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Abstract—Situation awareness is important to plan relief work
in emergency response. However, impaired communication and
computation infrastructure makes it difficult to acquire and an-
alyze information. Accordingly, complex and resource-intensive
information processing can be offloaded through opportunistic
ad hoc contact to, e.g., first responder mobile devices, leveraging
their idle resources. Ensuring complete service execution without
overloading individual devices is a challenging task in such dy-
namic networks. In this work, we propose handover mechanisms
that utilize the current context of individual mobile devices
to balance load and achieve complete task execution without
requiring a global view on the opportunistic network. We study
their scalability and performance by combining them with our
unified message template for distributed service processing in the
OMNeT++ simulation environment. The evaluation shows that
our handover mechanisms increase the success rate significantly
and achieve distributed load balancing.

I. INTRODUCTION

In recent years, mobile services become more computation-
intensive and more complex, requiring multiple processing
stages and highly-specialized hardware. Executing such ser-
vices on a single device is therefore impractical. To alleviate
a device with limited computing capacity, a complex mobile
service can be offloaded as a task to a remote cloud for
execution. However, offloading to the cloud is not always
possible due to overloaded or impaired infrastructures, which
can occur, for instance, in emergency situations such as
disaster scenarios. Opportunistic offloading [1] has been in-
troduced as an emerging solution for offloading computation.
Hereby, the computation tasks can be offloaded to a nearby
stationary computing unit such as cloudlet [2], or to an
opportunistic network formed by mobile devices [3]. While
both approaches share the common idea of leveraging nearby
available computing resources, offloading in an opportunistic
network provides more flexibility and more advantages in
favor of executing complex tasks with multiple processing
stages. A complex task can be divided into several subtasks,
and distributed to the participating mobile devices, leveraging
their idle, and heterogeneous capabilities. Besides ensuring
successful execution of the offloaded tasks, balancing services
execution among the participating devices is also essential, and
beneficial. On the one hand, load balancing relieves overloaded

devices, effectively leading to improved overall performance.
On the other hand, the energy consumption for executing
the offloaded tasks by participating devices can be decreased
through load balancing, resulting in (i) longer lifetime of op-
portunistic networks, which serves as communication medium
during critical situations, and (ii) more acceptance of users to
contribute their resources. Most approaches dealing with load
balancing in mobile systems are based on global knowledge
of the network to formulate the load balanced assignment
as an optimization problem. In line with the dynamic nature
of opportunistic networks, the optimization problem can also
be solved in a distributed manner, as proposed in [4]. Still,
rapidly changing environments require a flexible and adaptive
approach to load balancing that takes changing conditions,
resource constraints, heterogeneity of tasks and services, and
mobility into account.

In this work, we propose several handover mechanisms for
load balancing in complex services offloading based on the
currently available context of single devices. To this end, we
extend our previous work [5] on a task message template that
allows the user to define a task and the services required to
accomplish the defined task. Our message template bundles
the control information and the corresponding payload data
into a single message. This enables mobile devices to decide
autonomously whether and how to participate in service pro-
cessing. We implement our proposed mechanisms within the
OMNeT++ simulator [6], allowing for an in-depth evaluation
of their performance in terms of load balancing and success
rate and their cost in terms of message overhead and latency.

In summary, the contributions of this paper are threefold:

• We propose several load balancing (LB) mechanisms for
distributing complex tasks across devices in an oppor-
tunistic network, optimizing resource utilization and suc-
cess rate, while minimizing the communication overhead.

• We develop a simulation environment based on OM-
NeT++, which integrates our earlier work on an adaptive
task oriented message template [5].

