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Abstract—Hand gestures play an important role in human
communication, particularly when auditory communication is
limited. Akin to speech recognition, hand gesture recognition
can therefore be a useful tool to facilitate communication and for
more immersive computer interaction. In this paper, we examine
the mobile recognition of hand gestures using data recorded with
sensor gloves. We design a system based on Support Vector Ma-
chines (SVM), capable of recognizing 5 different hand gestures.
In an experiment with 11 participants, we determine applicable
hyperparameters based on performance on the training set which
translates into 100% classification accuracy on the test set. In an
additional practical experiment with 9 participants, our system
achieves up to 98% in a personalized and up to 87.5% in a
generalized model setting.

Index Terms—gesture recognition, wearable, machine learning,
data glove, support vector machine, rock-paper-scissor

I. INTRODUCTION

Gestures - especially hand and finger gestures - are an
essential part of our human communication. They help us to
express thoughts and feelings and also visually support our
spoken language. With the help of sign language, it is even
possible to express whole sentences with gestures only.

As a form of communication, gestures also play an in-
creasing role in Human-Computer-Interaction (HCI). Wipe and
touch gestures are already well established in the field of
smartphones and tablets.

With the spread of Virtual Reality (VR) and Augmented
Reality (AR), the desire to dive deeper into the virtual world is
also growing. An essential part of this is a more intuitive way
of interaction. Modern controllers and other input devices are
mostly limited to motion sensors, joysticks and buttons. This
restricts the user’s input possibilities since intuitive operating
options are lacking. However, the hand and finger gestures
often used in everyday life have not yet been able to establish
control of a technical device. The reason for this is the diffi-
culty of reliably recognizing and distinguishing the different
gestures and hand movements with conventional approaches.

The focus of this paper is on gesture recognition using a
data glove. As an example, we have decided to implement
the well-known game of rock paper scissor. Fig. 1 shows the
gestures used by us including two additional gestures well and
match.

Fig. 1. Rock paper scissor game with additional gestures for well and match

II. BACKGROUND & RELATED WORK

To recognize hand gestures, we first investigate which
hardware is suitable to capture gestures for our purpose. Then,
related works with the same hardware are examined to choose
the appropriate machine learning approach to classify the
gestures.

A. Gesture capturing

Approaches to capture gestures can be divided into two
types: Vision-based and sensor-based approaches [1]. Since
we want to achieve a mobile approach with a high degree of
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suitability for everyday use and for reasons of data privacy, we
decided against an external observer like a camera. Therefore
we will focus on a sensor-based approach in form of a data
glove, due to their good availability.

Individually developed devices with sensors are a less
frequently used method to obtain data on the current hand and
finger positions. These devices are developed specifically for
each project and are therefore costly and time-consuming in
both development and production. An alternative is offered
by various data gloves, which are commercially available,
especially in the field of VR.

The data gloves used for this work are the Senso Glove:
DK2 from Senso Device Inc1. By using 8 Inertial Measurement
Units (IMUs) and two magnetometers per glove, it offers the
possibility to detect hand and finger movements accurately
and cameraless. Fig. 2 shows the Senso Glove with 5 IMUs
mounted on the middle phalanx of each finger. An additional
second one on the thumb is located a bit lower because the
human thumb has more freedom in its movement than the
other fingers such that there are two sensors needed to provide
accurate information. As for the back of the hand and the wrist,
there is one IMU sensor located at each of those as well.

All of the 8 sensors measure the current orientation of their
respective part of the hand precisely through a combination of
accelerometers and gyroscopes. The sensors on the wrist and
the palm also contain a magnetometer, whose values can be
accessed as well. All sensors provide data at 10 Hz. The exact
type of data can be found in the later part (see Section III-A)
of this paper.

Fig. 2. Data glove used in this work: Senso Glove DK2

B. Gesture recognition using data gloves

Ma et al. have investigated different approaches to classify
finger gestures with the help of a custom-designed data glove
[2]. The glove uses flex sensors to measure the bending of each

1https://senso.me (Last visited on 30. November 2020)

finger and one IMU to measure the rotation and acceleration
of the wrist.

Five different methods were compared for the classification:
Feed-forward Neural Network (FNN), SVM, k-Nearest Neigh-
bor (KNN), Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU). The last two methods used the data
without feature extraction.

For the evaluation, data were collected from 10 people who
bent each finger one after the other, resulting in 5 very simple
finger gestures. The obtained sensor data was first segmented
to determine the beginning and end of a gesture and then
features were extracted.

