
Multimedia Systems manuscript No.
(will be inserted by the editor)

Enabling Resilient P2P Video Streaming: Survey and
Analysis

Osama Abboud · Konstantin Pussep

Aleksandra Kovacevic · Katharina Mohr

Sebastian Kaune · Ralf Steinmetz

Received: date / Accepted: date

Abstract Peer-to-Peer (P2P) techniques for multime-
dia streaming have been shown to be a good enhance-
ment to the traditional client/server methods when try-
ing to reduce costs and increase robustness. Due to the

fact that P2P systems are highly dynamic, the main
challenge that has to be addressed remains supporting
the general resilience of the system. Various challenges

arise when building a resilient P2P streaming system,

such as network failures and system dynamics. In this
paper, we first classify the different challenges that face

P2P streaming and then present and analyze the possi-
ble countermeasures. We classify resilience mechanisms
as either core mechanisms, which are part of the sys-
tem, or as cross-layer mechanisms that use information

from different communication layers, which might in-
flict additional costs. We analyze and present resilience
mechanisms from an engineering point of view, such

that a system engineer can use our analysis as a guide
to build a resilient P2P streaming system with different
mechanisms and for various application scenarios.

1 Introduction

Peer-to-Peer (P2P) video streaming is becoming increas-
ingly popular as it not only helps in reducing costs and
flash crowd sensitivity, but also allows for new innova-

tive applications such as social networking and support
for user-generated content. Therefore, a vast variety
of P2P video streaming systems have been developed.

Video streaming applications include both client-server

Multimedia Communications Lab, Technische Universitaet

Darmstadt, Rundeturmstr. 10, 64283 Darmstadt, Germany

E-mail: {abboud, pussep, sandra, mohr, kaune,
steinmetz}@kom.tu-darmstadt.de

based approaches, such as YouTube1, and P2P-based
appraoches, such as Zattoo2, PPLive3, Octoshape4, and
CoolStreaming [1] to name a few.

Traditional client-server based technologies offer the

possibility to provide good performance and high avail-

ability rates. However, those approaches usually inflict

high deployment and maintenance costs. The current

estimation of YouTube’s costs is 1 million dollars per

day [2] and these costs could increase drastically if more

videos continue to be switched to higher qualities. There-

fore, various P2P streaming systems have been pro-

posed to enable live and Video-on-Demand (VoD) stream-
ing to large audiences with better video quality at low
deployment and server costs [3]. Furthermore, utiliza-

tion of the P2P paradigm yields several advantages,
such as inherent bandwidth and resource scalability,
network path redundancy, and self organization [4,5].

Unfortunately, these advantageous properties come

at a cost. P2P systems are dynamic and heterogenous
by nature and, therefore, introduce many challenges
and problems, especially for resilience. Peers with weak
resources are usually unable to actively participate in

systems, as those systems usually apply a static selec-
tion of streaming parameters based on average peer re-
sources [6]. Furthermore, a lack of coordination makes

the deployment of efficient P2P streaming systems chal-
lenging. This problem is worsened due to low system
stability and churn, which refers to peers joining and

leaving the network unpredictably.

Due to these issues, the deployment of mechanisms
to overcome the effects that errors and failures have on
the streaming quality, is an exigency. This survey aims

1 YouTube, http://www.youtube.com
2 Zattoo, http://www.zattoo.com
3 PPLive, http://www.pplive.com
4 Octoshape, http://www.octoshape.com

rst
Textfeld
Osama Abboud, Konstantin Pussep, Aleksandra Kovacevic, Katharina Mohr, Sebastian Kaune, Ralf Steinmetz:Enabling Resilient P2P Video Streaming: Survey and Analysis. In: Multimedia Systems, vol. 17, no. 3, p. 177-197, June 2011. ISSN 0942-4962Tobias Ackermann, André Miede, Peter Buxmann, Ralf Steinmetz:

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

at providing an overview of the problems that current
deployments face, and how resilience against various
types of problems can be achieved. The main contribu-
tion of this paper is that it can be used as a reference by

system developers. Therefore, a resilient P2P streaming
system can be developed by choosing resilience mech-
anisms from the choices that we present, analyze, and

discuss in this paper.

The rest of the paper is organized as follows. Sec-
tion 2 provides background knowledge on P2P video

streaming, then in Section 3 we define resilience with
a discussion on the different challenges that arise when
building a resilient P2P streaming system. Resilience
mechanisms are classified either as core or cross-layer

mechanisms. The first class is described in Section 4
with emphasis on the different possible overlay topo-
logies. The second class of mechanisms is presented in

Section 5 with discussions on how to utilize information
from different communication layers to enhance the re-

silience of the system. Finally, in Section 6 we present a
discussion and conclusion on the presented mechanisms

and their combinations.

2 Background

Videos can be provided either in the download mode or
in the streaming mode. While in the download mode,
videos can be played only after they are completely

downloaded, streaming refers to play-out during down-
load. Therefore, streaming allows for lower waiting times,
as playback can start as soon as the playback buffer is

full. This, however, introduces stringent timing require-
ments for the streaming application. Since video pieces -
which are small video transmission units - are not useful
if they are not received on time, the network architec-

ture and mechanisms must be carefully chosen in order
to ensure that bandwidth, delay, and loss requirements
are fulfilled.

The focus of this paper is on P2P systems, as they
provide advantageous properties such as self organiza-
tion and resource scalability. Other benefits are dis-

tributed storage space, a large amount of resources for

computation, and redundancy of network paths. This
all leads, with the adequate distributed techniques, to
a performant and robust video delivery. High costs due

to bandwidth needs at the server are a major draw-
back of client-server architectures, as this leads to ex-
treme costs for scalability. With an increased number of

clients the required bandwidth grows proportionally [3].
Therefore, P2P techniques aid the relaxation of band-
width burdens placed on servers, as peers act both as
providers and consumers, making it possible to provide

low cost video streaming services [7].

3 Resilience

Resilience is not only a computing related term, but is
also used in social psychology, material science as well
as in ecology, business, and industrial safety. In all pre-
viously mentioned domains the general definition holds,

namely the ability of effective accommodation to un-
predictable environmental disturbances. Although re-
silience is mostly used interchangeable with fault tol-

erance, it can also be used to describe dependability

and robustness. A definition of resilience is given in
[8], namely: ”The persistence of avoiding too frequent
or severe failures in the presence of changes”. Changes

can, therefore, be classified by their nature, their pre-
dictability, and their timing. A system can be denoted
as resilient, if it has the ability to sustain a specific level

of service quality even in the face of a certain amount
of failures.

Resilience is of significant importance for P2P stream-
ing, since perceived media quality suffers noticeably

upon failures [9]. In addition, P2P streaming appli-
cations are built on top of communication infrastruc-
tures and, therefore, failures in the underlay network

also have an adverse impact on the performance of the

streaming system. The term failure, in this context, in-
cludes complete failures such as a peer getting discon-
nected from the network, or partial failures such as a

sudden drop in download throughput.

3.1 Challenges

Deployment of P2P-based media streaming systems en-
tails several challenges. To start off, a main challenge is
the required timing constraint. This stems from the fact

that, unlike in file-sharing applications, video files are
directly played-out while they are being downloaded
[10]. Therefore, pieces, which are received after their

play-out time, degrade user experience. This degrada-
tion is visible either as missing frames or as a playback
stop, which is also denoted by stalling. Both loss and de-

lay of pieces can cause this problem. While redundancy
schemes might be suitable for streaming because they
do not require further communication between sender
and receiver, retransmission might not be possible, be-

cause of the strict timing requirements.

In addition, peers have limited upload capacities,
which stems from the fact that the Internet (especially

last mile connections) was designed for the client/server

paradigm and applications. Additionally, peers are re-
siding at the edge of the network, which leads to sub-
optimal utilization of P2P resources due to traffic ag-

gregation and makes it difficult to utilize all of a peer’s

2

download capacity [11]. Due to the limited upload ca-
pacities, it might not be possible for a single peer to uti-
lize all of its download capacity for receiving a stream
from a single peer. Therefore, a set of serving peers -

that are dynamic - is required for video delivery, lead-
ing to a higher degree of dynamics in the system. Fur-
thermore, peers are heterogenous with various classes

of bandwidth capabilities, therefore, accommodation of

streaming bit-rates for the whole topology is necessary.
Differences in bandwidth can be static, caused by dif-

ferent link capacities, as well as dynamic, which can be
network-induced.

Additionally, streaming systems suffer from packet

drop or delay due to network congestions. While ad-
dressing these challenges, the proper choice of stable
and reliable neighbors for delivery at the overlay plays
a significant role. As churn might be frequent in stream-

ing systems, it remains a challenging task to ensure that

peers retain connectivity to be able to cope with a cer-
tain amount of failures.

3.2 What Affects Resilience of P2P Streaming

Systems?

To better understand the challenges of achieving a re-
silient P2P streaming system, we classify those chal-

lenges according to where they occur in the communi-

cation layers. In the context of P2P systems, the rel-
evant communication layers are: underlay, overlay, ap-

plication, and user layers.

The most important layers in a P2P streaming sys-

tem are the underlay and overlay. An overlay is de-

fined as the virtual network that is constructed over
the physical network (called the underlay). An under-
lay abstracts all lower layers in the traditional network

layer model. An overlay layer could also be used to in-
troduce new mechanisms to ensure resilience such as
building different links between peers.

Table 1 shows how resilience is affected starting from
the underlay, to the overlay, going through the applica-
tion layer towards the user layer. Additionally, Figure 1

depicts the mentioned challenges within a sample net-
work consisting of two connected Autonomous Systems
(AS).

User Free riding, malicious behavior

Application Costs, buffering policy, strict timing
requirements

Overlay Peer failures, churn, neighbor selection

Underlay Heterogeneity, limited resources, throughput,

packet loss, packet delay, jitter, congestions

Table 1 How resilience is affected at different layers.

X Packet delay,
throughput

Peer failure

XCosts

Free ridingLink failure

Packet loss

AS
1 AS

2

Fig. 1 Resilience of P2P video streaming systems can be affected

by various aspects of different communication layers.

3.2.1 Underlay Layer

Just like classical communication networks, P2P sys-

tems suffer from structural failures at the network core
of the underlay network. Performance, as perceived at
the edge of the network, is characterized by certain
throughput, packet loss, packet delay, and jitter. Prob-

lems at the underlay can result from breakdown of links,
routers, or other neighboring peers. Then, data often
cannot be transferred at all or has to take a different

and more costly path from sender to receiver. Also con-
gestion arises when the load is placed on the network
exceeds the capacity of the network, leading to packet
loss. Another issue for resilience at the underlay layer

is resource limitation and heterogeneity. Nowadays, de-
vices with various resources are joining P2P streaming
systems. For these devices, resources such as upload and

download bandwidth or storage space, can be limited or
expensive. For example, the storage space might affect

how many pieces can be buffered, whereas low band-

width capacities might lead to pieces being dropped,
while sending or receiving. This all puts restrictions on
possible contribution from those peers.

3.2.2 Overlay Layer

Resilience in P2P systems is not only affected by the

above mentioned issues at the underlay, but also by peer

dynamics at the overlay. In P2P systems the network

is very dynamic, therefore, the availability of content

varies frequently as peers leave and join the network.

Peers can depart from the overlay network gracefully, or

they can fail, which also causes the breakdown of over-

lay links. Due to these network dynamics, re-routings

might be necessary, leading to an increase in packet de-
lay. Also the overlay network can become partitioned if
a great number of links break down [9]. Furthermore, if

neighbors are not selected properly, this can also have
adverse effects on resilience. For example, the selected

3

neighbors can be unreliable or the distance between
peers can be large, which causes an increase in required
transmission time [12].