• We conduct an extensive evaluation of our LB mecha-
nisms within the OMNeT++ simulation environment. We
show the overall performance gain, improved fairness,
and inherited trade-offs of our proposed LB mechanisms.ISBN 978-3-903176-08-9 c© 2018 IFIP



The remainder of this paper is organized as follows. First,
we discuss related work. Second, we give a brief introduction
in our adaptive task message template (namely ATMT) for
distributed in-network processing, and highlight an impor-
tant open research challenge, namely, distributed fair load
balancing. Third, we present our load balancing handover
mechanisms and an in-depth evaluation relying on OMNeT++
simulations, before concluding the paper.

II. RELATED WORK

Offloading computational workload in mobile systems, aim-
ing to reduce network traffic have been studied in several
research work. [7] propose a decentralized optimization model
for the underlying operator placement problem. This ap-
proach, however, does not consider dynamic changes of the
environment. Recent research on Complex Event Processing
(CEP) in the context of vehicular networks has put more
attention to adaptive mechanisms; an example is CEP operator
migration [8]. Another research direction is edge computing,
in which computation tasks are offloaded to nearby computing
resources such as cloudet-upgraded router for processing [2].
In the aforementioned work, balancing computational work-
load is neglected.

Load balancing or fair resource allocation have always been
an important research aspect in mobile networks. To analyze
fair resource allocation, Fossati et al. [9] propose to extend
the Jain’s fairness index with a satisfaction factor of users.
The problem of resource allocation is modeled through game
theory, using their proposed metric. Tham et al. [4] target mo-
bile edge networks and formulate a constrained optimization
problem to achieve load balancing. The problem, however, has
to be solved by a central entity. Fernando et al. [10] incorporate
work stealing concepts in mobile crowd computing, allowing
a worker device to take over workload from other devices.
The authors focus on the practical implementation using
mobile devices and, thus, do not consider work stealing in
a large scale setup. Centralized coordination is impractical
in an opportunistic network. Consequently, Benchi et al. [11]
study the consensus problem in opportunistic networks, which
allows each node to make a consent decision upon receiving
enough votes from others. Comparable to our work is load
balancing for services composition in opportunistic networks.
Viswanathan et al. [12] use a time deadline for services
composition to formulate an optimization problem, which can
be solved by service providers in a distributed manner. The
complexity of such optimization formulation is high, thus
cannot cope well with the rapid changes of an opportunistic
network. In [13], Sadid et al. introduce a hop by hop compo-
sition model designed for opportunistic networks, considering
load and mobility of the devices. The authors propose to
let each service provider decide on the next composition to
cope with dynamic changes. Our work differentiates from [13]
in that we explicitly incorporate uncertainty factors in our
local optimization mechanisms to increase their robustness.
Furthermore, we provide a thorough evaluation focusing on
the quality of load balancing.

III. SCENARIO: IN-NETWORK DATA ANALYSIS IN
EMERGENCY SITUATIONS

A. Scenario Description

To plan relief operations in emergency response situations
efficiently, the relief workers need to have situational informa-
tion. The required raw sensing data can be obtained through
built-in sensors on the mobile devices as shown in [14].
Thereafter, these data have to be processed and analyzed to
extract valuable information. A concrete example can be found
in [15]. In this work, image processing techniques are applied
to extract faces of victims through pictures shot by smart
phones. To capture the situational overview, a large amount
of data might be required. Processing all these data in a
single device of the relief worker is inefficient. Two options
are possible: (i) offloading the data analysis to cloud servers,
(ii) offloading the data analysis to several surrogate devices
for distributed processing. The first option is not always
possible in case of impaired communication infrastructure,
which often occurs in disaster situations. The second option
provides a more flexible solution to analyze data, leveraging
idle resources available in opportunistic network.
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Fig. 1: Abstract system model of disseminating ATMT task
messages in opportunistic networks for processing.

