
Advanced Prefetching and Upload Strategies for P2P
Video-on-Demand

Osama Abboud, Konstantin Pussep, Markus Mueller,

Aleksandra Kovacevic, and Ralf Steinmetz

Multimedia Communications Lab

Technische Universität Darmstadt, Germany

{abboud, pussep, mueller, sandra, steinmetz}@kom.tu-darmstadt.de

ABSTRACT
The peer-to-peer (P2P) paradigm has recently shown promise
in enhancing performance and decreasing costs of classical
client/server Video-on-Demand (VoD) systems. Since cur-
rent P2P VoD designs began with BitTorrent concepts and
its school of thought, little is known about the limits of
such systems in a collaborative environment. In this paper
we investigate how local knowledge about neighbors’ play-
back positions and advanced upload strategies can be used
to reach these limits. Our design can be used not only to
increase average user experience in terms of playback con-
tinuity but also to have more resilience against churn and
flash crowds even with modest server resources. Extensive
simulations support the feasibility of our approach, which,
with low overhead, allows for achieving high performance
and low server utilization.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed
Systems

General Terms
Algorithms, Design, Performance

Keywords
Peer-to-Peer/Overlay Networks, Video-on-Demand, Content
Distribution

1. INTRODUCTION
Popularity of Internet Video-on-Demand (VoD) increases

significantly the revenues of content providers [8]. However,
the client-server technology behind current VoD systems in-
troduces significant costs due to the increased user demand
which, at a certain point, can no longer be covered by rev-
enues when switching to High Definition (HD) content [6].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

AVSTP2P’10, October 29, 2010, Firenze, Italy.

Copyright 2010 ACM 978-1-4503-0169-5/10/10 ...$10.00.

P2P VoD has become a good alternative that provides more
scalable and resilient delivery at significantly decreased costs
for the provider. This is achieved by shifting the load of a
server to the users interested in the same video. The ben-
efits of this approach are demonstrated by the wide usage
of the P2P streaming systems Octoshape1 and iPlayer2 in
broadcasting major events such as the Olympics or popular
TV content.

While the costs are pushed away from hosting servers in
P2P VoD, it must provide comparably short start-up de-
lays and continuous playback. Nevertheless, a fundamental
problem of P2P VoD is that just having collaborative peers
that exchange data based on bartering relations, as done
in [5], make good playback performance difficult to guaran-
tee. In addition, linear streaming requirements often con-
flict with the high peer upload utilization required for cost
effective VoD [1]. BitTorrent-inspired solutions therefore fo-
cus on balancing the mentioned requirements using either
probabilistic or greedy piece selection techniques [9]. Such
systems, however, still suffer from high start-up delays, es-
pecially for high bit-rate content [7].

In this paper we present a P2P VoD system that incor-
porates advanced prefetching and upload strategies. We go
one step ahead of the rarest-first strategy suggested for piece
prefetching in most VoD systems and present the soon-most-

needed strategy that optimizes the piece distribution based
on playback positions of other peers. Our results suggest
that our strategies enable the system to support almost the
theoretical limit of supported number of peers while having
minimal overhead. More precisely, our contribution is that:

• We formulate a trade-off between number of supported
peers in the system and achievable performance.

• We propose the use of a new prefetching strategy called
soon-most-needed as an alternative to rarest-first.

• We present an advanced upload strategy that elegantly
adapts to system load.