3.2.3 Application Layer

At the application layer, resilience can be affected by
network aspects or the streaming policies. Network as-

pects are mainly costs of communication between dif-
ferent Autonomous Systems (ASs) and Internet Service
Providers (ISPs) [13]. Since P2P increases the inter-
domain traffic and, therefore, creates large costs for

ISPs, they might place restrictions on the traffic to
limit the impact on their costs. Thereby, the transmit-
ted amount of data would be forcefully reduced, packets

would be dropped, and perceived video quality would
degrade.

An example of application layer policies that affect
resilience is the buffering policy. If pieces, which will

soon be needed for play-out, are received too late, there
will be stallings or disruptions in the video play-out.
The pieces would have to be retransmitted, which would

lead to higher bandwidth usage and increased delay.

3.2.4 User Layer

Another problem for resilience but at the user layer is

how to counter free riding. Free riders aim at utiliz-
ing system resources without actually contributing to
other peers. When designing solutions to hinder free

riding one has to keep in mind, that there are peers,
which have only limited upload bandwidth and, there-
fore, cannot contribute to a large extent. Also malicious

peers pose a problem. They are likely to send no or even
corrupted pieces.

It is worth mentioning that to effectively address a
certain challenge at one layer, a tradeoff has to be made

in order to calibrate the system and avoid performance
degradation at a different layer. For example, to counter
piece loss, a system designer can increase the amount of

redundancy added to a stream allowing more resilience
against packet loss. However, this comes at the cost of
higher bandwidth requirements. Therefore, a tradeoff
between the amount of required redundancy and band-

width requirements has to be made.

3.3 Resilience Mechanisms

The literature on how to introduce resilience to P2P
video streaming is vast. Within this paper we classify
these mechanisms either as core or cross-layer mech-

anisms. A classification of the different mechanisms is
presented Figure 2.

Overlay

Underlay

Topology: Tree, Mesh, Hybrid

Multipath Streaming

Scheduling Algorithms

Retransmission

Core MechanismsCross-layer Mechanisms

Media Coding

Network Coding

Error Control

Incentive Mechanisms

Underlay Awareness

User

Application

Fig. 2 Classification of resilience mechanisms grouped as core
and cross-layer mechanisms.

3.3.1 Core Mechanisms

Core mechanisms are building blocks that have to be in-

cluded in the system. Therefore, they constitute the de-

sign decisions a system designer has to make. For exam-

ple, there exist various streaming topologies that can be
used each affecting resilience differently. Possible topo-
logies include tree, mesh, and hybrid. Additional core

mechanisms include: multi-path streaming, scheduling

algorithms, and retransmission. Since in this paper we
focus on P2P video streaming, only core mechanisms at

the overlay layer are of interest. Core mechanisms are

presented and analyzed in Section 4.

3.3.2 Cross-layer Mechanisms

Cross-layer mechanisms can be applied to further en-
hance resilience. Cross-layer in this context means that

different algorithms with information available at dif-
ferent communication layers would interact to bring

more benefits and resilience to the streaming system.
First, incentive mechanisms are cross-layer approaches

between the user and overlay layers. Second, underlay
awareness is a cross-layer approach between the under-
lay and overlay. Interaction between the overlay and

application layers gives the possibility to add various
resilience mechanisms, such as: media coding, network
coding and error control. Cross-layer mechanisms are
presented and analyzed in Section 5.

4 Core Mechanisms

Core mechanisms constitute core functionalities that
have to be there in any P2P streaming system. The
most influential core mechanisms and which will be the

focus of this section are topologies, multi-path stream-
ing, scheduling algorithms, and retransmission.

4

Topologies are the focus of research when it comes to
P2P streaming. Two basic delivery topologies have been

proposed: tree and mesh. For both, adaptive and robust

streaming strategies are necessary to handle dynam-

ics and unreliabilities in the system. After we present

those basic topologies, we present how combining both

of them into one hybrid topology can bring more re-

silience to the streaming system.

4.1 Tree Topologies

In tree topologies, peers can be arranged as a single tree
or in multi-trees. Video packets are then disseminated
to all peers by making every peer actively push video

packet to its child peers [3].

While single tree topologies have advantages such
as easy implementation, there exist several shortcom-

ings as described in the following subsection. Ghoshal

et. al state in [16] that there is a need for additional
algorithms to overcome the effects of churn in tree-

based systems. Therefore, multi-tree topologies have
been proposed.

4.1.1 Single Trees

Users participate in a video streaming session and build

a tree at the application layer with the video source

server being the root [3], as presented in Figure 3. When

peers join, they are inserted at a specific tree level and

their parent peers forward the content to them. Exam-

ples for the use of single tree streaming are Overcast

[17] and ESM [18].

Tree Depth and Fan-out. Tree depth is defined as
the number of levels the tree has. Therefore, the smaller

the tree depth, the lower is the delay for the leaf peers
(those situated at the bottom of the tree). To achieve
a small tree depth, peers need to have a large fan out
degree, which specifies, how many child peers each peer

Peer 3

Peer 4

Peer 1

Source-

Peer

Peer 5

Peer 6

Peer 2

Client-

Peer

Client-

Peer

Fig. 3 A single tree topology.

has. Since a peer has only a limited upload capacity,
its maximal fan out degree is constrained. To provide
load balancing and failure resilience, the fan out degree
is normally set less than its maximum possible value.

Peer Departure Problem. Single tree approaches
are strongly affected by ungraceful peer departures since
after the departure of a peer all of its child peers lose

their connection to the video source and, therefore, their
media quality suffers significantly. The higher in the
tree a failing peer is located, the expected the degree

of disruption can be. Although specific recovery algo-
rithms exist, recovery is still slow in the presence of
frequent churn [3].

Upload Bandwidth Issues. One issue in tree topo-

logies, is that leaf nodes do not utilize their upload
bandwidth as they do not have any children. This leads
to reduced efficiency, as the number of leaf peers can

be rather high [19]. In [16], it is explained that system
throughput is limited by the link with the lowest ca-
pacity among all links on the path from the source to
the leaf peers, which limits system efficiency. Another

major issue of tree topologies comes from the assump-
tion that peer upload bandwidth is double the video
bit-rate, since a peer must typically upload twice as

much as it downloads. This is, however, contradicting
with average link capacities, where upload capacities
are usually much smaller than download ones, render-

ing tree topologies un-usable in real life scenarios. In
the next subsection, we discuss how these issues can be
overcome by using multi-tree approaches.

Churn Problem. An issue that still remains a re-

search topic is how to ensure robustness and resilience
in tree-based topologies with high churn rates and in
the presence of flash crowds, where many peers join or

leave the network simultaneously. In this case new peers
need to be integrated quickly into the structure with-
out reducing video quality of all participating peers, re-

spectively the delivery structure has to be repaired to
minimize service disruptions [14]. Tree topologies are
best suited for networks with restricted available band-
width and stable peer memberships, since their control

overhead is lower, as in mesh approaches [16].

4.1.2 Multi-tree Streaming

In multi-tree approaches, a stream is divided into sev-
eral sub-streams at the server. For each sub-stream, a
subtree is created. A peer must join all subtrees and

receive all sub-streams in order to decode the video
stream. The power of this approach comes when each
peer joins each subtree at a different position.

Figure 4 shows an example of how peers can be po-

sitioned within the different subtrees. If a peer is in an

5

Peer 3 Peer 4

Peer 1

Peer 0

Peer 5 Peer 6

Peer 2

Peer 0 Peer 1

Peer 4

Peer 3

Peer 2 Peer 6

Peer 5

Stream 1 Stream 2

Server

Fig. 4 Peers participating in a multi-tree topology. Here, each

peer joins two subtrees.

inner node in a single tree, all of its upload bandwidth
is thoroughly utilized and, therefore, the frequency of

being placed as an inner node in a multi-tree topol-

ogy should be proportional to the available bandwidth
[3]. Although having multiple subtrees and the possibil-

ity to send packets in different sub-streams over differ-
ent paths, delivery paths usually remain static just like
in single tree approaches. In addition, the underlying
physical topology cannot be neglected for efficient con-

tent distribution and there exists a trade-off between
minimizing the tree depth and the network path diver-
sity [4].

Multi-tree Construction. Construction can ei-
ther be done in a randomized or a deterministic manner.

Using a randomized construction, a search for nodes

with spare bandwidth is started in each tree. Then one
of the hit peers is randomly chosen as parent peer for

a child peer. For deterministic construction each node
is assigned to be interior node in only exactly one tree
to shorten the tree. Disjointed interior nodes in each

tree lead to increased tree diversity and, therefore, ro-
bustness. According to the deterministic algorithm, the
first decision that has to be made upon a new node
arrived, in which tree it should be fertile. Thereby, fer-

tile refers to it becoming an interior node, which could
have child peers. In all other trees this node is so-called
sterile. The algorithm aims at balancing the number of

fertile nodes in all the trees. Parent nodes are chosen
deterministically for insertion of a node and randomiza-
tion becomes unnecessary due to disjointness of interior
nodes.

Examples. Some examples of multi-tree approaches
are SplitStream [20] and CoopNet [21]. CoopNet aims

at reducing the dependency of a peer on its parents.
Typically, video coding techniques are also combined
with multi-tree streaming, for example CoopNet uti-
lizes Multiple Description Coding (MDC) (described in

Section 5.3.2). There, the departure of a node in a mul-

ticast tree does not completely deprive its child peers,

because they can still gather most of the sub-streams

from other trees that they are part of. Resilience is fur-
thermore increased because a peer can only be an in-

ternal node in one tree, and, therefore, its departure
disrupts only the connections and sub-streams in this
single tree. However, this comes at the cost of a more
complicated setup and maintenance algorithms.

For the construction and maintenance of the trees,

a centralized tree management algorithm for multi-tree
topologies is introduced in [22]. The main methods of
this algorithm to ensure resilience are: short trees to

minimize the probability of disruption and making a
trade-off between tree diversity and efficiency. Accord-
ing to this algorithm, the root peer coordinates all tree

management functions. It handles join-events by feed-
ing new nodes with information about their parent peers
in each tree. Upon being informed of a graceful node de-
parture, the root node assigns new parent peers to the

children of the departed node in each tree. Ungraceful
departures are handled by measuring the packet loss
rate, which is measured in each tree by each peer. If

the rate exceeds a certain threshold, a peer checks if its
parent in the same tree also experiences this problem
and if necessary sends a request for a new parent to the

root peer. Requests are stored and could be used for
future parent selection.

As a summary, multi-trees are more resilient com-

pared to single trees, and the upload link capacity of
peers is better utilized [14]. In addition, they give rise
to more interesting cross-layer techniques, such as me-
dia coding and Forward Error Correction (FEC).

4.1.3 Redundant Trees

In [23] a protection approach called ”redundant trees”
is introduced. Since it is a protection mechanism, it is

pro-active and is - in contrast to a restoration mecha-
nism - not applied after a failure. The algorithm builds
two directed multi-trees with disjointed links to provide

resilience to failures of both peers or links. One of the
trees is the main routing tree and the other tree is cre-
ated as a backup in case of a structural failure on the
path of the main tree. After a failure, successful trans-

mission can be accomplished by path rerouting over an
alternative path in the backup tree. Back-up routes are
preplanned and, therefore, the algorithm provides faster

recovery than dynamic schemes, in which path compu-
tation is done only when a failure occurs. To cope with
multiple failures, more than one backup tree could be

created. However, there is a limit on how many back-up

6

trees can be created and managed that depends on the
specific scenario and peer behavior.

4.2 Mesh Topologies

Mesh topologies, such as that shown in Figure 5, en-

able massive parallel content distribution among peers.

They are based on self-organization of nodes in a di-

rected mesh and do not have a static topology [3]. Con-

nections are based on availability of content and band-

width. While peers in a mesh have more links and thus

better connectivity, the mesh content delivery scheme,

which is known as swarming, is more complicated [16].

To allow for mesh streaming, a video file is subdivided

into many small pieces typically ranging from 32kB to

512 kB, however, piece sizes of several megabytes have

also been used.