To facilitate distributed processing through mobile devices
in the elaborated scenario, the adaptive task-oriented message
template (ATMT) is proposed in [5]. The objective of this
message template is to allow users to define an analysis goal
and the operations/services required to accomplish this goal.
Using the task message template, the data analysis is handed
over from one device to the next device, wheres each device
can perform one or several operations. Hence, the task is
divided and processed in a distributed manner. The workflow
of processing an ATMT message is illustrated in Figure 1.
In this illustration, a device (called delegator) with required
domain knowledge of how to process the data analyis, defines
n operations (op1..opn) and disseminate the message into the
opportunistic ad hoc networks. Each device participating in the
processing (called operator) executes the operations provided
by this device and hands over the processed message upon
opportunistic contact with other devices for further executions.



B. Adaptive Task Message Template

The construction of the ATMT task message template
designed in our previous work [5] is illustrated in Figure 2. To
facilitate distributed processing in opportunistic networks, one
of the objectives of ATMT is to allow the participating devices
to cooperate without having to rely on any centralized coordi-
nation. Due to this reason, an ATMT message contains both
meta-information required for processing and the belonging
payload data. The meta-information is stored in the ATMT
header, consisting of two parts, i.e., message header and
analysis header. The first part is the fix-sized message header,
which contains an UUID for identification, a checksum on
the status of the processing and the length of the header. By
comparing the checksum in the message header, a device can
check on the current status of the processing and decides
to merge, drop or to handover a task, without parsing the
whole message content. The analysis header composes of an
operations graph and a data dictionary. The operations graph
is based on an acyclic directed graph, that is used to model
the processing goal, the required operations/services, and the
processing order. The data dictionary in the header maps the
operations in the operations graph to the respective data pieces
in the ATMT payload. When an operation is completed by
a device, this device can replace the old payload data with
the processed result. All in all, the construction of an ATMT
message allows each device to make autonomous decision.
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Fig. 2: Construction of ATMT task message template as
designed in [5].

A system utilizing ATMT message to perform in-network
data analysis as the aforementioned scenario depends on
the heterogeneous capabilities of the devices, which can be
translated into different roles. Four roles are conceived, i.e.,
sensors for obtaining raw data, delegators with the domain
knowledge for constructing the operations graph which can
be understood as a way to coordinate the devices in a dis-
tributed manner, operator for performing operations/services,
and forwarder to handover the ATMT messages. As briefly
described in the previous section, Figure 1 shows a sample
workflow using ATMT concept. Sensor devices are omitted
in the illustration. A delegator device receiving data from the
sensors constructs an ATMT message, and hands over this
message to its directly connected operators via WiFi ad hoc
communication. Each operator processes the ATMT message
and executes the operations/services required in the operations
graph according to its available resource and services. The
resulting ATMT messages can be forwarded through store,
carry and forward concept of opportunistic mobile networks to
another operator at later time for further processing. In doing

so, the chances for successful execution of a complex analysis
task can be increased.

IV. CHALLENGES AND ASSUMPTIONS

Based on the description of the ATMT construction and the
in-network data analysis workflow, we can identify several
challenges. (i) A centralized coordination with the complete
view over the services available in all mobile devices does
not exist. Consequently, each device only has a partial view
of the network. (ii) The devices considered in this work are
highly dynamic and mobile. This requires adaptive mecha-
nisms. (iii) Due to the challenges elaborated in (i) and (ii),
the handover of ATMT messages in an uncoordinated way
might lead to massive communication overhead and processing
redundancies, i.e., workload waste. Optimizing both successful
execution of complex ATMT tasks and load balancing under
the aforementioned challenges is thus our main target.

With respect to the challenges and the elaborated application
scenario, the following assumptions are made:

• Decentralized opportunistic ad hoc network: we focus on
complex services offloading and distributed processing in
an opportunistic ad hoc network. Thus, we assume that
the devices are mobile and they are able to communicate
if they are in WiFi range of each other.

• Heterogeneous resource and services: we assume that
the participating devices possess different capabilities,
i.e., each device has different resource capacity left, can
provide different services, perform different operations.

• Cooperative behaviour: we assume that no participating
device has malicious intention. To establish a trustworthy
distributed processing environment in a mobile system,
trust measurement concept such as in [16] can be utilized.