The paper is structured as follows: background and re-
lated work are described in Section 2. The streaming sys-
tem overview and design with details on the used models
and challenges are presented in Section 3. Our advanced
prefetching and upload strategies are presented in Section 4
and 5 respectively. Finally, we show performance evaluation
in Section 6 and conclude the paper in Section 7.
1http://www.octoshape.com
2http://www.bbc.co.uk/iplayer/

Osama Abboud
Osama Abboud, Konstantin Pussep, Markus Müller, Aleksandra Kovacevic, Ralf Steinmetz:
Advanced Prefetching and Upload Strategies for P2P Video-on-Demand.
In the proceedings of the ACM Workshop on Advanced video streaming
techniques for peer-to-peer networks and social networking, October 2010

Osama Abboud
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Osama Abboud

Osama Abboud

rst
Textfeld
[APM+10] Osama Abboud, Konstantin Pussep, Markus Müller, Aleksandra Kovacevic, Ralf Steinmetz:Advanced Prefetching and Upload Strategies for P2P Video-on-Demand. In: Proceedings of the 2010 ACM workshop on Advanced video streaming techniques for peer-to-peer networks and social networking, p. 31--36, ACM, October 2010. ISBN 978-1-4503-0169-5.

2. BACKGROUND AND RELATED WORK
In most research in the area of VoD streaming, perfor-

mance was measured in terms of Quality-of-Service (QoS)
metrics, namely throughput. However, we have found out
that in such systems, playback performance can be low even
when having good data rates. Therefore, we focus on assess-
ing the playback performance rather than the throughput.

Since a video stream needs to be played back in sequence,
P2P streaming systems should optimize in-order delivery. In
addition, such systems should also optimize a good distri-
bution of pieces through prefetching [3].

In most P2P video systems, pieces that are left to down-
load are split into two sets: a high priority set and a low
priority set. The high priority set constitutes a sliding win-
dow that contains pieces important in keeping the playback
buffer full, which insures a continuous playback. In many
approaches [1, 3, 7, 9], the high priority set is requested
in sequential order while the low priority set is requested
using the rarest-first approach. The rarest-first strategy
works by prefetching those pieces that are least replicated
in the neighborhood. This strategy has shown weak play-
back performance [7] due to the fact that it does not take
into account whether the rare pieces will actually be needed
soon enough by other peers. In this paper we introduce a
prefetching strategy called soon-most-needed, that works by
requesting pieces that will soon be needed by other peers.

An alternative to controlling of piece distribution is to
group peers with similar playback positions with each other,
as done in [4]. However, this design suffers from performance
degradation for peers that do not find enough suitable part-
ners. The closest to our work on studying the required bal-
ance between efficient piece distribution and linear stream-
ing requirements are in [1, 3, 11]. In [3] the authors pro-
pose probabilistic piece selection strategies that address this
problem, however they do not discuss how this balance can
be actively controlled by the system. In [1], the authors sug-
gest using network coding to increase possible collaboration
between peers. In [11], Zhao et al. derive the optimal piece
selection strategy for P2P live streaming systems depending
on server load. Their design, however, is suited for small
videos only and therefore not suitable for longer files as in
the case of VoD.

An alternative to dynamically adapt the selection strate-
gies is to have dynamic allocation of resources. This was
done in [10], where the authors investigated how to adap-
tively allocate server resources so that to provide service
guarantees in P2P VoD.

3. P2P VOD STREAMING SYSTEM
In this section, we present the P2P VoD system architec-

ture. In addition, we mathematically derive the maximum
number of supported peers for certain system and media
resources.

3.1 System Architecture
We assume that a content provider has setup a modest

cluster of servers for serving the users. Although theoret-
ically P2P techniques can be used only when the server is
overloaded, we focus on using servers only when necessary,
i.e. when peers are about to stall. The peers optimize per-
formance first by allowing neighboring peers to request for
better distribution of pieces they need, and also by making
a balance between uploading high and low priority pieces

depending on system load. Further, we consider a system
based on the idea of fallback servers that would inject the
initial content and also make sure good performance at the
peers is insured by attaching each peer to one fallback server.
In case a new peer joins the system or when a peer is about
to go into stalling, the required high priority pieces are pro-
vided by the respective fallback server.

