devices are
able to perform these. The propagation of an operation chain
through the network allows to find capable devices, which
are able to execute specific operations; thus, contribute to the
processing chain or to the overall analysis.

Another example is crowd density estimation based on audio
processing techniques (e.g., [16]). Crowd density estimation is
an important task in crowd monitoring, which is often used
to plan an evacuation in emergency situations. The operation
chain for this example looks as follows: speech detection →
feature extraction → speakers counting. The audio data as
input for this chain are provided by a participatory device.
The operation chain can be executed by the same device or by
other devices in the network. The operation speech detection
uses pitch estimation to filter noise in the background. The fea-
ture extraction operation determines feature vectors from the
extracted speech data. The last operation - speakers counting
- uses a forward clustering algorithm to count the number of
speakers based on the feature vectors. Each operation requires
devices with specific capabilities or high computational re-
sources, which could be rare in emergency situations. Again,
the propagation of the operation chain through the network
helps to deal with this issue.

The examples highlight two crucial aspects of in-network
processing in extreme situations such as emergency response:
first, the discovery of resources in decentralized ad-hoc net-
works and, second, the exploitation of the discovered re-
sources.

B. Requirement Analysis

Our work addresses open issues of decentralized in-network
processing by defining a task-oriented message template. The

template allows devices to cooperate with each other in order
to execute a complex operation chain. We consider an IoT
landscape, where heterogeneous devices are connected within
a dynamic ad-hoc network. This network permits the devices
to directly exchange messages. In the following, we describe
requirements for a task-oriented message template:

• Communication: due to resource restrictions of partic-
ipatory devices, the communication and coordination
overhead should be as small as possible.

• Mobility: due to the high mobility of the devices, joining
the network and contributing to the processing chain in
an autonomous way should be easy.

• Heterogeneity: due to heterogeneity of participatory de-
vices ranging from sensor motes over smartphones to
powerful stationary cloudlets, the approach should ad-
dress and exploit the capabilities of these devices.

• Computation: due to the battery limitations of mobile
devices, the computational overhead or the resource usage
should be as low as possible.

In summary, a task-oriented message should be adaptive,
self-descriptive, and computing- and communication-efficient.

C. Task-oriented Message Construction

Meeting the above defined requirements, we design the task-
oriented message template (namely ATMT) for mobile ad-hoc
networks. A task-oriented message enables the cooperation of
networking devices without additional coordination overhead.

Figure 2 shows the ATMT structure to construct a sin-
gle self-encapsulated message consisting of a header and a
payload part. The header cuts into two parts: the message
header with a fixed length of 208 bits and the analysis
header with a variable length depending on the amount
of required operations. The message header consists of the
160-bit universal unique identifier (UUID) using SHA12, the
operation checksum using Adler-323 algorithm, and the length
of the variable analysis header. With the message UUID,
participatory devices are able to identify, track, and distinguish
received messages using fast bitwise XOR comparison without
central coordination. Messages with different identifiers are
treated separately. Otherwise, the checksum, which represents
the current analysis state of the message (similar to a revision

2https://tools.ietf.org/html/rfc3174 (accessed: 2016-12-01)
3https://tools.ietf.org/html/rfc1950 (accessed: 2016-12-01)



TABLE I: Definition of common operations (termed CRUD)

Abbr. Operation Description
C (C)reate Create a new message with sensor data attached
R (R)ead Parse the message and stream its content
U (U)pdate Modify the message, i.e., its operation graph and

content (cf. Table II)
D (D)elete Delete the message from the network

TABLE II: Definition of update operations (termed MODS)

Abbr. Update op. Description
UM (M)erge Consolidate two messages by merging two oper-

ation graphs and their attached data
UO (O)perate Execute an operation on the message’s data
UD (D)elegate Add a new operation to the operation’s graph
US (S)plit Divide the message into two messages

number), is checked. If the checksums of both messages are
equal, only one message needs to be considered since the
analysis states are also equal. It is important to note that
the analysis state only depends on the already executed and
the open operations. In other words, the comparison does not
consider the attached data since performing the same operation
twice can result in slightly different results, which makes a
checksum or fuzzy checksum comparison unfeasible. The last
field of the message header is the 16-bit length field that
specifies the length (max. 65,535 bytes) of the analysis header.