• Location-aware: we assume that each device is able to
determine its own location.

V. HANDOVER MECHANISMS

We design our handover mechanisms with special focus
on load balancing. Our target is to improve the distribution
of workload among participating devices in an opportunistic
network, taking into account the challenges and assumptions
as previously discussed. According to Alakeel [17], we have
to consider three main aspects when designing load balancing
mechanisms for distributed systems, i.e., transfer strategy,
location strategy, information strategy. Transfer strategy is
the decision whether to offload/handover the task, location
strategy indicates which destinations should the tasks be
offloaded to, and information strategy refers to the context
information which can be used to devise transfer strategy
and location strategy. Accordingly, the information strategy
is the most important component of handover mechanisms.
W.r.t. our scenario, the information strategy is limited, since a
global view of all devices in an opportunistic network is not
possible. Therefore, a device in an opportunistic network can
only use either (i) its own context information or (ii) a partial
view of the network through information shared by other
devices via opportunistic contact. Based on this observation,



we devise three categories for handover mechanisms, i.e.,
naive, work stealing, and local optimization. A device using
naive mechanism only requires its own resources utilization
as context to make handover decision; while a device using
work stealing and local optimization requires shared context
from other devices. The details of each devised mechanisms
will be elaborated in the following.

A. Naive

Naive mechanism does not require any sophisticated shared
context; the decision is made by single device’s context with
respect to the resource utilization on this device. To this end,
each participating device in our system maintains a queue of
ATMT tasks. The size of ATMT tasks queue indicates the
total resource, which a device can contribute. Two options
are possible for naive handover. (i) Since an ATMT message
represents a complex task that requires the execution of several
services in a predefined order, the successful completion of a
task is not guaranteed in opportunistic network. Consequently,
to increase the success rate, a naive node simply contributes
all of its resource available in ATMT tasks queue and passes
the processed ATMT tasks to all neighbours. This behavior
resembles the well-known epidemic routing [18]. Hence, the
common observed characteristics of epidemic routing can also
be applied for our naive mechanism; i.e., the success rate
is improved by scarifying communication and computation
overhead. Due to this reason, a naive mechanism utilizing full
resources of participating devices, serves well as the baseline
for benchmarking purpose. (ii) It can also be observed that,
in dense opportunistic networks, a high number of devices
providing similar services can exist. On the one hand, the
resource on these devices will be used redundantly, following
a greedy naive behavior. On the other hand, the success rate
when reducing the size of ATMT tasks queue and rejecting
ATMT tasks upon reaching a limit, can be compensated by the
high number of participating devices with similar capabilities.
In such cases, reducing the size of the ATMT tasks queue
and rejecting tasks can decrease the number of redundantly
executed operations, while preserving the high success rate
and leading to improved load balancing. This intuition will be
analyzed later in the evaluation (cf. Section VI). In summary,
a naive device in our system will either fully utilize all its
available resource, i.e., epidemic flooding of ATMT tasks in
the whole network, or a device can intentionally reduce its
tasks queue and drop upcoming received tasks.

B. Work Stealing

The term work stealing is coined in the context of parallel
computing [19]; it refers to the act of an underutilized pro-
cessor stealing threads from over-utilized processor, aiming
to relieve over-utilized processors from high workload, thus
a better load balancing among processors can be achieved.
Fernando et al. [10] incorporates the concept of work stealing
in the context of mobile crowd computing. Our devised work
stealing strategy extends this idea for a more decentralized

dynamic system, i.e., mobile devices in opportunistic network
with the ability to act autonomously.