3.2 System Model
We now present our system model that investigates the

trade-off between server capacity allocation and achievable
playback performance. The notations we use in the analysis
are as follows:

• S: number of servers
• uS : server upload capacity
• U : number of uploaders that have the whole file
• D: number of downloaders having an incomplete file
• u, d: upload and download capacity of a peer
• r: video bit-rate (r ≤ d)
• f : average peer prefetching factor

• g: average peer upload utilization

• dr = f · r: required download speed (r ≤ dr ≤ d)
• P k

i : piece with index i at peer k
• Ptotal: total number of pieces

U is the number of uploaders that have the whole file,
also known as seeders in BitTorrent-like systems. D is the
number of downloaders that have none or part of the file.
Of course a downloader also uploads pieces. Therefore the
main difference between an uploader and a downloader is
that the later might not always be able to fully utilize its
upload capacity due to lack of pieces useful for other peers.
Thus we define the upload utilization factor g as the ratio
of the average upload speed of a peer to its upload capacity.
For uploaders, this value is almost 1. Additionally, it is also
close to 1 for downloaders in case of a system that exhibits
a good piece diversity. The prefetching factor f is the ratio
of the average download rate to the video bit-rate. This
parameter represents how fast a peer should download the
media file so that playback is sustainable.

The total offered system upload capacity is given by

utotal = D · u · g + U · u + S · uS . (1)

Since the total download speed is limited by the system
upload capacity, i.e. dtotal ≤ utotal, and the total download
speed is given by dtotal = D · dr = D · r · f we get:

D ≤ Dmax =
U · u + S · uS

f · r − g · u where
u
r

<
f
g
. (2)

For a given number of uploaders, this equation calculates
the upper limit (Dmax) of the total number of supported
downloaders in relation to the prefetching and upload uti-
lization factors. In addition, it gives rise to one of the trade-
offs we address in this paper: on one hand having peers make
aggressive prefetching (high f) will lead to high upload uti-
lization since it is more probable that more peers need some
prefetched pieces. However this happens at the cost of using
up more system resources. On the other hand, having too
small f will lead to low upload utilization. In this paper we
propose prefetching and upload strategies that, for minimal
prefetching factor f , have a sufficiently high value of upload
utilization g.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

4. ADVANCED PIECE SELECTION
The proposed piece selection strategies proposed in this

paper aim at striking a balance between optimizing in-order
piece delivery and having better neighborhood piece distri-
bution. The in-order aspect is covered by the high priority
selection, while the neighborhood-wide one is covered by the
soon-most-needed prefetching strategy.

4.1 High Priority Selection
Using this strategy peers select pieces that are important

for current playback. This idea has been proposed for the
majority of P2P VoD systems [9, 5]. Each peer maintains
a high priority set that usually overlaps with the playback
buffer. All pieces within this buffer are marked as high pri-
ority and retrieved in order.

In-order piece selection, as we will later show, is not enough.
Since if this strategy is applied for all pieces, peers might
suffer from starvation when skipping to playback positions
where video pieces are not well distributed. This might hap-
pen quite often, especially in longer videos leading to play-
back performance drop of those peers. At the upload side,
this approach works well for optimizing performance of spe-
cific connections, however, it is not always the best strategy
for the whole neighborhood or the system.

4.2 Soon-Most-Needed Prefetching
In a normal P2P VoD system, different peers are not aware

of the playback positions and the high priority pieces re-
quired by neighboring peers and the network. To overcome
this problem, we propose to use a new piece prefetching
strategy called Soon-Most-Needed (SMN). This strategy op-
timizes the neighborhood by taking into account information
inferred from the playback positions of neighboring peers by
allowing the peers to actively vote for the pieces they need.

Voting WindowPlayback position

m m-1 12...m-2

s
k

p
k

s
k

p
k-

Figure 1: Voting procedure at peer k

In Figure 1, we present how voting is performed at a cer-
tain peer. Each peer is allowed to vote for m pieces that are
still missing from its video file every T seconds, called the
refresh interval. We suppose that voting is synchronous, i.e.
all votes are received at the same time.