The analysis header consists of the required operations and
a data directory. The operations field represents a directed
acyclic graph (termed operation graph) of various operations
or operation chains that are required to be executed on
the attached data. Since the operation graph is an essential
component of our proposed template, we give a detailed
description in the next section. The data dictionary maps
the graph operations, which is within the message uniquely
identifiable by the oid attribute, onto the data. This mapping
includes the start and the end point of the data within the
payload, the type and the checksum of the data.

The payload contains the raw data as well as the evalu-
ated data. Different data are separated for individual access,
unordered for high flexibility, independent compressed for
reducing transmission overhead, and can have various data
formats to cover a broad range of analysis use cases.

D. Operation Graph

Resource-intensive tasks can be completed either by a single
operation or by a chain of dependent operations (e.g., victim
detection). For this reason, we model the operations and their
execution order as a directed acyclic graph [17]. The operation
graph GO = (VO, EO) consists of the set of vertices VO,
where each vertex represents an operation, and the set of edges
EO, where each direct edge represents the dependent order
between two vertices. The resulting graph is topologically
sorted and, thus, it can be easily traversed to search for open
operations that a device can execute. Table I lists the available
CRUD operations, namely create (C), read (R), update (U ),
and delete (D), that a device can perform and, thus, modify
the operation graph or the message. The update operations can

(a) create C (b) read R (c) update U (d) delete D

(e) merge UM (f) operate UO (g) deleg. UD (h) split US

Fig. 3: Scheme representation of graph-based operations

be further characterized by four MODS operations, namely
merge (UM ), operate (UO), delegate (UD), and split (US) (cf.
Tab. II).

We now explain the defined graph-based operations illus-
trated in Figure 3. A device can create a new message with
sensor data attached and publish it to the network. The raw
sensor data are represented as root node in the operation
graph (cf. Fig. 3a). Another device can then read or parse
this message and its operation graph without modifications
to access its content (cf. Fig. 3b). To modify the message,
a device needs to perform an update operation (cf. Fig. 3c):
merge consolidates the operation graphs from two messages
with different executed operations and attaches the required
data to the message (cf. Fig. 3e). While split divides one
operation graph and the required attached data of a message
into two separate messages (cf. Fig. 3h). Devices with knowl-
edge about how to analyze the data can delegate operations
to the network by adding required operations to the operation
graph (cf. Fig. 3g, white circles). A device can process or
operate on the data by performing a defined operation from
the operation graph and attaching the result to the payload
(cf. Fig. 3f, transition from white to black circles). Last but
not least, a device can delete the message from the network
by not forwarding it (cf. Fig. 3d). The described graph-
based operations define an entire set of how devices can
autonomously and piecewise process data in the network.

E. System Model for In-Network Processing

Here, we introduce the system model where our task-
oriented message template is used as a substrate for coop-
eration among the devices. The envisioned model does not
assume any specific requirements about the network or the
devices. The devices cooperate with each other in a self-
organizing manner. This is essential in ad-hoc intermittent
networks such as given in disaster scenarios. To organize the
in-network processing, we introduce four SOFD roles, namely
sensor (rs), operator (ro), forwarder (rf ), and delegator (rd)
(cf. Tab. III).

We now explain the dynamic roles and its associated mes-
sage abilities. A sensor node, i.e., this node takes the role
rs, has the ability of sensing which inherits the operations of
creating a new message and attaching collected information
or raw sensor data. Forwarder nodes - this is the basic role
rf of each node - have networking capabilities to receive



TABLE III: Definition of dynamic roles and the associated
message abilities of participatory nodes (termed SOFD)

Abbr. Role Abilities Description
rs (S)ensor Sensing = {C} Create messages with raw

sensor data attached
ro (O)perator Processing={UO} Execute operations on the

message’s data and update
the result

rf (F)orwarder Networking = {R} Read and forward the mes-
sage to its neighbors with-
out modifications