The comparison showed that the 4-layer FNN had the
highest accuracy of 94.3%, followed by the SVM with an
accuracy of 89.3% and KNN with an accuracy of 85.4%. The
two methods without Feature Extraction performed by far the
worst with accuracies of only 37.1% and 38.4%.

Plawiak et al. investigated hand gesture recognition using
the commercial data glove DG5 VHand from DGTech Engi-
neering Solutions2 with different classifiers [3]. This glove
uses a bending sensor for each finger and measures the
accelerations of the hand for each axis as well as the angular
accelerations for roll and pitch.

Data were collected from 10 people performing 22 hand
body language gestures, each of them 10 times. Examples of
gestures were the common “okay” gesture and the gesture of
cutting a sheet of paper with two fingers.

The classification was performed using 3 different methods:
Probabilistic Neural Network (PNN), SVM and KNN. Param-
eters for SVM were optimized by using a genetic algorithm,
parameters for the other two methods were optimized manu-
ally.

The result of the evaluation shows that the use of a SVM
with hyperparameter optimization gave the best results, with
an accuracy of 98.32%, followed by KNN with 97.36%.

A paper that used a self-developed data glove for the
recognition of rock paper scissor gestures was presented in
2009 by Kim et al. [4]. The data glove contained 3 3D-
accelerometers which were attached to the thumb, middle
finger and back of the hand.

The recognition of the gestures was purely rule-based.
Beginning with a starting position, rules were developed as
to how the signals of the 3 acceleration sensors must behave
to recognize the gestures.

Using this recognition method, the authors achieved an
accuracy of 100% for each gesture. Each gesture was executed
50 times.

In another paper, two different static gestures were recog-
nized in real-time with a data glove [5]. They used the same
data glove as in our approach and also SVM for classification.
After training their model with a total of 100 samples for each
gesture, an accuracy of, on average, at least 89% could be
achieved.

2http://www.dg-tech.it/vhand3/products.html (Last visited on 30. November
2020)
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C. Gesture classification

The classification algorithm provides the foundation for the
planned hand and finger gesture recognition. The final goal
is to create a model that is trained by a given amount of
training data. Algorithms from supervised learning create a
mathematical model from given training data [6]. During the
learning process, an attempt is made to learn the relationships
and rules of the training data and to represent them in
the model to be able to distinguish new data according to
these if possible. Therefore, algorithms of supervised learning
represent a suitable selection for our specific case.

Due to the low complexity of the problem of hand gesture
recognition as well as the comparatively small amount of
available training data, a method has to be chosen which
provides satisfactory accuracy despite these two points. The
methods KNN and SVM have already been used in several
papers with good results as shown in II-B. Some papers
also implemented more than one classification algorithm and
compared their achieved accuracies. When using a data glove,
the trend can be seen that a SVM achieves the highest accuracy
among the two classification algorithms mentioned above.

Support Vector Machines (SVM) were introduced in 1964
by Vapnik and Chervonenkis [7] and can separate a set of
data into two different classes. Therefore the data are mapped
in vector space. The SVM then generates a hyperplane that
separates the data of both classes. The hyperplane is chosen
to maximize the margin to the next element of each class.
Unknown data can now be represented in vector space and
assigned to one of those two classes. Fig. 3 shows this
approach.

Fig. 3. OSH: Optimal separating hyperplane. By maximizing the margin
between data of both classes, the error rate of classifying unseen data can be
minimized [8].

Since data are not always linearly separable, Cortes et
al. have introduced soft margins in 1995 [9]. This can be
seen as an aberration around the hyperplane, where no clear
assignment is possible. Also by using soft margins, a generally
high separability of the data must be available.

The “kernel trick” is typically used to improve classification
of data that cannot be separated linearly without errors. With

this method, the vector space is transformed into a higher-
dimensional space to perform a linear separation by a hyper-
plane [10].

In order to separate more than two classes, a combination
of multiple SVMs can be used. Among the various ways to
combine SVMs, the most commonly used methods are One-
against-All [11] and One-against-One [12].

With One-against-All one classifier is trained for each class,
which separates whether the data belong to the considered
class or not, thus k classifiers. With One-against-One each
SVM should be able to separate a pair of classes and is trained
only with the data which belongs to either of it’s both classes.
For each combination of classes there is one SVM, thus k(k−1)

2
classifiers. To classify new data, each SVM is applied to the
data and gives a “point” to the class that it predicts such that
the class with the highest score will be the final classification.