The vote values will be set in such a way to be decreasing
with increasing piece number. In addition, voting will be for
pieces starting from piece sk, which is the first non-received
piece in linear order at peer k. To allow for prioritized allo-
cation, these values are further scaled by the difference be-
tween the playback position and the first piece being voted
for. Therefore, peer k will vote for the successive m pieces
not received so far according to the equation:

V ote(P k
i) = (m− i)/(sk + i− pk) i = s...s + m� (3)

where m� is m plus pieces already buffered within the vot-
ing window. After each peer has caste its votes, it sends the

SMN list with the vote values to all peers in its neighbor-
hood. The SMN list is sent only to downloaders and not to
uploaders, since the uploaders have the whole media file and
need not prefetch any pieces. The votes are then collected
and aggregated by the downloader peer. Aggregation is then
simply the adding up all votes for each piece, so

V ote(Pi) =
|L|X

k=0

V ote(P k
i). (4)

All the downloaders are continuously discovering a list
of pieces that are available within their neighborhoods and
also generating an SMN list. The intersection of both lists is
generated. The result is a list of the SMN scores of all pieces
that are available at neighboring peers. From this list, all
pieces the local peer already has downloaded are removed.

The next step before prefetching can start is taking into
consideration local availability of pieces. One piece could
be well distributed in the local neighborhood while another
one with an almost equal SMN score is very rare. In this
case the rarer piece is selected. To accomplish this, the un-
availability factor a is introduced. It is calculated by:

a(Pi) = 1− Replicas(Pi)
size of neighborhood

, (5)

which is high when there are only a few replicas for a cer-
tain piece, otherwise it is low. The SMN scores are multi-
plied with the availability factor and then transferred into
download probabilities by normalization as follows:

Probability(Pi) =
V ote(Pi) · a(Pi)PPtotal

j=0 V ote(Pj) · a(Pj)
. (6)

The downloader peer then chooses its prefetching pieces
according to these probabilities. If there is no peer in the
neighborhood that has any prefetching piece, that is whenPPtotal

j=0 V ote(Pj) · a(Pj) = 0, rarest-first is then used to
build up a strong distribution of pieces. It is worth mention-
ing that at steady state this equation not only optimizes for
playback continuity at the peers but also allows for matching
piece demand to piece supply.

5. UPLOAD STRATEGIES
After each peer makes a decision on the next pieces to

download, it sends a request to its neighboring uploaders.
In this case, a certain uploader would continuously receive
requests for different pieces and therefore has to make a
decision on which piece(s) to upload. Since the requests have
the distinction of being either high priority or low priority,
this distinction is to be considered while making the upload
decision. Based on this design, all low priority and high
priority requests are put at the uploader in a high and low
priority sets respectively. Now we present possible upload
strategies that the uploader can use for the different sets and
how they can be combined.

High Priority Set. To optimize the local connections
an uploader can simply order all high priority requests ac-
cording to their priority, i.e. their deadline. The closer the
deadline of a certain piece, the sooner it should be uploaded.
In case the deadline of a certain piece cannot be met, a quick
decline message is sent to allow for fast request retry.

Low Priority Set. In addition, an uploader is able to
optimize the distribution of useful pieces within its neighbor-

hood. Therefore, the uploader can favor low priority pieces
according to the presented SMN prefetching strategy. This
is important when the system is either in deficit state or on
the verge of being overloaded, and therefore should reorder
priorities to have a more robust distribution of soon-most-
needed pieces so that the peers can serve high priority pieces
in the near future.

Upload Bias Probability. Since system resources can
be either in surplus or deficit, local and neighborhood-wide
optimizations have to combined and balanced. To do this,
we introduce the upload bias probability p used when mak-
ing an upload decision, which will address the trade-off be-
tween optimizing performance of individual requestors and
optimizing the neighborhood and therefore the system. There-
fore, a peer will decide on uploading a high priority piece
with probability p and on uploading a prefetching piece with
probability 1− p.

5.1 System Load Adaptation
In a P2P VoD system, and for a given server capacity,

performance is dependent on the number of downloaders,
which degrades drastically near the limit Dmax = U·u+S·uS

(f ·r−g·u)

as presented in Equation 2. One interesting question that
arises is how to minimize performance degradation during
flash crowds, and also how to prepare the system for this
situation.