Fig. 5 An example mesh topology.

Every peer would request the pieces about to be
played out from other peers in its neighborhood. To find
out which peer has which piece, so-called buffer maps

(bitmaps of available blocks) are periodically exchanged
between the peers in the same neighborhood.

Structure. Mesh topologies can be unstructured
or structured. In unstructured meshes, peers are con-
nected to randomly chosen peers to provide more neigh-
bors and different delivery paths. This leads to robust-

ness when failures occur, since every piece can be ob-
tained from other peers in a simple way [14]. Exam-
ples of unstructured meshes are PRIME [24] and Cool-

Streaming [1]. In structured meshes, on the other hand,
peers are typically arranged into clusters, with the ma-
jority of links being established within the same cluster.
The peers, which connect the different clusters can be

considered as super peers and should have good band-
width and availability characteristics [16].

Advantages. The advantages of mesh-based ap-
proaches are low costs and simple maintenance of the

network structure. Compared to tree-based systems,

these topologies are more resilient regarding the topol-

ogy in the presence of node failures and departures, as
the probability of more paths being available is higher

[4]. In [25], Magharei et. al discuss that paths from the
source to individual peers are more stable than in tree
based schemes and that a peer’s degree of stability in-

creases the longer it remains in the overlay.

Overhead. The main disadvantage of mesh-based
topologies is the overhead that comes from the periodi-
cal exchange of buffer-maps and status messages among

the peers. These messages can become rather large es-
pecially with long or high definition streams. Decreas-
ing the number of pieces relaxes this overhead, however,

at the cost of more dependence on peers that a certain
pieces has been assigned to. Since the piece then can
become rather large, fast peers might get stuck with
slow uploaders.

Comparison to Tree Topologies. When com-

pared to tree-based approaches, streaming over mesh
topologies is more resilient against peer dynamics, but

it also has the disadvantage of extra overhead due to
the non-existent parent-child relationship for routing
that requires the exchange of buffer-maps. This leads to

higher delay and more control overhead. Furthermore,
overhead grows if control notifications are sent for ev-
ery received piece. This issue can be countered by the
use of larger pieces, since overhead is reduced. Unfor-

tunately this also comes with the cost of increased la-
tencies. The trade-off between efficiency and latency is
a main problem for mesh-based approaches, and, there-

fore, for some application scenarios, it can be better to
use multi-tree streaming [16]. Nonetheless, for networks
with high bandwidth and high churn rates the use of
mesh-based streaming is far more appropriate than us-

ing tree-based streaming, due to its higher resilience
[16].

4.3 Hybrid Topologies

Mesh topologies have the advantage of simplicity and
resilience, but they suffer from higher latency and com-

munication overhead. Tree topologies have inherent in-
stability, maintenance overhead, and bandwidth utiliza-
tion issues. Therefore, researchers have proposed the

combination of both tree and mesh approaches in a hy-
brid overlay incorporating the advantages of both topo-
logies while trying to avoid their disadvantages. Such
system include: Chunky-Spread [26], mTreebone [27],

and CliqueStream [28].
Figure 6 shows how a hybrid streaming topologies

could look like. Next, we give more details about the

Chunky-Spread and mTreebone systems.

7

Fig. 6 A hybrid topology consisting of tree and mesh topologies.

Case Study 1: ChunkySpread. In this system,
the stream is subdivided into several slices, which are
distributed over separate trees, furthermore the nodes

build a neighborhood graph [14]. Tree construction and
maintenance are simplified due to the hybrid design
and because it handles changes in memberships effi-

ciently, the network overhead can be reduced [16]. As
described in [26], the number of neighbors a peer has,
depends on the peer’s load. The higher its load, the
more neighbors are assigned to it. Each peer knows the

minimum target load of all other peers and it is also
aware of the node degree associated with that mini-
mum. In presence of churn, the actual neighborhood

set changes, to ensure that the amount of neighbors for

a node remains approximately the same over time. Lo-
cal information about load and latency are exchanged

periodically among neighboring peers and can be used
for determining the appropriate parent-child relation-
ships for each of the trees. To ensure even load dis-
tribution, each node periodically checks for overloaded

parent peers and underloaded peers, which potentially
could take up the role of the overloaded parents. If nec-
essary, these peers then change their roles.

Case Study 2: mTreebone. In this system, a

tree-based network is initially created. It consists of
the stable network nodes and provides the streaming
backbone. The unstable nodes and leaf nodes are ar-

ranged into a mesh structure, which is built on top of
the backbone. The system uses a push/pull switching
mechanism for content delivery and there is the need
for a high degree of coordination between the backbone

and the mesh structure. This hybrid overlay provides
some additional resilience against churn, however, it
still depends on locating alternative stable nodes after

one leaves the backbone.

The advantage of this approach is that a small tree-
based backbone can lead to better efficiency and low la-
tency. However, the initial time taken to build the back-

bone can vary. Contrary to other topologies, robustness
and resilience can be achieved even when facing high

churn rates and many disconnections of peers located

in the backbone. In this case the content dissemination

is done by the mesh overlay until the backbone is re-
constructed [16]. Although only a single tree backbone

is created, a multi-tree backbone would also be possi-
ble [14]. The key challenge lies in the identification of
stable nodes and their positioning at appropriate tree
positions.

4.4 Multi-path Streaming

As discussed above, an efficient streaming overlay re-

quires the establishment of multiple paths between the
different peers sharing a media stream. In this subsec-
tion, we present how the effects of transmission errors

can be effectively overcome by path diversity by using
logically as well as physically disjointed paths between
different peers. As an example, we show in Figure 7 how

video packets can be sent over multiple different paths

within a multi-path streaming overlay.

Source

Peer

Peer

Client

Peer

Client

Client
Peer

Source

Peer

Fig. 7 Video packets can be sent over multiple different paths.

Challenges. The multi-path design introduces var-

ious challenges namely how to choose the paths effi-
ciently and how to manage rate allocation to have an
efficient approach that can adapt to dynamic streaming

architectures. Abdouni et. al [29] state that in addi-
tion to increased bandwidth utilization, a better adap-
tation to changing network conditions is possible. They

focus on loss characteristics and optimal load distri-
bution among the multiple paths under the considera-
tion of different path characteristics. Furthermore, they

conclude that the performance of single path streaming

can be increased by using forward error correction tech-
niques.

Advantages. One of the advantages of this design
is the potential decrease in delay. In addition, disjoint

transmission paths with relatively independent losses
allow for better error resilience. The power of multiple

8

path streaming lies in the usage of the multi-path na-
ture of P2P networks to meet bandwidth requirements
by aggregation of network resources. It is worth noting
that paths do not have to be completely disjointed, as

it is sufficient if they have disjoint points around con-
gestion or bottlenecks [30].

Spatial versus Temporal Diversity. Rather than

using multi-path streaming and, therefore, achieving

spatial diversity by sending pieces over different paths,
one could try to achieve temporal diversity by sending

pieces over the same path at different points in time.
But since this approach suffers from additional delay,
it would not be applicable for applications with strict
real-time constraints [29,31].

Mechanism Optimization. Multi-path techniques
require the use of additional methods in order to make it
more powerful. For example, in [32], Karrer et. al state

that there is a need to combine multi-path streaming
with other mechanisms to adapt, for example, fluctu-
ations of resource availability. Karrer et. al introduce
the two concepts of multi-path streaming at both the

application layer and the transport layer. At the appli-
cation layer, data transport is integrated into the appli-
cation context and, therefore, enables the combination

of adaptation and multi-path streaming. To ensure that

both the same data is sent over different sub-streams
and the most important frames are sent first, multi-

path streaming has to be combined with filtering. Its
performance is decreased if the number of paths is high,
thus the transport-layer approach is more suitable if the
number of parallel streams is high.

Further work on multi-path streaming includes [33],
which proposes a selection scheme for two node-disjoint
paths. In [34], Apostolopoulos et. al describe source

and path selection mechanisms based on disjointness
and jointness of network segments. In [35] it is ex-
plored how Forward Error Correction (FEC) can be
utilized for multi-path streaming and what effects this

has, while [36] gives a state of the art on existing multi-
path streaming approaches.

4.5 Scheduling Algorithms

Scheduling algorithms are used to determine which pieces
should be (re-)transmitted and at what time these trans-

missions should be carried out [37]. The scheduling de-
cisions also include dropping of pieces if their transmis-
sion is not possible due to restricted resources. The aim

is to maximize the quality of the video stream, with-
out causing a waste of network resources. If a suitable
scheduling algorithm is deployed, it is not only possible
to reduce end-to-end delay and achieve more robust-

ness and adaptive resilience against errors [38], but also

Source

Source

Source

Client

Client

Intermediate peer

dropped

Fig. 8 Based on distortion information, (intermediate) peers can
make rate-distortion optimized scheduling decisions for incoming

pieces.

bandwidth distortion between peers across all channels

can be minimized [39]. Moreover, in case peers drop
some pieces for assurance of timely delivery of more
significant pieces, video quality can be supported by

optimized scheduling.

To achieve optimized scheduling, prioritized trans-

missions, receiver feedback and retransmissions can be
used. Optimization can be based on both distortion of
congestion or rate. Figure 8 shows an example schedul-
ing decision based on rate-distortion information. Struc-

ture and transmission characteristics (for example avail-
able bandwidth at the different links) of the network
should also be considered. During scheduling, not only

the packet transmission order has to be determined,

but also a prioritization among a peer’s descendants
should be taken into consideration, since they would be

affected in the case of piece loss or delayed arrival of
the pieces [37]. Furthermore, successive transmissions
can be spaced to achieve congestion avoidance at bot-
tleneck links as well as to limit delay of control packets.

Not only determination of the order in which packets
have to be sent is required, but also prioritization of the
neighboring peers.

Scheduling algorithms are crucial for achieving a
good quality of experience. One reason for this stems

from the strict timing requirements of streaming appli-

cations. Furthermore, peers are heterogeneous, which
means the available resources vary among peers. One
peer in a network might have a high amount of available

bandwidth and, therefore, is able to receive all video
pieces in time, leading to high media quality. Simul-
taneously another peer in the same network can have

only small amount of available bandwidth and thus the
scheduler has to determine which pieces are the most
significant to ensure that the video can be watched at

a certain quality level. As stated in [37], approaches
based on rate-distortion optimization can have high

9

complexity and, therefore, congestion-based optimiza-
tion might be better. If data is distributed by several
senders the question arises as to how scheduling can be
deployed. There, an additional objective is to avoid any

waste of resources due to the transmission of redundant
pieces. To achieve this, sending peers must coordinate
their scheduling strategies [40]. As scheduling imposes

an additional real-time computation burden, an initial

off-line processing time might be useful. While this can
be done easily in VoD systems, it cannot be applied to

live streaming systems, because video streams are not
pre-stored.

4.6 Retransmission

Research on retransmission strategies for packet-based
systems is well known in the client/server communi-
cation community. However, such strategies have not

been investigated enough in the P2P community. For
P2P-based video streaming it is sometimes not always
optimal to rely on lower transport layers (e.g. TCP) to

handle retransmission of lost packets. In general, more
sophisticated algorithms in accordance to overlay re-
quirements and state could be developed.

In general, in a retransmission-based system, lost

packets (which were not acknowledged on time) are sim-
ply retransmitted. There are different possible retrans-
mission schemes such as Automatic Repeat reQuest

(ARQ), parity retransmission and delay-constrained re-
transmission.