rd (D)elegator Controlling =
{UM ,UD ,US ,D}

Adjust the message, e.g.,
merge, delegate, split, delete

and forward messages to their neighbors. This includes the
parsing and reading of the message without modifying it for
effectively handling duplicated messages or messages with the
same processing or revision state. During the propagation of
messages, operator nodes are allowed to analyze the data
by performing operate on the operation graph. For that, an
operator node executes open operations from the operation
graph which this node is able to execute. The result of the
operations are attached to the message or added to the payload.
The used (raw) data required for the executed operations
are then removed when no other open operations require
these data. Thus, the message’s size is successively reduced -
assuming that the size of higher-level information is smaller
than the size of raw sensor data - to further reduce the
network traffic. Since the network can be highly dynamic, a
decentralized coordination is important. For that, we introduce
the delegator role rd. Nodes taking this role (e.g., rescuers
in disaster scenarios) know which analysis are required to
perform on these data and adjust the messages to delegate the
processing into the network. That implies that delegator nodes
control and manage the in-network processing by performing
merge, split, delegate, or delete on the message’s operation
graph.

In our system model, each node can autonomously decide
to dynamically take multiple roles based on its available
capabilities and current utilization. Such decisions can be op-
timized using heuristic and local optimization algorithms [18].
For security and trust issues of some scenarios, roles can
also be assigned in a static way to the participatory devices.
With the defined roles, our model allows a self-organizing
and distributed in-network processing in mobile ad-hoc mesh
networks with loosely connected devices.

IV. ONTOLOGY FOR IN-NETWORK PROCESSING

The cooperation of mobile devices like smartphones, au-
tonomous mobile robots, and stationary servers results in a het-
erogeneous landscape for in-network processing: devices differ
in their operating system, system architecture, programming
language, representation of information, tasks and goals. New
joining devices may also provide or use unknown operations
and representations. To overcome cooperation issues of het-
erogeneous networks, we incorporate a hierarchical ontology
(termed ICE Ontology [8]) in our message template to estab-

Scope

Representation

Composite
Representation

Basic
Representation

Operation

hasInput hasOutput

hasDimension

is a is ahas representation

Fig. 4: Classes provided by the top-level ICE Ontology

lish a common understanding and to enable interoperability.
The ICE Ontology, which is an extended version of the MUSIC
Context Ontology [19], provides a modeling vocabulary.

Figure 4 gives an overview of the ontology classes. The
structure of representations is modeled by the two classes
Scope and Representation. Scopes describe properties of enti-
ties, such as position, color, or state. Representations define
how the information are represented and are associated to
scopes by the hasRepresentation object property. For example,
a position can be represented as WGS84 coordinates or
as an address composed of street, house number, and zip
code. Representations are divided in Basic- and Composite-
Representations. Basic representations cover single valued
data types, such as integer, double, or string. Composite
representations describe a representation composed of multiple
dimensions. Each dimension is again a scope associated by the
hasDimension object property. This results in a hierarchical
definition of representations, where existing representations
can be used as building blocks. Operation describes compu-
tational processing of information in defined representations.
An operation can have multiple outputs with different scopes,
which is modeled by the hasOutput object property. Each
output has one fixed defined representation. In contrast, each
input of an operation can have a set of possible representations,
which is represented by the hasInput object property.

Using the described ontology, our task-oriented message
template benefits from several aspects: each node in the hetero-
geneous network can derive required knowledge for processing
the data from the ontology model, e.g., identifying similar
representations or operations, adding additional definitions
at runtime and connecting ontologies by so-called bridge
ontologies. However, the overhead of ontologies is one of the
major drawbacks. For that, only few nodes require to operate
on the ontology itself. All other nodes (e.g., sensor, operator,
or forwarder nodes) only need to use the Internationalized
Resource Identifiers (IRI) of supported operations and repre-
sentations. If most parts are known at the design time, which is
the case in some application domains like service robotic apps,
the ontology model can be replaced by a simpler taxonomy to
further save network traffic, i.e., representations and operations
can be identified by integer values instead of their IRIs.

V. EVALUATION

In this section, we evaluate our proposed message template.
We developed a reference implementation in Java, which is
portable to several platforms. In the following, we first evaluate



cr
ea

te
re

ad

m
er

ge

op
er

at
e

de
le

ga
te

sp
lit

de
le

te

-0.02

0

0.02

0.04
C

P
U

 l
o
ad

cr
ea

te
re

ad

m
er

ge

op
er

at
e

de
le

ga
te

sp
lit

de
le

te

0

2

4

6

M
em

o
ry

 [
M

B
]

cr
ea

te
re

ad

m
er

ge

op
er

at
e

de
le

ga
te

sp
lit

de
le

te

-50

0

50

100

P
o

w
er

 [
m

W
]

Fig. 5: Message overhead of graph operations for Nexus 5: (a) CPU usage, (b) memory usage, and (c) power consumption
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Fig. 6: Message overhead of graph operations for Raspberry
PI3: CPU load

the resource usage on different devices and platforms for
handling our task-oriented messages. Second, we assess the
feasibility of our approach in an indoor testbed with wireless
mesh nodes.