We propose to do this as follows: the parameter p is the
key to the balance between high priority and soon-most-
needed pieces. Therefore, we assign the value p depending
on the ratio of demand posed by the downloaders to the
supply provided by them. The higher this ratio, the less
capable is the server to serve high priority pieces. Thus, the
uploaders and downloaders themselves should be more ready
to serve such pieces. On the other hand, when the demand
is much less than the supply, then the server is able to serve
any required high priority request, and thus downloaders
should focus on building strong distribution of soon-most-
needed pieces in preparation for a flash crowd. Therefore,
and based on the system model presented in 3.1, we assign

p =
demand by downloaders
supply from downloaders

=
D · r · f − U · u− S · uS

D · u · g . (7)

It is worth noting that the above equation should satu-
rate to 1 at the system limit of supported peers (Dmax),
after which only high priority pieces are served by the whole
network, and the system is almost in deficit. However, when
p < 1, the system elegantly adapts to the number of down-
loaders while taking resources and system capacity into ac-
count. All required information to calculate a new value
of p is directly available at the tracker. For simplicity, the
tracker can use the average values of g and f . Finally, the
tracker can send p piggy-backed within other status mes-
sages that are regularly sent to the peers without inflicting
any additional overhead.

6. EVALUATION
We now assess the impact of our proposed prefetching

and upload strategies. We have implemented a P2P VoD
streaming system with our strategies in an extended version
of OctoSim simulator [2], which is a discrete event-based
simulator modeling piece transfers.

6.1 Setup and Metrics
The basic setup used for the performance evaluation is

shown in Table 1. It models a VoD scenario where a content
provider offers relatively long video clips, such as television
series or movies (which are of major interest in a revenue-
based content distribution). The content provider is inter-
ested in guaranteeing playback performance up to a certain
number of users depending on server capacity and content
properties. It is also interested in maximizing revenues by
minimizing traffic it is serving as described in Section 3.

Table 1: Basic setup.
Parameter Value

Simulation duration 210 minutes
Video length 60 minutes
Video bit-rate 512 kbps
Available servers 4
Server capacity (up) 4086 kbps
Peer capacity (up) 256 kbps
Peer capacity (down) 1024 kbps
Playout buffer size 7 seconds
Piece size 64 KB
Number of pieces 1800
Neigborhood size 16
Online after video playback 10 minutes

We use a peer bandwidth model with uniform values for
all peers with 1024 kbps download and 256 kbps upload link
capacities, which are reported to be the average speed of
today’s Internet users [2].

The main scenario we use to evaluate our algorithms is
based on a double flash crowd situation which is often met
in real VoD systems. The scenario, which is shown in Fig-
ure 2, is based on the idea that people go home at 6pm,
they would start streaming some series or similar content
creating some flash crowd effect. After some drop in active
users, another flash crowd takes place at around 8pm which
is known as the primetime, where many users join the sys-
tem to watch a video content. In our simulation, 120 and
180 peers join the system during the first and second flash
crowds respectively, resulting in a total of 280 peers. Both
crowds follow an exponential distribution.

!

"!

#!

$!

%!

&!!

&"!

&#!

&$!

&%!

!'!!'!! !'"%'#% !'()'*$ &'"$'"# &'(('&" "'"#'!! "'("'#% *'"&'*$

!
"#

$%
&

'()*+,-(".&#*/,-(".&

+
,
-

Number of
Downloaders

Number of
Servers

Number of
Uploaders

Figure 2: The double flash crowd scenario

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

*!!"

+!!"

#!!!"

,-." /0123450" 617489"

!
"#

$%
&'
()
'*
+,
--.
/0
'%
1%
/+
*'

2.%3%'*%-%34(/'*+&,+%05'

(a) Number of stalling events for all peers over the
whole simulation run

!""