In our system, each operator device is qualified as a work
stealer, i.e., if an operator device deems itself to be under-
utilized, this device can ask to take over ATMT tasks from
the nearby devices. Underutilization is determined based on
the current number of ATMT tasks in the tasks queue. If this
number is less than a work stealing limit, then an operator
device will ask the surrounding operators to handover ATMT
tasks. An operator device triggers the work stealing process
by sending a work stealing message, indicating the number of
ATMT tasks (nws) that this work stealing operator is willing to
accept and the list of its providing operations. In order not to
exhaust the maximum resource of the work stealing operator,
nws should not exceed the maximum size of the ATMT tasks
queue on the device. Furthermore, to avoid egoistic behavior of
the participating operators, when receiving the work stealing
message with the indicated capacity nws, a device is allowed
to handover maximum up to nws tasks, however a minimum
number of task nkeep should always be kept back in the tasks
queue. To decide how many tasks should be handed over to
the work stealing operator, three options are conceived: (i)
Devices receiving work stealing message try to exploit the
maximum capacity indicating by the work stealing operator
without any coordination from the work stealing device. (ii)
The work stealing device assumes the local coordination and
divides the number of allowed ATMT tasks equally for its
neighbors. (iii) The work stealing device accepts tasks from
its neighbors following first come first serve principle. As soon
as the maximum threshold is reached, the work stealing device
will notify the neighboring devices to stop handing over tasks.
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Fig. 3: Illustration of local optimization concept, choosing to
the best next handover destination benefiting load balancing.

C. Local Optimization

Local optimization is inspired by the observation of Eager
et al. [20], that a simple load adaptation locally in a distributed
environment can lead to the overall improved performance
of the whole system. Additionally, in the context of services
composition in opportunistic network, Sadid et al. [13] show
that the overall performance of opportunistic hop by hop
composition is comparable to the performance of composition



orchestrated by a centralized entity. Following this line of
thought, we devise strategies for tasks handover decision at an
operator device in our system, requiring only local knowledge
obtained through shared context of the neighboring devices.
Our target is to optimize the load sharing among several
devices locally by handing over the tasks to the next best
destination within a close proximity. The local optimization is
done by single devices autonomously, but still in a collabora-
tive manner through shared context. The overall workflow of
local optimization strategy is illustrated in Figure 3.

In opportunistic networks, the context of devices can be
shared either in a reactive or proactive manner. Reactive
context sharing is triggered only if a device receives an explicit
query asking for its context. However, in a highly dynamic
environment, a long time might elapse since the query is sent,
until the information comes back to the query initiator. Due
to this reason, proactive context sharing seems to be more
favorable in opportunistic network. The context information is
thus exchanged at any opportunistic contact of two devices in
our system. Two devices exchange the summary of the context
information about themselves and about the other devices that
these two have seen in the past. Through this way, every
devices have a snapshot of the shared context information.
The context information required for local optimization of load
balancing are generated by each device as a list of available
operations (opi..opj), the currently-used capacity (nu), the
current position ((long, lat)), moving direction (~v) and a time
stamp (tinfo) when generating context information. When an
operator device triggers the local optimization, it checks the
current shared context and filters the nodes within a proximity
of distance dmax, that possess the required operations, as
potential destinations for task handover. The potential des-
tinations can be further filtered, omitting devices that have
distance around dmax and currently move farther away from
the initiating device. To choose destinations benefiting the
load balancing, we use a cost function covering three aspects
for local optimized assignments, which are the currently-
used capacity in the tasks queue (nu), the distance and the
uncertainty of the shared context information about operator
O, i.e., (µ(NO)). The cost function is defined as follows:

c(NA, NO,#OP ) = (wl ∗ cl ∗#OP +wd ∗ cd) ∗ µ(NO) (1)

in which:

µ(NO) = 1 +
tcurrent − tinfo
tkeepAlive

cl(NO) =
nmax − nu
nmax

cd(NA, NO) =
d(NA, NO)

dmax

(2)