ARQ is a form of backward error correction and

is usually used in unicast protocols [41]. ARQ of ur-
gent packets is helpful only if it is possible for these
packets to arrive on time if retransmitted. Retransmis-
sion would be done either after timeout or on explicit

requests by a receiver. ARQ-based techniques are es-
pecially useful when path statistics are unknown [37].
While the utilization of ARQ is beneficial for the re-

covery of few errors or when the network undergoes
temporary congestion, there exist situations where too
much redundancy would be necessary for direct recov-

ery. In this cases, additional FEC techniques should be

applied.
Since it is possible to request a missing packet from

another peer and not only from its original sender, ARQ

in a P2P network is more complex. Therefore, the work-
load of peers and path characteristics should be con-
sidered while selecting which peer should retransmit a

certain packet. In [41] it is argued that ARQ can lead
to reduced throughput, since in multicast packet loss
is often correlated with local throughput drop. In Fig-
ure 9, we present a possible P2P streaming system with

ARQ-based retransmission.

6
Sending

peer

1 2 3 4 5

Receiving

peer

1.
sequence of packets

2.
request 4 and 6

3.
send 4 and 6

3 5

4 6feedback channel

file to send

received packets

1 2

Fig. 9 In ARQ-based systems, a retransmission request is sent
for each lost packet.

ARQ schemes have one important requirement, which
is the availability of a reliable feedback channel. In addi-

tion, acknowledgment overhead is a drawback for ARQ

in large networks. Sometimes, and in larger groups, the

chance of uncorrelated packet loss increases, leading

to the so-called feedback implosion problem. This hap-

pens because the sender does not have comprehensive

knowledge about which packets have to be retransmit-

ted to which receivers. Retransmissions that do not ar-

rive on time lead to duplicate transmission of the same

packet. In such cases, the system is better off using
FEC schemes to enable a receiver to recover from er-

rors without any additional network intervention. It is

worth noting that retransmission of packets is helpful
only when one way trip time is short enough with re-
spect to the maximum permitted delay.

Usually, retransmission schemes are combined with

FEC techniques. In such systems, it is possible to re-
transmit only a limited set of missing packets to be able
to decode the video stream. This is known as selective

retransmission. The major research question here is how
to balance the amount of initial redundancy introduced
into the stream with the expected amount of retrans-

missions. This aspect strictly depends on the media

buffer size and the round trip time between peers [42].
For more information about retransmission strategies
in P2P systems, please refer to [43,37,44,45].

5 Cross-layer Mechanisms

In this section, we present and discuss cross-layer mech-

anisms that can be deployed in addition to the core
mechanisms in order to further enhance resilience. These
mechanisms can be classified as incentive mechanisms,

underlay awareness, media and network coding, and er-
ror control.

10

5.1 Incentives

System performance can suffer significantly if peers do

not contribute their resources either by reducing upload
bandwidth or leaving the system all together once the

video has been delivered. Therefore, incentive mecha-
nisms are crucial to incite users to contribute their re-
sources, achieving a more robust and performant sys-

tem [46]. These mechanisms can be based on payment,
punishment or service differentiation, as explained in
[47]. Its worth mentioning that many deployed closed-

source systems do not implement incentive mechanisms
as the user does not have a choice in reducing his or her
contribution. Nonetheless, incentives are being consid-
ered for such systems [48], since users might still throt-

tle the traffic of the streaming application. Other sys-
tems [49], count on the social relations of the users
and their explicit consent to allocate resources to spe-

cific users.

Incentive mechanisms for classical P2P file sharing
applications are well established, e.g. tit-for-tat that
is used in the BitTorrent system [50]. However, such

mechanisms are not suitable for streaming applications
mainly due to the real-time requirements of these sys-
tems. Since a piece close to the playback position has

to be quickly received, there is no time to establish ef-
ficient bartering relations. This problem is evident es-
pecially when peers have different playback positions,
which is normally the case for video-on-demand. An ad-

ditional challenge is the skewed resource contribution of
peers. As stated in [48], the majority of system capac-
ity is often contributed by a minority of high capacity

peers. Therefore, it is quite crucial to have incentives
for these peers since without them, the system would
collapse. These peers can be rewarded through better

Quality of Service (QoS) in terms of robustness [48], or
through offering higher video quality, for example when
using layered video coding [51].

Incentives can be broadly categorized as either bi-

lateral or multilateral. Bilateral incentives are based on
local observations [52], while multilateral incentives are
based on reputations delivered by other peers or even

managed globally [48].

Multilateral incentives are generally more applicable
to streaming systems, as they better cope with real time
streaming requirements. Multilateral incentive mecha-

nisms usually rely on so-called reputation systems to
assess peer cooperation over a longer period of time. In
the next subsection we give an overview on some promi-

nent incentive mechanisms for streaming systems. After
that, we present an overview on reputation systems.

5.1.1 Prominent Incentive Systems

Habib et. al. present a score-based incentive mechanism
in [47]. In this system, rational users choose their contri-
bution level according to an own utility. The contribu-

tion level xi of peer i is mapped into a score Si, which
is used to determine a percentile rank Ri. This rank
designates the relative ranking of the peer compared

to all other peers in the system. A higher rank can be
achieved by higher contributions and allows for selec-
tion of better serving peers (resulting in better stream-
ing quality). A peer is allowed to select serving peers

with the same or a less rank. The peer utility Ui can be

expressed as a function of the streaming session quality
Q and the contribution cost C, therefore:

Ui(xi) = aiQi− biC(xi),

where ai and bi weight streaming quality and contribu-

tion cost for user i respectively. Typically, a peer will
determine its optimal contribution level to achieve max-
imized utility. Newcomers to the system are assigned

a score of zero; hence, they receive best-effort service.
To prevent free-riders exploiting other users, newcom-
ers and free-riders are treated the same. Additionally,
to encourage continuous contributions, the scores can

contain an aging factor.
Another approach to incorporate incentives is pre-

sented in [48] by Piatek et. al. where the authors inte-

grate their solution, called Contracts, into the PPLive
live streaming system. They argue that in live stream-
ing systems, cooperative peers cannot be rewarded by

higher download rates (since the content is generated
while being streamed). The authors conclude that bi-
lateral incentive strategies are not sufficient for live
streaming. Therefore, they reward globally effective con-

tributions with increased robustness in the presence of
churn. Agreements concerning the contribution evalua-
tion are formed between clients and the system. The de-

veloped system also accounts for heterogeneity of peers
by structuring the topology accordingly; peers can reor-
ganize their position in relation to the streaming source.

Thereby, peers with higher capacity and higher con-
tributions are placed closer to the source and receive
faster service. By additionally taking into account the
underlying network topology, a more consistent perfor-

mance increase can be achieved. For topology updates,
an incentive-based gossip protocol is utilized. To pre-
vent malicious behavior, receipts are verified in both a

centralized and distributed fashion.

5.1.2 Reputation Systems

Reputation systems aim at keeping a history and es-

timating how well peers cooperate and contribute to

11

the system. Reputation systems are required for mul-
tilateral incentives to work, since a history of peer co-
operation is needed. We now give an overview about
reputation systems. A more elaborate analysis is given

in [53].

In general, reputation can either be managed glob-
ally or by combining different local experiences. A focus
on either positive or negative experiences is possible, as

well as a combination of both [46]. In some systems [54,
55], a peer has the possibility of enhancing reputation
reports it has received from other peers. For example,

it can include perceived transaction time. Other sys-
tems [56,55] require the existence of so-called mediator
peers. These mediators help in reducing the complex-
ity of reputation systems by having more trustworthy

entities. However, it requires additional information to
achieve transparency of mediation. This design can be
further extended to have a centralized and trustworthy

entity that collects and aggregates all reports.

But a main question in many systems remains: how
can one determine whether a certain peer is trustwor-
thy or not? In [57] an approach is introduced, in which

trustworthiness of peers is determined by direct obser-
vations and through polling of witnesses.

In any case, reputation systems still suffer from var-
ious issues. For example, through collusion a peer can

achieve a higher reputation by agreeing with another
malicious peer to falsely send positive reports about
each other. A peer can also receive a wrongly neg-

ative rating from a peer, that wants to increase its
own reputation in relation to the defamed peer. Fur-
thermore, peers can provide random information about
other participants, so that they achieve better reputa-

tion although they do not contribute to the system. It
should also be noted that peers can change their be-
havior over time, therefore, it is important to distin-

guish between outdated and fresh reputation informa-
tion. Additionally, a main issue in reputation systems
remains the management overhead for storing, main-
taining and querying reputation information [58,57].

Therefore, a system designer has to be careful that an
incentive mechanism does not introduce overhead into
the system that can outweigh the benefits.

5.2 Underlay Awareness

Transmission at an overlay network might be less effi-

cient than transmission at the network layer, especially
when the overlay network is randomly constructed. This
stems from the fact that the distance5 between peers,

5 Distance in this context can indicate geographical and well

as topological distance.

AS ASAS AS

AS AS

(a) (b)

Fig. 10 (a) An ISP-aware topology based on biased neighbor

selection versus (b) a randomly connected overlay.

which are close in the overlay, can be large in the un-
derlying network [59]. This not only leads to additional
routing overhead and inefficiency, but also to an in-

creased failure probability due to transmission over long
paths with a possibly higher number of unreliable peers.
To overcome these problems and provide better QoS
guarantees, overlay construction and management could

be done while considering the underlying network.

In [13] different approaches that can be used to
achieve underlay awareness are investigated and clas-
sified according to collection and usage methods. Four
different underlay parameters were identified, namely

ISP-location, latency, geo-location, and peer resources.

In ISP-location awareness, location information about
the Internet Service Providers (ISPs) through which a
peer accesses the network, is utilized in order to achieve

greater locality of traffic. This entails several benefits
for ISPs including reduction of costs and congestions.
Furthermore, it leads to an enhanced quality of experi-
ence for users, since an ISP can make better provision-

ing of its network for its own locality-aware customers.

By considering latency to build a P2P system, bet-
ter estimation and management of streaming delays are
possible. In [13], it is explained how latency information
can be measured and estimated. Further, the use of geo-

location to construct an overlay leads to the introduc-
tion of innovative location-based services. This is par-
ticularly important for next generation IPTV systems

that aim at integrating video streaming with location-
based social interaction.

The last underlay information analyzed focuses on
peer resources. Peer resources include available band-
width, storage space, up-times and processing power.

Collecting and using information about peer resources

is important for achieving a good offer/demand bal-
ance.

Now we present some examples of underlay-aware
P2P systems. Starting with mOverlay [59], which is a

system in which the locality of peers in the underly-
ing network is exploited by the utilization of the group
concept. A group includes a set of nearby peers and

neighboring peers in a group that acts as dynamic land-
marks, with the aim to increase scalability and robust-

12

ness when compared to approaches based on static land-
marks. Another system utilizes the concept of the prox-
imity neighbor selection as presented in [60]. There,
routing table entries are selected in a way so as to en-

sure that the table contains the nearest of all peers in
the topology. Figure 10 presents how the concept of bi-
ased neighbor selection can help in reducing inter-AS

traffic by limiting the number of overlay links across

different ASs. In Leopard [61], which is a geo-location
awareness approach, the system tries to achieve con-

stant routing stretch and load balancing during flash
crowds. In DagStream [62] a peer selects geographically
close peers as neighbors and can, therefore, minimize
the packet delay between itself and its parent peers. In

ZIGZAG [63] and AnySee [64] a peer chooses neighbors
in a way that ensures minimal total delay between itself
and the source.

With utilization of underlay awareness, the user can
experience a better quality of experience due to the bet-
ter quality of server peers, for example due to lower

delays and shorter download times. The greatest con-
tributions to resilience are introduced by having peer
selection and overlay management consider underlay in-
formation that mostly affect resilience.

5.3 Media Coding

In this section, media coding an important building

block of resilient P2P video streaming, is presented and
analyzed. We generally consider media coding schemes
that enhance resilience by allowing the receiver to bet-

ter react to losses and bandwidth fluctuations. We have
established a classification of the different media coding
techniques. This classification is presented in Figure 11.