!#"

$""

$#"

!
"
#
$
%
&
'
(
)*
+
#
)(
'
!
+
),
-
.

"

#"

%&' ()*+,-.) /*0-12

/
%
$
0
0
&
(
1
)

!"#$#%&#'#$(")*%&(+,(#-.

(b) Average, minimum and maximum stalling du-
ration per stalling event

Figure 3: Performance comparison of the SMN, deadline and the rarest-first prefetching strategies

!

"!!

#!!!

#"!!

$!!!

$"!!

%!!!

%"!!

!
"#

$%
&'(

)'*
+,
--.
/0
'1
2%
/+
3'

4,-"%'()'5'

(a) Number of stalling events total (b) Average stalling duration

(c) Average startup delay (d) Dynamic value of p

Figure 6.9: Evaluation of static vs. dynamic probability.

p Stalling Events Avg. Stalling Duration Avg. Startup Delay

p = 0 3,300 12.0s 6.9s
p = 0.1 1,221 9.7s 7.6s
p = 0.2 895 9.6s 7.9s
p = 0.3 1,332 9.4s 8.2s
p = 0.4 1,385 9.9s 8.4s
p = 0.5 797 9.2s 8.5s
p = 0.6 1,150 10.2s 8.8s
p = 0.7 329 9.6s 8.8s
p = 0.8 497 9.8s 8.7s
p = 0.9 568 9,7s 9.0s
p = 1 1,210 10,8s 9.1s
p = dyn 358 8,7s 7.1s

Table 6.3: Simulation results for different p values

QoE rating than the best static value. Additionally it has to be noted that when using different simulation

6.8 Upload Decision 43

(a) Number of stalling events for all peers over the
whole simulation run(a) Number of stalling events total

!

"

#

$

%

&!

&"

&#

!"
#$
%&
#'
()
%*
*+,

&'
-.

$%
)+/

,'
01
2'

3%*.#'/4'5'

(b) Average stalling duration

(c) Average startup delay (d) Dynamic value of p

Figure 6.9: Evaluation of static vs. dynamic probability.

p Stalling Events Avg. Stalling Duration Avg. Startup Delay

p = 0 3,300 12.0s 6.9s
p = 0.1 1,221 9.7s 7.6s
p = 0.2 895 9.6s 7.9s
p = 0.3 1,332 9.4s 8.2s
p = 0.4 1,385 9.9s 8.4s
p = 0.5 797 9.2s 8.5s
p = 0.6 1,150 10.2s 8.8s
p = 0.7 329 9.6s 8.8s
p = 0.8 497 9.8s 8.7s
p = 0.9 568 9,7s 9.0s
p = 1 1,210 10,8s 9.1s
p = dyn 358 8,7s 7.1s

Table 6.3: Simulation results for different p values

QoE rating than the best static value. Additionally it has to be noted that when using different simulation

6.8 Upload Decision 43

(b) Average stalling duration per stalling event
(a) Number of stalling events total (b) Average stalling duration

!

"

#

$

%

&

'

(

)

*

"!

!"
#$
"%
&'
()

*#
+'
,-
'./
0'

1#*%)'23'&'

(c) Average startup delay (d) Dynamic value of p

Figure 6.9: Evaluation of static vs. dynamic probability.

p Stalling Events Avg. Stalling Duration Avg. Startup Delay

p = 0 3,300 12.0s 6.9s
p = 0.1 1,221 9.7s 7.6s
p = 0.2 895 9.6s 7.9s
p = 0.3 1,332 9.4s 8.2s
p = 0.4 1,385 9.9s 8.4s
p = 0.5 797 9.2s 8.5s
p = 0.6 1,150 10.2s 8.8s
p = 0.7 329 9.6s 8.8s
p = 0.8 497 9.8s 8.7s
p = 0.9 568 9,7s 9.0s
p = 1 1,210 10,8s 9.1s
p = dyn 358 8,7s 7.1s

Table 6.3: Simulation results for different p values

QoE rating than the best static value. Additionally it has to be noted that when using different simulation

6.8 Upload Decision 43

(c) Average startup delay

(a) Number of stalling events total (b) Average stalling duration

(c) Average startup delay

!