To choose between these methods, we refer to two different
papers. The first paper is from Hsu and Lin [13] which
compares different methods for multi-class SVMs, including
both methods in question. They showed that the method One-
against-One had both the highest accuracy and the lowest
training duration. All other methods that were compared in
addition to the two methods mentioned above performed much
worse. The second comparison is from Milgram et al. [14],
who compared the two methods in question in a handwriting
recognition scenario. As for their results, they state that both
methods performed about the same, but the training process
using the One-against-All method took much longer than with
the One-against-One method.

III. TOWARDS DATA ACQUISITION AND PROCESSING

A. Data acquisition and preprocessing

The Senso Glove: DK2 provides its data via one of the two
plugins for Unity and Unreal Engine 4 or directly through
a custom program that makes use of the network protocol
documented on their website. In our case, we use the provided
plugin for the Unity engine.

For both, the training data and the test data, the users were
instructed to perform the gestures as shown in Fig. 1. The
rotation and position of the hand, as well as the body, were
not specified. Also, which hand (left or right) should be used
was not specified. These decisions were based on the fact
that gesture recognition should be as natural and universal as
possible, i.e., that the players should be given as much freedom
as possible in executing the gesture.

This also includes potential arm movements during execu-
tion a gesture. To minimize their influence, the data were not
recorded over a period of time but at a fixed point in time.
This point in time was announced to the test person via a
countdown and conveyed via visual and haptic feedback.

As mentioned before, the glove itself has 8 IMU sensors,
located at the fingers, the back of the hand and the wrist.
Table I provides an overview of all values that are accessible
through the Unity plugin that is being used in our application.
Additionally, the values that will be used for the actual gesture
recognition are marked. As shown there, we only use the
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values that come from the sensors on the fingers. The main
reason for this is that the finger values provided by the
glove already represent the local orientation and position of
the fingers, meaning that the processor on the glove already
converts the global values that an IMU sensor usually provides
into local values using the information from the palm and
wrist. As a result, the values are independent of the rotation
and position of the hand itself and thus the sensor values for
the palm and the wrist are not needed to classify the gestures.

TABLE I
OVERVIEW OF AVAILABLE AND USED SENSOR VALUES

Value Datatype Used
∑

Floats
Thumb Angles Vector2 3 2

Thumb Quaternion Quaternion 3 4
Thumb Bend Float 3 1

Index Finger Angles Vector2 3 2
Middle Finger Angles Vector2 3 2
Ring Finger Angles Vector2 3 2
Little Finger Angles Vector2 3 2

Palm Position Vector3 7 3
Palm Rotation Quaternion 7 4

Palm Magnetometer Vector3 7 3
Wrist Rotation Quaternion 7 4

Wrist Magnetometer Vector3 7 3

Since the glove provides the sensor data as already pre-
processed digital data (refer to Table I), there is very little
data preprocessing required from our side. Every value can
be split up into individual floating-point numbers, resulting in
15 of those every 100 ms as input data for the classification
algorithm. The only preprocessing we add is a linear scaling of
the data, as this is highly recommended when using a support
vector machine (see Section III-B) for classification [15]. We
use a min-max-scaling to scale the range of our data to [−1, 1].

Let D be a data set containing n points
(~x1, y1), . . . , (~xn, yn), each point for one static gesture
yi. For every feature xi ∈ ~x, which represent the used sensor
values from Table I, there is a maximum and a minimum
value xmax and xmin in this data set, using which we scale
the data as follows:

fscaling(x) = 2
x− xmin

xmax − xmin
− 1 (1)

The values xmin and xmax from the training data are saved
in a file and later used to scale every new data point that will
be classified because we need the scaling of the training data
and new data to be the same.

B. Data processing through SVMs

To classify the different gestures, a robust and reliable
classification method is needed. In this paper, we decided to
use a c-classification SVM, which has proven to be a good
algorithm for gesture recognition in various other research
papers. As our data will not be linearly separable, the so-
called kernel trick is needed to use a support vector machine
for our data. In our case, we chose the radial basis function
kernel defined as:

K (xi,xj) = exp
(
−γ ‖xi − xj‖2

)
, γ > 0 (2)

This decision is based upon a comparison of four different
kernel functions (Radial Basis Function, Linear, Polynomial,
Sigmoid) in a paper from Hsu et al. [15], which showed that
the radial basis function kernel shall be used in almost any
given scenario except for when the amount of features is much
less than the amount of instances or if both amounts are very
high. Seeing that neither is true in our case, we stick to the
recommendation of the radial basis function kernel.