Layered Coding

Video

Source
Video

Compression

Description Coding

SVC

FEC-MDC

FEC

MDC

LVC

Fig. 11 Classification of different possibilities a video encoder

can use to generate different types of video structures. These can
be generally classified as either layered or description coding.

Raw video data is usually too large to be sent over
normal networks, therefore, it is necessary to compress

it, exploiting the high redundancy of video frames. For

this purpose, video compression can be used to generate

either layered or description-based video streams.

Layered Video Coding (LVC), on the one hand, is
a term used to describe a large set of coding schemes

that organize video data into layers. In LVC, a video
stream is structured into hierarchical layers, where the
so-called base layer represents the minimal amount of
data in order to decode the video stream. To decode a

certain layer, all layers below it have to be available. A
prominent example of layered video coding is the Scal-
able Video Coding (SVC) standard [65]. SVC is pre-

sented in Section 5.3.1.

Description coding, on the other hand, is based on
encoding video data into descriptions that do not de-
pend on each other. The more descriptions are received,

the better is the video quality. Most prominent ex-
amples of description coding are Multiple Descriptions
Coding (MDC) and description coding based on For-

ward Error Correction (FEC-MDC) [37]. FEC-MDC
is generated by FEC-encoding layered video streams.
MDC and FEC-MDC are presented in Section 5.3.2.

5.3.1 Scalable Video Coding

Scalable Video Coding (SVC) [65] is the new amend-

ment to H264/AVC: Advanced Video Coding standard.
Based on the SVC design, a video sequence is separated
into multiple layers. One of these layers is called the

base layer, which provides coarse visual quality and can
be decoded independently from other layers. All other
layers are denoted as enhancement layers and can only

be decoded together with the base layer. More avail-
able layers provide higher visual quality, but only with
the complete bit stream is the highest possible quality
achieved. This is the main drawback when compared to

MDC, where it is not important which descriptions are
received, as they can all be decoded independently.

An interesting application of SVC is the possibil-

ity of having intermediate peers with high capacity to
dynamically extract layers from the scalable stream to
serve peers, whose capacity is restricted. Further differ-
ent encoding qualities within the same layered stream

are possible, which enables efficient dynamic rate adap-
tation. Also the bandwidth of the network can be uti-
lized better than in single layer coding. SVC is based on

three modalities of scalability: spatial, temporal, and
quality scalability, often called Signal-to-Noise Ratio
(SNR) scalability. While temporal scalability enables
different video frame rates for a stream, spatial scalabil-

ity provides different video resolutions and SNR scala-

13

bility features different video quality levels. The coding
efficiency is not as high as for single layer coding [66].

Quality Adaptation. SVC is utilized in various

streaming systems, such as [6,67–69]. In [6] and [67], a
mesh based video streaming system is presented, which
utilizes SVC for support of adaption to available re-

sources. Adaption is done based on different parame-
ters: screen size and resolution, download throughput
and processing capabilities. For adaption it has to be
figured out, which resources are available and, there-

fore, what the highest possible streaming quality level
is. Available resources are categorized: peer resources
and P2P system resources. While peer resources in-

clude, for example, processing power and bandwidth,
the latter resource type encompasses resources such as
throughput and active neighbors. An SVC stream is at

first separated into multiple pieces, of which each con-

tains layers in the three dimensional quality space. Dur-
ing layer selection, which can either be performed with
Initial Quality Adaption (IQA) or Progressive Qual-

ity Adaption (PQA) mechanisms, quality adaption is
accomplished. An IQA mechanism is executed upon a
peer starting to view the video. While this mechanism

determines which is the most suitable quality level for
this peer under consideration of its static resources, the
PQA module aims at handling changes in network con-

dition and available throughput.

In addition, [67] presents metrics to assess the per-
formance of mesh-based P2P video-on-demand systems

that uses SVC. These metrics are called session qual-

ity and video quality. Session quality metrics quantify
how smooth playback is in terms of start-up delay and

stallings, while video quality metrics quantify the over-
all video experience. In [67], it is shown that these two
metrics exhibit a trade-off which has to be taken into
account while designing and deploying such systems.

Cache and Relay. In [68], a streaming system is

proposed, which combines cache-and-relay and layered-

encoded streaming to deal with asynchronous user re-
quests and heterogeneous peer bandwidths. The system
incorporates a greedy approach, whereby the outgoing
bandwidth of the peer, which has the smallest num-

ber of layers, is always maximally utilized. A peer, that
wants to obtain the video stream, requests the individ-
ual layers from the set of supplying peers. In case the

peer did not receive all expected layers and, therefore,
did not achieve the desired video quality, it requests
the missing layers from the server. In order to deal

with the effects of node departures, a receiving peer
has to carry out a layer allocation algorithm to recon-
figure its session. During this time, the video quality
may suffer. If a peer departures gracefully, it informs

the receiver to reconfigure its session. The video qual-

ity is not affected if the reconfiguration is finished, be-

fore the sender runs out of data in its buffer. In the

contrary case, the receiver can try to request the layers
of the failed peer from the server, until the session re-
configuration is completed. This only works, if there is

available server bandwidth. If not, the streaming qual-
ity of the receiver has to be adapted gracefully, which
could also lead to reduced quality for its child peers.

The authors concluded, that additional buffering helps
to alleviate the propagation of quality degradation in
certain circumstances.

5.3.2 Multiple Description Coding

Multiple Description Coding (MDC) [37] works by cre-
ating several independent so-called descriptions from a

video stream. Each description is a video segment that
contributes a certain amount to the video quality and
can be decoded independently. The more descriptions

are received, the higher is the received quality. As a
simple example of how MDC works, consider the in-
dependent descriptions generated by dividing a video
stream into even and odd frames. Alternatively, MDC

can be realized by dividing video frames into indepen-
dent sub-pictures by choosing odd and even horizontal
and vertical lines of the picture, thus resulting in four

descriptions.

MDC descriptions can then be distributed using mesh
or tree topologies. MDC works well when combined
with multi-path and multi-tree topologies since then

it allows for better resilience against erroneous trans-
missions and playback distortions as presented in [37].
SplitStream [21] and Chunky-Spread [26] are two promi-
nent approaches that utilize MDC to ensure resilience.

An interesting variant of classical MDC is the so-
called FEC-MDC as presented in [37]. Similar to MDC,
FEC-MDC has the same goal of dividing the video file
into multiple independent descriptions but with the dis-

F
E
C

I
fr
a
m
e

1
P

fr
a
m
e

2
P

fr
a
m
e

3
P

fr
a
m
e

s
t

n
d

rd

B
fr
a
m
e

B
fr
a
m
e

B
fr
a
m
e

B
fr
a
m
e

1 description

n description

st

th

...

Fig. 12 By applying different protection levels to layered video
packets, multiple descriptions are created and, therefore, consti-

tute an FEC-MDC video stream.

14

tinction of using layered video coding and Forward Er-
ror Correction (FEC). The basic structure of an FEC-
MDC coded video stream is depicted in Figure 12. The
main advantages of this design in comparison to clas-

sical MDC is that it can use a classical video encoding
scheme and offers more resilience through the use of
FEC. As presented in [37], FEC-MDC starts by encod-

ing the video data using any classical video codec to

compress the video stream to generate a layered video
streaming. Then, an unequal error protection is applied

to the different layers in such a way that correction
strength, achieved through more redundancy, depends
on the importance of the layer. In comparison to MDC,
FEC-MDC requires a certain minimum number of de-

scriptions to be available before any useful video data
can be decoded. This is due to the fact that FEC re-
quires a minimum amount of available data so that it

is able to decode the I-frames.

FEC-MDC has a better resilience against packet loss
due to its built-in error control techniques and is flexible

concerning the used video codec. However, FEC-MDC
can inflict high amount of overhead. Nonetheless, this
overhead can still be configured beforehand, through
adjusting the level of redundancy, depending on system

dynamics and loss ratios.

5.3.3 Layered versus MDC

In general, the main difference between SVC (or a gen-
eral LVC) and MDC lies in the inter-dependency of

SVC layers and MDC descriptions. Therefore, MDC
clearly has the advantage of having flexibility and in-
dependence from a base layer and, therefore, simplifies
mechanisms for the network building process. SVC ap-

proaches are the better choice for systems in which in-
network scheduling is used for transmission, while MDC
should be used for systems in which packet schedulers

have no knowledge about both the importance of dif-
ferent packets and their interdependencies [70].

5.4 Network Coding

Another mechanism that can enhance resilience is net-
work coding. Network coding is a technique where, in-

stead of simply sending data blocks, peers in a stream-
ing system can encode multiple blocks into one. The
composite block would be sent and used to reconstruct

the original data by decoding different encoded blocks
from different peers. Its benefits have been analyzed in
the context of multicast communication and P2P file

content distribution, where it helped to increase infor-
mation flow rates and decrease download time. Network

coding helps in utilizing redundant network capacity,

which would be otherwise left unused.

The basic procedure of network coding is described
in the following. A stream is divided into pieces, which
are again subdivided into n blocks b = [b1, ..., bn]

T . Each
block has a fixed size of k bytes. To encode a new block

xj , a sender peer selects random, linearly independent
coding coefficients for each of the buffered blocks. These
coefficients [cj1, ..., cjn] belong to the GF (28) field. The

sender then creates a coded block as linear combination
of the buffered blocks: xj =

∑n

i=1
cijbi.

Other peers can re-encode received coded blocks and
also send them to the receiver, which, upon receiving

the first coded block, can start to decode the piece pro-

gressively using b = C−1x, where C denotes the co-
efficient matrix, in which each row corresponds to the
coefficients of one coded block. C is only invertible if its

rows are linearly independent. Therefore, a peer has to

receive enough linearly independent blocks in order to

successfully decode the piece. For the layered approach

proposed by [71], the chosen blocks for encoding have to

belong to the same layer that is being requested, since

some layers are not required by all peers in the network.

Recent research has shown how to utilize network
coding for P2P-assisted live streaming [72] and how to

deploy it in the context of a video on-demand system

(UUSee) [73]. Moreover, Chameleon incorporates the

combination of network coding and SVC [71]. Although

this combination is not straightforward, since SVC tries

to prioritize data of different quality levels while net-
work coding aims at making all data pieces equally

useful, it nonetheless helps to make layered P2P video

streaming more performant and simplifies the stream-

ing protocol. With Tenor [74], Shojania et. al. present a
comprehensive toolkit, which provides efficient network
coding methods and can be applied on a wide range of

user devices.

Network coding enables the so-called ”perfect coor-
dination” where arbitrary peers can work together to

serve the same piece for a receiver. As soon as the last

coded block has been received, playback is possible. By

using network coding, all coded blocks (from the differ-
ent serving peers) become equally important (as long
as they are linearly independent) and, thus, peers can

collaboratively send blocks without high control and co-
ordination overhead. This helps to significantly increase
resilience. For example, if either a block is lost or a peer
goes offline or is no longer uploading, this does not nec-

essarily lead to decreased playback quality since other
peers are able to send coded blocks for the required
piece and can take over tasks of departed peers. There-

fore, network coding has been posed as a solution to

15

the problems of rare blocks [73], long buffering delays,
as well as high server bandwidth costs [71].

Challenges. Network coding also comes with some
challenges and issues. One of them concerns the proper

choice of block sizes. Smaller block sizes help to better
utilize slower upload links, but lead to lower coding effi-
ciency [73]. Another challenge stems from the exchange

of piece availability information between senders and

receivers, which depends on network coding factors.
Whereas Liu et al. propose the utilization of a two-

level cache map design [73], Nguyen et al. present an
approach using two-bit buffer-map entries to indicate if
a peer has received enough linearly independent blocks
for decoding and/or serving a certain piece [71]. The

major drawback of network coding, as presented in the
research community, remains the high complexity, since
the peers have to actively encode and decode blocks on

the fly. Nonetheless, some recent works have shown that
this complexity can be reduced using, e.g. Gauss-Jordan
elimination and efficient implementations [71,74].