A. Message Overhead: Resource Usage

First, we measure the resource usage (CPU, memory, and
energy) of particular graph operations to assess the overhead
for processing our message template.

1) Experimental setup: We evaluate on two platforms: (a)
LG Nexus 5, and (b) Raspberry PI3. The Nexus 5 smart-
phone is equipped with 2.26 GHz quad-core 64-bit ARMv8
processor (Qualcomm Snapdragon S800), and 2 GB memory.
The operating system is updated to Android 7.0, namely
Nougat. The Nexus 5 is equipped with a 2,300 mAh Lithium
Polymer (LiPo) battery by default. The smartphone includes
all electronics required for measuring the battery voltage
and the current consumption of the device. The integrated
MAX170485 fuel-gauge chip4 provides high-accuracy voltage
measurements and battery level estimation. The resolution of
1.25 mV with an error of 7.5 mV enables to measure differ-
ences between graph operations. The Raspberry PI3 Model B
is equipped with 1.2 GHz 64-bit quad-core ARMv8 processor,
and 1 GB memory. The operating system is Raspbian 4.4.

Program profiling is an obvious approach for optimizing and
comparing systems. Thus, an implemented lightweight runtime
profiler4 (i.e., an app running in the background) measures

4https://github.com/Telecooperation/profiler-android (access.: 2016-12-01)

three metrics for our benchmarks: (i) CPU load, (ii) memory
usage, and (iii) energy consumption on the mobile device. We
choose a sampling interval of 300 ms for CPU and memory
monitoring, and a sampling rate of 50 ms - a good, empirical
determined balance between accuracy and CPU load - for
energy measurements.

For measuring, we disabled all unnecessary background
services and switched off the display of the mobile device.
We first run a 30-second baseline measurement to get the
default average resource usage of the operating system and our
profiler tool. Then, we execute each graph operation multiple
times on messages containing an operation graph with |V | = 5
and measure the above metrics for 10 seconds. We repeat this
measurement run 10 times. Finally, the resulting values of
these are averaged and cleaned by subtracting the baseline
values to reduce measurement errors.

2) Results: Figure 5 shows the resource usage for the
particular graph operations on the Nexus 5 smartphone. The
CPU load of the quad-core processor, which reflects the CPU
queue length and is a better performance metric than the
utilization [20], is vanishingly low (< 0.04) for all graph
operations (cf. Fig. 5a). Compared to the measured baseline
values of the Android system, no visible differences can be
seen. We repeated the same experiment on the PI3, which has
a slower CPU and less memory than the Nexus 5 (Fig. 6).
We see that the update operations (especially merge and split)
need the most computational resources. All in all, the CPU
load on the Raspberry PI3 is higher than on the Nexus 5 due
to the hardware differences, but is still very low (< 0.25).

Contrary to the CPU load, the memory usage can be
assigned exactly to an app. The usage of each operation is
lower than 6 MB for the given setup (cf. Fig. 5b). We see
that the create and update operations use more memory than
the read or the delete operations. The energy consumption is
also very low (< 100mW ) considering that the most complex
graph operation (merge) requires less than 500 ms (cf. Fig. 5c).

In comparison to the resource usage for sensing [21],
communication [22], and processing [2], the resource usage for
handling our proposed message template is nearly negligible.

B. Feasibility: Load tests
Second, we conduct load tests in an indoor testbed with

wireless mesh nodes to assess the feasibility of our approach.



Fig. 7: (a) Venue floor plan and deployment map of the indoor testbed consisting of 8 wireless mesh nodes, (b) snapshot of
the deployment, and (c) the wireless mesh node and its constituent components.

1) Experimental setup: The indoor testbed contains 8 wire-
less mesh nodes deployed at different locations on the same
floor of our building. Figure 7a shows the venue plan and the
deployment map. Each mesh node is installed on the wall or
on a truss directly below the ceiling (cf. Fig. 7b), and consists
of a Netgear GS108Tv2 router, a DeLock Splitter, an APU2
board, and a Raspberry PI3 Model B (cf. Fig. 7c). For our
evaluation, we only use two components of the mesh node: the
PI3 as computing unit and the router as networking device.