Additionally, a method is needed to make the SVM al-
gorithm usable for more than two classes (gestures), since
standard SVMs only allow the classification of two different
classes. Based on the aforementioned two comparisons (II-C),
we use the One-against-One method as follows:

Assuming we have k = 5 different gestures, we train
k(k−1)

2 = 10 different SVMs, where each one shall differen-
tiate between a pair of gestures. During the training process,
each SVM is only trained using the data from either of its
classes.

As recommended by Hsu et al [15] the SVM hyperparame-
ters C and γ will be finally optimized with a hyperparameter
optimization using the grid search algorithm with the discrete
values:

C = 2−5, 2−3, . . . , 215

γ = 2−15, 2−13, . . . , 23
(3)

For the implementation of the SVM we used the open source
machine learning library LIBSVM [16].

IV. EXPERIMENTS

To reliably assess our system’s performance across multiple
users, we recorded gesture data for 11 people between 20 and
54 years old, under the conditions already mentioned before.
Each person was told to conduct each of the 5 gestures 10
times, resulting in a total of 550 data samples, 50 for each
person and 110 for each gesture class.

Before conducting the hyperparameter optimization and
training our model, we removed one randomly chosen partici-
pant’s data from the data set to form a test set. The remaining
data in the data set then form the training set of our model.
Therefore, the performance on the test set indicates how the
system performs for a new user, i.e., a user whose data hasn’t
been seen by the system during training.

Fig. 4 shows the classification accuracy of the model
for different values of C and γ and during hyperparameter
optimization. Each value represents the mean accuracy for one
10-fold cross-validation. Other measures such as the F-score
are omitted here as we have an even class distribution and
prioritize each class equally.

It can be seen that a large number of different hyper-
parameter combinations allow for classification accuracy of
100%, usually suggesting potential overfitting to the training
set. If this were to be the case, we would expect that models
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trained with these hyperparameters on the training set perform
significantly worse on the test set. We could not, however,
observe this behavior on our test set. Whereas models trained
with hyperparameters netting below 100% accuracy during
cross-validation would perform very erratically on the test set,
the 42 models with 100% accuracy during cross-validation
also netted 100% accuracy on the test set.

Fig. 4. Cross validation accuracy during hyperparameter optimization for
different values of C and γ.

To examine whether these results would hold up in practice,
we conducted another experiment during which 9 people, 4 of
which had not previously participated when collecting training
data, were told to freely play 20 games of rock paper scissor
each while wearing the data glove. After each round, the
participants wrote down which of the 5 gestures they had
intended to do. We then compared their intended gestures to
those predicted by our model which had 100% accuracy during
cross-validation and on the test set.

For the 5 people who had already participated during the
collection of training data, 98 out of 100 gestures (98%) were
correctly classified, with well being wrongly classified as stone
twice. For the 4 people who had not previously participated,
70 out of 80 gestures (87.5%) were correctly classified, with
the match gesture being classified as another gesture 6 out of
20 times.

V. DISCUSSION

Whereas our initial experiment suggested that a 100%
classification accuracy would be feasible even for people
with no previously by the model seen data, the follow-up
experiment confirmed our suspicions that this would not hold
true in practice. We suspect that this is due to at least two
different factors.

First, we expect the recorded data to differ on a per-user
basis, depending on both the user’s physique (height, muscu-
larity, flexibility) and how they perform each individual gesture
(speed, orientation, extent). The model will only generalize
well to new people, i.e., people for which no training data
exists, if the training data includes data from people with
similar characteristics.

Second, we expect the recorded data to differ on a case-
by-case basis since users are likely to perform the same
gesture slightly differently based on their current situation. For
example, a gesture in rock paper scissor may be performed
differently if the user decides to change the gesture at the
last moment. This may also play a large role in other use
cases such as fitness where exhaustion can vastly affect how
an exercise is performed.

Overall, our results match related work in that SVMs appear
to be well suited to classifying hand gestures recorded with
data gloves. Directly comparing our model’s performance to
models in related work, however, seems disingenuous to us
since we could not confirm our initial experiment’s 100%
accuracy in a practical setting. In the future, we would like
to further evaluate the applicability of SVMs in hand gesture
recognition for larger and more diverse sets of users and for
more complex problems such as sign language detection.

VI. CONCLUSION

In this paper, we have shown the applicability of SVMs
to data glove based hand gesture detection with 5 different
gestures. In a practical scenario, we were able to achieve 98%
accuracy for whom there was data in our training set and
87.5% accuracy otherwise.

We expect future work in this area to look into how such
systems can be utilized for more complex detection tasks
such as detecting sign language. In such a scenario, it would
also be interesting to incorporate additional sensors or more
complex models to also detect the hand position as well as
full movement patterns.
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