5.5 Error Control

To mitigate the effects of churn and congestion-induced
losses on perceived media quality, error control through
redundancy can be utilized in streaming systems. First,

we describe forward error correction, then we present
how resilience can be enhanced through replication and
caching. Then we present error concealment and recov-

ery, which can be used to minimize the effects of errors
when they occur.

5.5.1 Forward Error Correction

When media packets are lost, perceived video quality

at the receiver can suffer significantly. This loss occurs
due to peer departure, network congestion and trans-

mission over unreliable channels. To provide robustness

and resilience in the face of packet loss and to over-
come its effects, Forward Error Correction (FEC) can
be applied to the video stream. In FEC, redundant in-

formation is added to ensure that the original informa-

tion can be reconstructed when packet loss occurs. The
striking advantage of this error correction scheme stems
from the fact, that no further interaction between the

sender and receiver is required for the sender to recover
lost information. To ensure that the missing informa-
tion can be reconstructed solely from the correctly re-

ceived packets, the proper amount of redundancy has
to be added. While the efficiency of recovery via re-
transmission drops significantly in systems with many
receivers, due to most likely uncorrelated losses, this

does not hold for FEC, since recovery does not depend

Server 1 2 3 4 5 Encoder

X

User

Decoder 1 2 3 4 5

Fig. 13 Sending data with some redundancy, through forward

error correction, allows receivers to recover from erroneous trans-

missions.

on which packets are lost [41]. Figure 13 gives an ex-
ample of how a video stream encoded with FEC can be

decoded if some pieces are missing.

But one should keep in mind that the advantage
of resilience comes with the cost of increased computa-

tional effort and overhead traffic. Optimizations such as
unequal error protection and interleaving are possible.

Byte-level versus Packet-level FEC. When con-

sidering FEC codes one also has to differentiate be-
tween byte-level and packet-level FEC [75]. In byte-
level coding, an encoded symbol (the basic unit that

can be corrected) is in the order of bytes, whereas for
packet-level coding it is as large as one whole packet.
Packet-level FEC typically is required at the applica-

tion layer, whereas byte-level schemes are implemented
at the physical layer of nearly all wireless networks.
Byte-level FEC is not able to restore a completely lost

packet. This stems from the fact, that a corrupted packet
is detected and discarded either at the link layer via
cyclic redundancy checks or at the transport layer via
checksum and, therefore, it is not available at the ap-

plication layer. Since IPTV systems typically have to
deal with the loss of whole packets, performance met-
rics for packet-level FEC are of interest for such sys-

tems. Nonetheless, byte-level FEC should still be used

in a wireless streaming scenario, as then better error re-
silience can be performed by a specialized FEC, rather

than relying on that of lower layers.

FEC for IP Channels: Erasure Codes. There
is a difference between errors and erasures. Error sym-

bols are erroneously received symbols that are unde-
tected, whereas erasures are symbols which were surely
received erroneously. Erasures are easier to correct as

their position is known and typical FEC codes can bet-
ter handle such errors. Usually, in an IP network, a

16

packet either arrives or not, therefore, packet-based era-
sure codes are particularly attractive.

In erasure codes, k redundant packets are created
out of n original packets. A receiver only needs to re-
ceive k (error free) packets of the original n packets in

order to achieve a perfect recovery of a certain block.
Usually, the maximum number of missing packets that
can be tolerated (accounting to n − k packets) has to
be calibrated according to system and network states

so that redundancy is matched to the level of pertur-
bations. Since missing packets can be the result of not
only network congestions but also due to peer failure,

erasure codes have potential in P2P scenarios.

There are a number of efficient implementations of

erasure codes that can be used as presented in [76].
These include: Cleversafe6, Luby7, Zfec8, and Cauchy
Reed Solomon codes from the Jerasure library9. Exper-

imental results indicate that the Cauchy Reed Solomon
code shows the best performance.

FEC for Wireless Channels. In addition to han-
dling erasures, FEC codes for wireless channels should
additionally handle symbol errors. This is due to the

fact that wireless channels tend to corrupt specific sym-
bols. Although error correction capabilities are already
built in lower layers, the design space of having a single
FEC code for the all layers is attractive. Nonetheless,

some research still needs to investigate whether this
is cost effective and efficient. Prominent FEC schemes
include Reed-Solomon codes (RS) [77], convolutional

codes [78], and Low-Density Parity-Check (LDPC) codes
[79].

Interleaved Reed-Solomon codes create different code
words from normal RS codes by interleaving [80], thereby
multiple code words are arranged into rows. Interleaved

RS codes are mostly suitable for applications with burst

errors, since they are most effective in case of correlated
errors, which enable collaborative decoding.

FEC Code Optimizations. To enhance the per-
formance of a streaming application, coding optimiza-

tions are possible [75]. These include: unequal error pro-

tection and interleaving

Unequal error protection is based on having knowl-
edge about the different priorities of video stream pack-
ets. For more important packets better protection can

be applied, while less important ones are not or less

effectively protected. Typically, segments of a high pri-

6 Cleversafe Inc., Cleversafe Dispersed Storage, open source
code distribution: http://www.cleversafe.org/downloads

7 M. Luby, Code for Cauchy Reed-Solomon coding, unencoded

tar file: http://www.icsi.berkeley.edu/ luby/cauchy.tar.uu
8 J. S. Plank, Jerasure: A library in C/C++ facilitating erasure

coding for storage applications, Tech. Rep. CS-07-603
9 Z. Wilcox-O’Hearn, open source code distribution:

http://pypi.python.org/pypi/zfec

ority stream should be provided with better protection.
But since these streams have segments of various sig-
nificance, it might not be overly beneficial to provide
increased protection for all these segments. Instead, im-

portant segments could receive better protection.

Another possible optimization is interleaving that
aims at increasing the error correction efficiency. While

classical FEC is not able to safeguard packet trans-
mission from extreme burst errors, FEC interleaving
can mitigate such effects and lead to increased per-

formance. FEC interleaving is often utilized for video
streaming to mitigate the effects of correlated packet
loss, for example due to congestion. FEC interleaving
works by allowing the sender to re-order or interleave

FEC-encoded packets before transmitting them. There-
fore, originally adjacent packets are well separated from
another by a distance, which can be configurable de-

pending on the network state. Interleaving provides im-
proved resilience against errors without requiring more
bandwidth, which is especially effective when used for

media streams with short-term dependencies between
data packets. But this comes with the cost of increased
latency due to additional buffering at the sender and,
therefore, hinders the suitability of interleaving in delay-

sensitive applications.

5.5.2 Replication and Caching

Content replication can be used to increase scalabil-
ity and, therefore, resilience against network failures.
Resilience is achieved by caching and replicating the

same content, usually bringing the content closer to
the users. Advantages include reduced bandwidth con-
sumption and load on streaming servers. Another ben-
efit is lower latency for clients and higher content avail-

ability as peers, when using some performance metrics
such as latency, can locate a copy closer to them.

Examples. The manner in which data is allocated

can be used to differentiate different replication schemes.
In some systems such as Freenet [81], there are no ex-
plicitly chosen places for the replicated data. Replicas

can be created implicitly by a peer when it requests the

data. Deterministic replica allocation, as employed in
applications such as [82], aims at alleviating discovery
during requests. Furthermore, replicating peers can be

chosen explicitly by predefined conditions as done in
[83], to achieve enhanced resilience against correlated
failures. To provide availability and consistency among

replicas, reliable peers should be chosen. Gopalakrish-
nan et. al, state in [84] that a general P2P system should
include caching or replication to provide reliability, low

latencies and load balancing. They propose a minimal-
ist replication scheme that only needs local information

17

and is robust to dynamics. An example of how replica-
tion can be incorporated in P2P streaming systems is
Overcast [85]. There, caching and replication strategies
are utilized to increase robustness and resilience. Ac-

cording to [17], data is replicated at peers in such a
way to ensure lower bandwidth requirements.

Advanced Techniques. By applying cache shar-

ing and cache hierarchies a cache can access data, which
is stored at another cache. This aids in distributing
load more evenly among different peers and in over-
coming the effects of network bottlenecks. Caching a

whole video file (especially huge ones) would typically
be inapplicable, since this would require large storage
space. The investigations done in [86] state that peers

can already experience increased performance, even if
only important parts of the file were cached. Two video
caching strategies are introduced in [87], namely: initial

caching and selective caching. The latter can maximize
the robustness of streams in the presence of network
congestion without exceeding the limited size of the de-
coding buffer. Furthermore, using application and con-

tent hints was recommended in [88].

Caching versus FEC. In comparison to approaches
that utilize low cost FEC, caching needs at least twice

as much storage capacity. Situations where whole-file

replication and erasure coding become beneficial are in-
vestigated in [89]. It is explained that replication can
be more suitable than erasure coding when component

availability is low compared to a certain threshold of
storage overhead. This hold especially for P2P systems
with low peer availability. When this threshold is ex-

ceeded, erasure coding with the maximal possible num-
ber of blocks should be used.

5.5.3 Error Concealment and Recovery

Random errors and short-term connection problems lead

to reduced throughput that can cause quality degra-

dation. In addition, relative long-term packet loss and

network partitioning is possible. For the first case, re-

covery could be fast, but special error concealment and

recovery mechanisms are needed for the latter case.

Typical FEC techniques are not sufficient for re-
covery from errors induced by long-term network par-

titioning due to continuous packet losses. In [90], Lui

et. al propose a disruption-tolerant content-aware video
streaming approach in which content summarization

and error spreading techniques are combined to tackle

problems arising from long-time disruptions. In error
spreading techniques, errors are not corrected but evenly
distributed among the remaining segments of the video
sequence. In this approach, a set of so called summary

frames is selected, which provide a visual summary of

the video. While the understanding of the video con-

tent is not always possible if key frames are lost, this

is not the case for summary frames, since they only
provide an overview of the content. The visual content

of summary frames can be replaced by the content of
non-summary frames, as their play-out leads to a video
sequence with near optimal quality regarding the origi-
nal complete sequence. Summary frames are selected in

such a way that there is a single complementary frame,
which differs from the respective summary frame only
to a small extent. Since the position of summary frames

is ahead of their position in the video sequence, they
can be played-out at the client in case of long-term dis-
ruptions. If summary frames are lost while a disruption
occurs, video quality is not affected by their loss after

the disruption has passed.

Another system that loosely fits within the category

of this section is presented in [91]. This system aims
at optimizing the streaming topology by synchronizing

playback positions. Playback of different peers is syn-
chronized by accelerating video playback (fast forward)
of peers that lag behind. In addition to providing lower

delays between different peers10, such a system has the

benefit of a topology that can be better optimized using
more sophisticated construction algorithms.

6 Discussion and Conclusions

In this paper, we have presented a survey on various
mechanisms for achieving and enhancing resilience in

P2P video streaming. The different mechanisms were
classified as either core or cross-layer. In this regard,
the core mechanisms described design choices for the

streaming system, while cross-layer mechanisms pre-
sented how additional mechanisms can be deployed to
enhance resilience. Deployment and combination of these
mechanisms for P2P video streaming faces several chal-

lenges, this will be the focus of our conclusions.

6.1 General Challenges

Building resilient P2P streaming entails several chal-

lenges, such as building an efficient overlay, which has
desirable characteristics such as scalability and load

balancing. Another key challenge is how to deal with

peer dynamics, because constant churn leads to service

interruptions if no countermeasures are taken. There-

fore, robust and adaptive mechanisms, which manage

10 This can be exceptionally important while streaming sport
events, where people do not like to have delayed playback in

comparison to neighbors.

18

the changes in the overlay, are urgently required. Fur-
thermore, network conditions have to be monitored to
maximize the utilization of available resources, while
simultaneously providing an acceptable performance.