!"#

!"$

!"%

!"&

'

'"#

!(!!(!! !(#&($& !()*(+% '(#%(#$ '())('# #(#$(!! #()#($& +(#'(+%

!"
#$
%&
'(
&)
&

*+,%&

(d) Dynamic value of p

Figure 6.9: Evaluation of static vs. dynamic probability.

p Stalling Events Avg. Stalling Duration Avg. Startup Delay

p = 0 3,300 12.0s 6.9s
p = 0.1 1,221 9.7s 7.6s
p = 0.2 895 9.6s 7.9s
p = 0.3 1,332 9.4s 8.2s
p = 0.4 1,385 9.9s 8.4s
p = 0.5 797 9.2s 8.5s
p = 0.6 1,150 10.2s 8.8s
p = 0.7 329 9.6s 8.8s
p = 0.8 497 9.8s 8.7s
p = 0.9 568 9,7s 9.0s
p = 1 1,210 10,8s 9.1s
p = dyn 358 8,7s 7.1s

Table 6.3: Simulation results for different p values

QoE rating than the best static value. Additionally it has to be noted that when using different simulation

6.8 Upload Decision 43

(d) Assigned upload bias probability

Figure 4: Evaluation and impact of static and dynamic upload bias probability p on system performance

6.2 SMN versus Rarest-first
To have a fair comparison, piece selection of high prior-

ity pieces is based on an in-order selection, while perfecting
can be either based on SMN or rarest first strategy. The
results of this comparison are shown in Figure 3, where Fig-
ure 3a shows the number of stalling events for the whole
simulation, and 3b shows average stalling duration for each
stalling event. We found that using SMN resulted in bet-
ter performance than rarest-first, which in turn performed
better than deadline. Although the fact that deadline-based
prefetching performs the worst might be surprising at first,

it makes sense mainly due to the weak piece distribution this
strategy inflicts. Such performance was also reported in [6].

Comparing SMN and rarity, rarity generated 835 stalling
events while SMN generated only 353 (almost 50% better
performance). In addition, the average duration of each
stalling event is 45% shorter when using SMN. The per-
formance advantage for SMN can be explained by the fact
that this strategy prepares the system, already from the be-
ginning, for flash crowds by prefetching those pieces that
will soon be needed by the neighborhood. Therefore, peers
already longer in the system have good piece distribution in

terms of how much those are needed. Hence, those peers
would offload servers by exchanging those pieces already
prefetched, while servers can serve new comers until they
can start prefetching and support other peers.

6.3 Upload Strategy
The second set of simulations aims at evaluating the pro-

posed upload strategies. We compare the adaptive strategy
that controls the probability p (as presented in Section 5.1)
with static upload bias probability p ranging from 0 to 1
with 0.1 increments. As can be seen in Figure 4, playback
performance indicators (i.e. prebuffering duration, number
of stalling events, and average stalling duration) show better
performance when using our adaptive strategies.

In addition, Figure 4.d shows the evolution of the value
p versus different simulation times. As we can see, the dy-
namic p allows the system to elegantly adapt to system load,
and therefore make the peers more involved in supporting
other peers and the system. It is worth noting that, although
the adaptive upload strategy does not perform impressively
better than the best static p, the adaptive p is always syn-
chronized with the best static one with different scenarios.
The relation between the best static p and specific scenario
parameters has still to be further investigated.

6.4 Overhead and Performance
In this paper we have shown how the performance of a P2P

VoD system can be drastically enhanced using advanced
prefetching and upload strategies. In this section, we as-
sess the overhead and performance of our algorithms.