Forwarder rfSensor rs Operator ro Delegator rd

#1 #2 #3 #4 #5 #6 #7 #8

Fig. 8: Test chain with dynamic operator role assignments

Figure 8 shows the topology chosen for our experimental
setup. We choose a chain, which is a special case of a mesh
network, to avoid side effects, to reduce measurement errors,
and to get reproducible results. In addition, we assign the
sensor and delegator role statically to the first two nodes. The
next five nodes can take the operator role depending on their
utilizations. The last node collects and consolidates the results.
All nodes take at least the forwarder role to forward messages.
We further synchronize the clock of all nodes via NTP (Net-
work Time Protocol) for measuring purpose. Considering the
disaster scenario example, a rescuer (taking the delegator role)
gets raw sensor data collected by victims’ smartphones (taking
the sensor role). While the rescuer has knowledge about the
required information, he is not able to analyze all received
data with his resource-limited mobile device. Therefore, he
delegates the processing into the network. Civilians (taking
the operator or forwarder role) can then process the data and
forward the result back to the rescuer.

To show the feasibility of such a scenario, we evaluate our
approach with load tests and compare the results against two
baseline settings: (B1) the sensor node collects and evaluates
the raw data; the node only forwards the results to the network
(local processing). (B2) the sensor node collects and forwards
the raw data to the network. Nodes interested in the analysis
results have to process the raw data by their own (similar
to a centralized approach). Our approach aims for finding
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Fig. 9: Outgoing network traffic (= sum of message sizes) per
node within our test chain using 20 simultaneous messages

a trade-off between these two by processing the data in
the network. We conduct small load tests with 5, 10, 15,
and 20 simultaneous messages. Based on simple heuristics
(50%, 75%, 100% utilization), the operator nodes only act as
forwarder. To compare the settings, we measure two metrics:
(i) network traffic per node, and (ii) overall completion time.
Each setting is repeated 5 times to reduce measurement errors.

2) Results: Figure 9 shows the results of the outgoing
network traffic of 20 simultaneous messages for each node.
As expected, the network traffic of baseline B1 is rather low
(lower bound) since the first node collects and evaluates the
data by its own and only forwards the result (cf. Fig. 9a). In
contrast, baseline B2 has the highest network traffic (upper
bound) since the raw data needs to be forwarded through the
entire chain. In comparison to the baselines, our approach
distributes the computational load among the network (cf.
Fig. 9b-d). If the nodes use the 50% utilization heuristic,
the first three operator nodes (#3, #4, #5) evaluate most of
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Fig. 10: Completion times of two baselines (B1, B2) and our
approach with different utilization thresholds

the messages since the outgoing data is markedly decreased
at node #5 (cf. Fig. 9b). Using 75% and 100% utilization
heuristics, the first operator node process more messages, thus,
the network traffic is decreased earlier (cf. Fig. 9c-d).

In addition to low network traffics, short completion times
for analyzing the data are desirable. Figure 10 shows the
completion time results for our test settings. In case of low
load (i.e., 5 messages), we can see that the completion time
is nearly the same for our approaches and the baselines.
However, the performance difference gets visible for higher
loads: our proposed approach - independent on the utilization
heuristic - outperforms the baselines since it balances the work
load for a particular node in a self-organizing way.

In conclusion, our self-organizing approach finds a better
tradeoff between network traffic and completion time than the
baselines by using in-network resources based on their load.

VI. CONCLUSION

In this paper, we presented an adaptive task-oriented mes-
sage template (namely ATMT) that enables cooperative in-
network processing for heterogenous mobile devices in a
decentralized ad-hoc network. Utilizing our proposed template,
no additional synchronization overhead (e.g., control informa-
tion) is required since the message contains the operations
that need to be executed and the required data. In the first
evaluation, we showed that the message overhead and the
additional resource usage to handle messages are negligible.
We also assessed the feasibility of our approach in an indoor
testbed with 8 nodes. Our results show a self-organizing in-
network processing approach to reduce network traffic and
utilize computational resources in mobile ad-hoc networks.
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