The fact that peer resources are heterogeneous poses
another challenge. In order to minimize end-to-end de-
lay, the most appropriate peers have to be chosen as

sender peers and intermediate peers. Thereby, under-

lay network optimization should be taken into consid-
eration and global control overhead should be kept low,
to keep the system scalable.

An additional challenge is to select an appropriate
coding scheme to overcome the effects of error-prone
transmissions. The scheme has to be flexible due to
constant churn and resource heterogeneity. For media

coding and FEC the encoding and decoding efficiency is
also of importance. Thereby, encoding efficiency is sig-
nificant especially for live streaming, since the stream

has to be decoded immediately. As already mentioned
above, the overhead for encoding and decoding should
be kept low, to achieve low costs and scalability, there-

fore, efficient video codecs are an important part of the
streaming system.

Free-riding should also be prevented; otherwise the
system would not be scalable for large user crowds.

Moreover, content availability is a challenge for stream-
ing. A streaming system should make sure, that popu-
lar as well as unpopular content is available. To achieve

this, caching and replication could be an option.

6.2 Combination of Different Mechanisms

In addition to the already mentioned challenges inher-

ent to P2P streaming, new challenges arise when com-

bining different resilience mechanisms. In this regard,
one should make sure that there is not too much man-

agement overhead. Overhead is incurred through the
creation and maintenance of the overlay topology. Main-
tenance overhead includes, for example, peer selection,
content discovery, and scheduling.

While the overhead of a single resilience mechanism
might not have a great impact on scalability, the com-
bined amount of overhead from multiple mechanisms

could degrade scalability significantly and, therefore,
render the streaming system useless.

Another challenge arises when layered coding mech-
anisms such as SVC are deployed [92]. Since decoding is

not possible if the base layer is not received on time, the
scheduling mechanism should ensure that the transmis-
sion of the base layer is scheduled with higher priority,

perhaps even with replication over different streaming
paths.

When streaming video data over multi-paths (as

done in mesh and multi-tree approaches), the scheduler

should be aware of and make decisions regarding the
proper amount of redundancy for transmission while

using FEC-MDC and FEC. Too much transmitted re-
dundant data leads to wasted resources and maybe even
connections. Further evaluation of suitable error correc-
tion parameters should be performed depending on the

level of perturbations in the network.
If retransmission is deployed, it is crucial that the

time required for transmission is as small as possible.

Therefore, the topology respectively peer selection mech-
anisms should be chosen properly. For example, neigh-
bors should be chosen with awareness of the underlay

to minimize transmission delays. Moreover, heteroge-
neous peer resources can be challenging in the context
of scheduling and retransmission. An issue might evolve
if the path with the smallest delay is the one with the

smallest available bandwidth. In this case the applied

scheduling mechanism should make sure that the piece,
which has to be retransmitted, is transmitted immedi-

ately if it is an important piece. In case the piece is
not of high importance, the algorithm has to consider
whether the piece can be dropped, especially if either
the following pieces are more important or if it is likely

that the piece would not arrive on time at the receiver
anyway.

6.3 Research Gap

Although there exists a plethora of research, combina-
tions of different resilience mechanisms are not tackled

thoroughly enough. There exist some systems, in which
several approaches are combined such as AnySee [64],
which possesses an underlay-aware mesh topology and

deploys multi-path streaming, or PeerStreaming [42],
which is based on a tree topology and utilizes ARQ and
FEC. But more extensive research about different possi-
ble combinations together with an extensive simulation

study should be performed to enable better compar-
isons regarding performance and resilience of the dif-
ferent combinations. Moreover, it is also important to

identify the weaknesses of specific combinations.
There exist some interesting directions for possible

research. For example, one could build a mesh-based

system, which utilizes multi-path streaming where ad-
ditional coding schemes would be used. It is important
to compare and simulate different coding schemes in

this context to see what effects on resilience can be ob-

tained. Furthermore, it would be interesting to optimize
scheduling in the context of mesh-based or hybrid ap-
proaches to identify the tradeoffs between having a re-

silient and efficient streaming system. Compared to sim-

19

ulations and formal analysis, real deployment scenarios
would yield more realistic results, for determining which
combinations are most promising, and what combina-
tions suffer from specific drawbacks. This would aid in

choosing the most appropriate combinations for specific
deployment scenarios, such as live streaming or VoD.

References

1. Zhang, X., Liu, J., Li, B., Yum, T.P.: CoolStreaming/DONet:

a Data-driven Overlay Network for Peer-to-Peer Live Media

Streaming. In: INFOCOM, IEEE (2005)

2. Huang, C., Li, J., Ross, K.W.: Can Internet Video-on-
demand be Profitable? In: ACM SIGCOMM, ACM (2007)

3. Liu, Y., Guo, Y., Liang, C.: A Survey on Peer-to-Peer Video
Streaming Systems. Peer-to-Peer Networking and Applica-

tions 1(1) (2008) 18–28

4. Jurca, D., Chakareski, J., Wagner, J.P., Frossard, P.: En-
abling Adaptive Video Streaming in P2P Systems. IEEE
Communications Magazine 45(6) (2007) 108–114

5. Pussep, K., Oechsner, S., Abboud, O., Kantor, M., Stiller, B.:

Impact of Self-Organization in Peer-to-Peer Overlays on Un-

derlay Utilization. In: International Conference on Internet
and Web Applications and Services (ICIW). (2009)

6. Abboud, O., Pussep, K., Kovacevic, A., Steinmetz, R.: Qual-
ity adaptive peer-to-peer streaming using scalable video cod-

ing. Wired-Wireless Multimedia Networks and Services Man-
agement (2009)

7. Pussep, K., Abboud, O., Gerlach, F., Steinmetz, R., Strufe,
T.: Adaptive Server Allocation for Peer-assisted VoD. In: In-

ternational Parallel and Distributed Processing Symposium

(IPDPS), IEEE (2010)

8. Laprie, J.C.: From Dependability to Resilience. In: Inter-
national Conference on Dependable Systems and Networks

(DSN), IEEE/IFIP (2008)

9. Brinkmeier, M., Fischer, M., Grau, S., Schaefer, G., Strufe,

T.: Methods for Improving Resilience in Communication
Networks and P2P Overlays. PIK – Praxis der Informa-

tionsverarbeitung und Kommunikation 32 (2009) 64–78

10. Jiang, X., Dong, Y., Xu, D., Bhargava, B.: GnuStream: A

P2P Media Streaming System prototype. In: International

Conference on Multimedia and Expo (ICME), IEEE (2003)

11. Wu, C., Li, B.: rStream: Resilient and Optimal Peer-to-Peer
Streaming with Rateless Codes. IEEE Transactions on Par-

allel and Distributed Systems 19(1) (2008) 77–92

12. Cascella, R.: The ”Value” of Reputation in Peer-to-Peer Net-

works. In: Consumer Communications and Networking Con-
ference (CCNC), IEEE (2008)

13. Abboud, O., Kovacevic, A., Graffi, K., Pussep, K., Stein-
metz, R.: Underlay Awareness in P2P Systems: Techniques

and Challenges. In: International Parallel and Distributed
Processing Symposium (IPDPS), IEEE (2009)

14. Liu, J., Rao, S.G., Li, B., Zhang, H.: Opportunities and chal-
lenges of Peer-to-Peer Internet Video Broadcast. Proceedings

of the IEEE 96(1) (2008) 11–24

15. Ramamurthy, B., Ghoshal, J., Xu, L.: Variable Neighbor Se-

lection in Live Peer-to-Peer Multimedia Streaming Networks.
Technical report, Department of Computer Science and En-

gineering, University of Nebraska-Lincoln (2007)

16. Ghoshal, J., Xu, L., Ramamurthy, B., Wang, M.: Network

Architectures for Live Peer-to-Peer Media Streaming. Tech-
nical report, Department of Computer Science and Engineer-

ing, University of Nebraska-Lincoln (2007)

17. Gifford, D.K., Johnson, K.L., Kaashoek, M.F., Jr., J.W.O.:
Overcast: Reliable Multicasting with an Overlay Network.

In: USENIX Symposium on Operating Systems Design and

Implementation (OSDI). (2000)

18. Chu, Y.H., Rao, G., Zhang, H.: A Case for End System

Multicast. In: SIGMETRICS. (2000)

19. Liao, R., Yu, S., Yu, J.: Synchronization-based Overlay Con-

struction for Resilient P2P Streaming. In: World Congress
on Intelligent Control and Automation (WCICA). (2008)

20. Padmanabhan, V., Wang, H., Chou, P.: Supporting Het-

erogeneity and Congestion Control in Peer-to-Peer Multi-
cast Streaming. In: International Peer to Peer Symposium

(IPTPS). (2004)

21. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Row-

stron, A., Singh, A.: SplitStream: High-bandwidth Multicast

in Cooperative Environments. In: Symposium on Operating
Systems Principles (SOSP), ACM (2003)

22. Padmanabhan, V.N., Wang, H.J., Chou, P.A.: Resilient Peer-
to-Peer Streaming. In: IEEE International Conference on

Network Protocols (ICNP). (2003)

23. Medard, M., Finn, S.G., Barry, R.A., Gallager, R.G.: Re-

dundant Trees for Preplanned Recovery in Arbitrary Vertex-

redundant or Edge-redundant Graphs. IEEE/ACM Trans-
actions on Networking 5(7) (1999) 641–652

24. Magharei, N., Rejaie, R.: PRIME: Peer-to-Peer receiver-

driven mesh-based Streaming. In: IEEE INFOCOM. (2007)

25. Magharei, N., Rejaie, R., Guo, Y.: Mesh or Multiple-tree: A

comparative study of Live P2P Streaming approaches. In:
IEEE INFOCOM. (2007)

26. Venkataraman, V., Yoshida, K., Francis, P.: Chunkyspread:
Heterogeneous unstructured tree-based peer to peer Multi-

cast. In: IEEE International Conference on Network Proto-

cols (ICNP). (2006)

27. Wang, F., Xiongand, Y., Liu, J.: mTreebone: A Hybrid

Tree/Mesh Overlay for Application-Layer Live Video Mul-
ticast. In: IEEE International Conference on Distributed

Computing Systems (ICDCS). (2007)

28. Asaduzzaman, S., Qiao, Y., Bochmann, G.V.: CliqueStream:
An Efficient and Fault-resilient Live Streaming Network on

a Clustered Peer-to-Peer Overlay. In: IEEE International

Conference on Peer-to-Peer Computing (P2P). (2008)

29. Abdouni, B., Cheng, W., Chow, A.L., Golubchik, L., Lee,

W.J., Lui, J.C.: Multi-path Streaming: Optimization and
evaluation. In: Multimedia Computing and Networking

(MMCN). (2005)

30. Golubchik, L., Lui, J.C.S.: Multi-path Streaming: Is it Worth

the Trouble? SIGMETRICS Performance Evaluation Review

30(3) (2002) 12–14

31. Nguyen, T., Zhakor, A.: Distributed Video Streaming over

internet. In: Conference on Multimedia Computing and Net-
working (MMCN). (2002)

32. Karrer, R., Gross, T.: Multipath Streaming in Best-effort

Networks. In: IEEE International Conference on Communi-
cations (ICC). (2003)

33. Wei, W., Zakhor, A.: Path Selection for Multi-path Stream-
ing in wireless ad-hoc Networks. In: International Conference

on Image In Processing (ICIP), IEEE (2006)

34. Apostolopoulos, J., Wong, T., Tan, W., Wee, S.: On multiple

description streaming with content delivery networks. In:

IEEE INFOCOM. (2002)

35. Golubchik, L., Lui, J.C.S., Tong, T.F., Chow, L.H.,

W. J. Lee, G.F., Anglano, C.: Multi-path continuous media
streaming: What are the benefits? Technical Report CS-TR-

2002-01 (2002)

36. Ghareeb, M.: About Multiple Paths Video-Streaming: State
of the Art. Technical report, INRIA (2008)

20

37. Setton, E., Baccichet, P., Girod, B.: Peer-to-Peer Live Mul-
ticast: A Video Perspective. Proceedings of the IEEE 96(1)