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

D
at

a
ov

er
he

ad
 p

er
 p

ee
r (

K
B

)

5 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Refresh Interval T (seconds)

N
um

be
r o

f s
ta

lli
ng

 e
ve

nt
s

Figure 5: Overhead and performance

The results are presented in Figure 5. For different val-
ues of the refresh interval T , we show the total traffic over-
head per peer in KBytes (overhead) and the total number
of stalling events for all peers (performance). It is visible
that the less often voting cycles are performed, the less the
overhead is, and the more the performance degrades (more
stalling events). The best value of T can be chosen de-
pending on the scenario or even dynamically assigned. In
any-case, the overhead for the case of T = 5 seconds relative
to the total exchanged video data is 2900

115200 = 2.5%. Addi-
tionally, increasing the refresh interval from 5 to 10 seconds
does not inflict substantial performance degradation while
the overhead is almost halved.

7. CONCLUSION
In this paper we have investigated mechanisms of an op-

timized P2P VoD based on advanced prefetching and up-

load strategies. We have pushed P2P VoD systems to limits
by optimizing the system’s playback performance while us-
ing local knowledge. Our advanced prefetching and upload
strategies performs 50% better than the research standard
rarest-first. The proposed optimizations can be used in ex-
isting P2P VoD systems systems that have limited server
resources and flash crowd issues.

As future work, we plan to combine our strategies with
prediction-based techniques to better harness the power of
prefetching and have more resilience against flash crowds.

8. ACKNOWLEDGMENTS
This work was funded by the Federal Ministry of Edu-

cation and Research of the Federal Republic of Germany
(support code 01 BK 0806, G-Lab).

9. REFERENCES
[1] S. Annapureddy, S. Guha, C. Gkantsidis,

D. Gunawardena, and P. Rodriguez. Is high-quality
vod feasible using p2p swarming? In WWW ’07, pages
903–912, New York, NY, USA, 2007. ACM.

[2] A. R. Bharambe, C. Herley, and V. N. Padmanabhan.
Analyzing and improving a bittorrent networks
performance mechanisms. In 25th IEEE International

Conference on Computer Communications INFOCOM

2006, pages 1–12, April 2006.
[3] N. Carlsson and D. L. Eager. Peer-assisted on-demand

streaming of stored media using bittorrent-like
protocols. In In Proc. of NETWORKING’07, pages
570–581, Berlin, Heidelberg, 2007. Springer-Verlag.

[4] B. Cheng, L. Stein, H. Jin, and Z. Zhang. Towards
cinematic internet video-on-demand. In Proceedings of

Eurosys ’08, pages 109–122, New York, NY, USA,
2008. ACM.

[5] P. Garbacki, D. H. J. Epema, J. Pouwelse, and M. van
Steen. Offloading servers with collaborative video on
demand. In 7th Int. Workshop on Peer-to-Peer

Systems (IPTPS’08), Tampa Bay, FL, February 2008.
[6] C. Huang, J. Li, and K. W. Ross. Can internet

video-on-demand be profitable? In SIGCOMM ’07,
pages 133–144, New York, NY, USA, 2007. ACM.

[7] J. Mol, J. A. Pouwelse, M. Meulpolder, D. Epema,
and H. Sips. Give-to-Get: an algorithm for P2P VoD.
In MMCN, 2008.

[8] Parks Associates. Internet video: Direct-to-consumer
services. Online: http://www.parksassociates.com/.

[9] N. Parvez, C. Williamson, A. Mahanti, and
N. Carlsson. Analysis of bittorrent-like protocols for
on-demand stored media streaming. In SIGMETRICS

’08, pages 301–312, New York, NY, USA, 2008. ACM.
[10] K. Pussep, O. Abboud, F. Gerlach, R. Steinmetz, and

T. Strufe. Adaptive server allocation for peer-assisted
video-on-demand. In Proceedings of the 24th IEEE

International Symposium on Parallel and Distributed

Processing IPDPS 2010, Apr 2010.
[11] B. Zhao, J. Lui, and D. Chiu. Exploring the optimal

chunk selection policy for data-driven p2p streaming
systems. The 9th International Conference on

Peer-to-Peer Computing, Jan 2009.