(2008) 25–38

38. Setton, E., Noh, J., Girod, B.: Rate-Distortion Optimized

Video Peer-to-Peer Multicast Streaming. In: Workshop on
Advances in Peer-to-Peer Multimedia Streaming at ACM

Multimedia. (2005)

39. Mavlankar, A., Noh, J., Baccichet, P., Girod, B.: Optimal

Server Bandwidth Allocation for Streaming Multiple Streams

via P2P Multicast. In: IEEE Workshop on Multimedia Signal
Processing (MMSP). (2008)

40. Frossard, P., de Martin, J.C., Civanlar, R.: Media streaming
with network diversity. In Proceedings of the IEEE 96(1)

(2008) 39–53

41. Rizzo, L.: Effective Erasure Codes for Reliable Computer

Communication Protocols. ACM SIGCOMM Computer

Communication Review 27 (1997) 24–36

42. Li, J., Cui, Y., Chang, B.: Peerstreaming: design and im-

plementation of an on-demand distributed streaming system
with digital rights management capabilities. Multimedia Sys-

tems 13 (2007) 173–190

43. Guo, Q., Zhang, Q., Zhu, W., , Zhang, Y.Q.: Sender-adaptive

and Receiver-driven Video Multicasting. In: International

Symposium on Circuits and Systems (ISCAS), IEEE (2001)

44. Rhee, I.: Error Control Techniques for Interactive Low-bit-

rate Video Transmission over the Internet. In: ACM SIG-
COMM. (1998)

45. Dan, G., Chatzidrossos, I., Fodor, V., Karlsson, G.: On the
Performance of Error-Resilient End-Point-Based Multicast

Streaming. In: IEEE International Workshop on Quality of

Service (IWQoS). (2006)

46. Kaune, S., Pussep, K., Tyson, G., Mauthe, A., Steinmetz, R.:

Cooperation in P2P Systems through Sociological Incentive
Patterns. In: 3rd International Workshop on Self-Organizing

Systems (IWSOS), Springer (2008) 10–22

47. Habib, A., Chuang, J.: Incentive Mechanism for Peer-to-

Peer Media Streaming. In: IEEE International Workshop on

Quality of Service (IWQoS). (2004)

48. Piatek, M., Krishnamurthy, A., Venkataraman, A., Yang, R.,

Zhang, D., Jaffe, A.: Contracts: Practical contribution incen-
tives for p2p live streaming. In: In USENIX NSDI. (2010)

49. Abboud, O., Zinner, T., Lidanski, E., Pussep, K., Steinmetz,
R.: StreamSocial: A P2P Streaming System with Social In-

centives. In: IEEE International Symposium on a World
of Wireless Mobile and Multimedia Networks (WoWMoM).

(2010)

50. Cohen, B.: Incentives Build Robustness in BitTorrent. In:

1st Workshop on Economics of Peer-to-Peer Systems. (2003)

51. Liu, Z., Shen, Y., Panwar, S.S., Ross, K.W., Wang, Y.: Us-

ing Layered Video to Provide Incentives in P2P Live Stream-

ing. In: Proceedings of the 2007 workshop on Peer-to-peer
streaming and IP-TV. P2P-TV ’07, New York, NY, USA,

ACM (2007) 311–316

52. Li, H., Clement, A., Marchetti, M., Kapritsos, M., Robinson,

L., Alvisi, L., Dahlin, M.: FlightPath: Obedience vs Choice

in Cooperative Services. In: OSDI 2008. (2008)

53. Ruohomaa, S., Kutvonen, L., Koutrouli, E.: Reputation

Management Survey. In: International Conference on Avail-
ability, Reliability and Security (ARES). (2007)

54. S. Song, K. Hwang, R.Z., Kwok, Y.K.: Trusted P2P Trans-
actions with Fuzzy Reputation Aggregation. IEEE Internet

Computing 6(9) (2005) 24–34

55. Xiong, L., Liu, L.: PeerTrust: Supporting Reputation-based

Trust for Peer-to-Peer Electronic Communities. IEEE Trans-
actions on Knowledge and Data Engineering 7(16) (2004)
843–857

56. S. Lee, R.S., Bhattacharjee, B.: Cooperative Peer Groups in
NICE. In: IEEE INFOCOM. (2003)

57. Yu, B., Singh, M.P.: Distributed Reputation Management
for Electronic Commerce. Computational Intelligence 18(4)

(2002) 535–549
58. Kaune, S., Tyson, G., Pussep, K., Mauthe, A., Steinmetz,

R.: The Seeder Promotion Problem: Measurements, Analysis
and Solution Space. In: IEEE International Conference on

Computer Communications and Networks (ICCCN). (2010)
59. Zhang, X.Y., Zhang, Q., Zhang, Z., Song, G., Zhu, W.: A

Construction of Locality-aware Overlay Network: mOverlay
and its Performance. IEEE Journal on Selected Areas in

Communications 1(22) (2004) 18–28
60. Castro, M., Druschel, P., Hu, Y.C., Rowstron, A.: Topology-

Aware Routing in Structured Peer-to-Peer Overlay Net-
works. In Schiper, A., Shvartsman, A.A., Weatherspoon, H.,

Zhao, B.Y., eds.: Future Directions in Distributed Comput-

ing. Springer (2003) 103–107
61. Yu, Y., Lee, S., Zhang, Z.L.: Leopard: A Locality Aware

Peer-to-Peer System with no Hot Spot. In: International
Conferences on Networking. (2005)

62. Liang, J., Nahrstedt, K.: DagStream: Locality Aware and

Failure Resilient Peer-to-Peer Streaming. In: SPIE/ACM

Multimedia Computing and Networking (MMCN). (2006)
63. Tran, D.A., Hua, K.A., Do, T.: ZIGZAG: An Efficient Peer-

to-Peer Scheme for Media Streaming. In: IEEE INFOCOM.

(2003)
64. Liao, X., Jin, H., Liu, Y., Ni, L.M., Deng, D.: AnySee: Peer-

to-Peer Live Streaming. In: IEEE INFOCOM. (2006)
65. Schwarz, H., Marpe, D., Wiegand, T.: Overview of the Scal-

able Video Coding Extension of the H.264/AVC Standard.
IEEE Transactions on Circuits and Systems for Video Tech-

nology 17(9) (2007) 1103–1120
66. Baccichet, P., Schierl, T., Wiegand, T., Girod, B.: Low-delay

Peer-to-Peer Streaming Using Scalable Video Coding. In:
Packet Video Workshop. (2007)

67. Abboud, O., Zinner, T., Pussep, K., Al-Sabea, S., Steinmetz,
R.: On the Impact of Quality Adaptation in SVC-based P2P

Video-on-Demand Systems. In: ACM Multimedia Systems
2011, ACM (2011)

68. Cui, Y., Nahrstedt, K.: Layered Peer-to-Peer Streaming. In:
International Workshop on Network and Operating Systems

Support for Digital Audio and Video (NOSSDAV). (2003)
69. Shen, Y., Liu, Z., Panwar, S.S., Ross, K.W., Wang, Y.:

Streaming Layered Encoded Video Using Peers. In: IEEE
International Conference on Multimedia and Expo. (2005)

70. Chakareski, J., Han, S., Girod, B.: Layered Coding vs. Mul-

tiple Descriptions for Video Streaming over Multiple Paths.

Multimedia Systems 10 (2005) 275–285
71. Nguyen, A., Li, B., Elisassen, F.: Chameleon: Adaptive Peer-

to-Peer Streaming with Network Coding. In: IEEE INFO-
COM. (2010)

72. Wang, M., Li, B.: R2: Random Push with Random Network

Coding in Live Peer-to-Peer Streaming. IEEE Journal on

Selected Areas in Communications 25(9) (2007) 1655–1666
73. Liu, Z., Wu, C., Li, B., Zhao, S.: UUSee: Large-Scale Oper-

ational On-Demand Streaming with Random Network Cod-

ing. In: IEEE INFOCOM. (2010)
74. Shojania, H., Li, B.: Tenor: Making Coding Practical from

Servers to Smartphones. In: ACM International Conference

on Multimedia. (2010)
75. Nafaa, A., Taleb, T., Murphy, L.: Forward Error Correc-

tion Strategies for Media Streaming over Wireless Networks.

Communications Magazine, IEEE 46(1) (2008) 72–79
76. Schuman, C.D., Plank, J.S.: A Performance Comparison of

Open-Source Erasure Coding Libraries for Storage Applica-
tions. Technical Report UT-CS-08-625, Department of Elec-

21

trical Engineering and Computer Science, University of Ten-
nessee (2008)

77. Reed, I.S., Solomon, G.: Polynomial Codes Over Certain Fi-
nite Fields. Journal of the Society for Industrial and Applied

Mathematics (8) (1960) 300–304

78. Johannesson, R., Zigangirov, K.S.: Fundamentals of Convo-
lutional Coding. IEEE Press, Series on digital and mobile

communication (1999)

79. Gallager, R.G.: Low-Density Parity-Check Codes. IRE
Transactions on Information Theory 8(1) (1962) 21–28

80. Schmidt, G., Sidorenko, V.R., Bossert, M.: Collaborative

Decoding of Interleaved Reed-Solomon Codes and Concate-
nated Code Designs. CoRR (2006)

81. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A

Distributed Anonymous Information Storage and Retrieval
System. In: International Workshop on Design Issues in

Anonymity and Unobservability. (2000)

82. Druschel, P., Rowstron, A.: Past: a large-scale, persistent
peer-to-peer storage utility. In: Workshop on Hot Topics in

Operating Systems (HotOS). (2001)
83. Strufe, T.: A Peer-to-Peer-based Approach for the Transmis-

sion of Live Multimedia Streams. PhD thesis, TU Ilmenau

(2007)
84. Gopalakrishnan, V., Silaghi, B., Bhattacharjee, B., Keleher,

P.: Adaptive Replication in Peer-to-Peer Systems. In: IEEE

International Conference on Distributed Computing Systems
(ICDCS). (2004)

85. Small, T., Liang, B., , Li, B.: Scaling Laws and Tradeoffs in

Peer-to-Peer Live Multimedia Streaming. In: ACM Interna-
tional Conference on Multimedia. (2006)

86. Wu, D., Hou, Y.T., Zhu, W., Zhang, Y.Q., Peha, J.M.:

Streaming Video over the internet: Approaches and direc-
tions. IEEE Transactions on Circuits and Systems for Video

Technology 11(3) (2001) 282–300
87. Miao, Z., Ortega, A.: Proxy Caching for Efficient Video Ser-

vices over the Internet. In: International Packet Video Work-

shop (PVW). (1999)
88. Kermode, R.G.: Smart Network Caches: Localized Content

and Application Negotiated Recovery Mechanisms for Multi-

cast Media Distribution. PhD thesis, MIT, Cambridge (1998)
89. Lin, W.K., Chiu, D.M., Lee, Y.B.: Erasure Code Replication

Revisited. In: IEEE International Conference on Peer-to-Peer

Computing (P2P). (2004)
90. Liu, T., Nelakuditi, S.: Disruption-tolerant Content-aware

Video Streaming. In: ACM International Conference on Mul-

timedia. (2004)
91. Jiang, H., Jin, S.: NSYNC: Network Synchronization for

Peer-to-Peer Streaming Overlay Construction. In: Interna-
tional Workshop on Network and Operating Systems Support

for Digital Audio and Video (NOSSDAV), ACM (2006)

92. Abboud, O., Zinner, T., Pussep, K., Oechsner, S., Steinmetz,
R., Tran-Gia, P.: A QoE-Aware P2P Streaming System Us-

ing Scalable Video Coding. In: IEEE International Confer-

ence on Peer-to-Peer Computing (P2P). (2010)

22