In Equation 1, NA is the node that wants to trigger the
handover, to assign some of its tasks to other operator; NO

is a potential destination operator, to which the tasks can
be assigned. #OP is the number of operations that will be
handed over. wl and wd are weighting factors for cost values

of load (cl) and distance (cd), respectively. In Equation 2, the
uncertainty factor µ(NO) is captured using the time elapsed
since the context information of operator O are generated until
recently. The main cause of the uncertainty is the high dynamic
of the network, caused by mobility or by disappearance upon
exhaustive utilization of the devices. Consequently, outdated
context information, which results in a higher uncertainty
factor µ(NO), can lead to a negative handover decision,
increasing the total cost. The cost for load component in
the equation is considered based on the number of currently
utilized tasks in the tasks queue and the maximum size of
the task queue (nmax). The distance component is determined
by the ratio between the current distance d(NA, NO) from
the assigner to the operator and the search radius (dmax),
as in Equation 2. This is based on the intuition, that the
communication overhead for a nearer node is less than that
for the farther node; since more hops might be required to
reach an operator at larger distance.

In order to improve load balancing, each device can trigger
the local optimization to find the best destination with mini-
mum handover cost for the upcoming operations of an ATMT
task. We propose two modes to trigger local optimization
to find the best next handover destination, i.e., (i) proactive
mode: every time the shared context information are updated,
indicating possible better destination for the next handover or
(ii) reactive mode: only when a device receives more tasks than
the current size of its task queue, indicating over-utilization.
Regardless of trigger modes, to ensure effective dissemination
of shared context information, every time a device detects a
new neighbor, this device exchanges its summarized context
information with the new neighbor.

VI. EVALUATION

We implement and evaluate the task handover mechanisms
as detailed in Section V, using a customized OMNeT++
module compatible with our designed ATMT message [5]. In
this section, we first elaborate on the evaluation methodology,
the simulation setup, and the evaluation metrics. Next, we
study each handover mechanisms independently w.r.t. the
evaluation metrics to identify the best performing option
within each category. Last, we compare the proposed handover
mechanisms against each other and point out the trade-off
between the performance and load-balancing metric.

A. Scenario Modelling, Setup and Evaluation Metrics

Since the main target of our evaluation is the analysis of
computation balancing, we model a simulation scenario to
enable the dissemination of ATMT tasks into an opportunistic
network. This network consists of several mobile nodes that
move around a 500× 500m2 simulation area. Two nodes can
communicate within 75m WiFi range. We abstract from a
WiFi ad hoc model to enhance the scalability of the simulation
and assume that the congestion will be handled by Link
Layer mechanisms [21]. We set up five static nodes, one main
delegator and four helper delegators which are connected to the
main delegator. The main delegator generates ATMT-tasks and
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Fig. 4: Contacts among nodes for varied number of devices.
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Fig. 5: Average contact duration and number of neighboring
devices according to the used Levy Walk mobility model.

injects these tasks to the network through the helper delegators.
The reason for this particular setup is to allow the initial
ATMT tasks to reach more operator nodes even under sparse
network as in case of 20 devices (cf. Fig. 4a), aiming solely
at generating a similar start configuration in both dense and
sparse setups. The performance of the handover mechanisms,
which rely on the behavior of the participating nodes during
the simulation run, is not affected by this setup. We create two
types of task; a simple task which contains between two or
three operations, and a complex task which always contains
five operations. The delegator nodes are marked in red as
shown in Fig. 4. To control the movement of the simulated
mobile nodes, we use the Levy Walk mobility model. This de-
cision is based on the fact, that the Levy Walk mobility model
is reported in [22] to resemble the human mobility patterns. We
generate mobility traces accordingly using BonnMotion [23].
The direct contacts among mobile nodes from the generated
traces are illustrated in Fig. 4. Fig. 5 shows the observed
characteristics of the generated traces, which suggest a longer,
more stable contact duration and an increasing number of
direct neighbors with more devices in the network. As such, 20
nodes represent a sparse opportunistic network, while 80 nodes
represent a dense opportunistic network. The most important
simulation parameters are summarized in Table I.

TABLE I: Simulation Setup

Simulated Area Size 500× 500m2

Simulation Time one hour
Number of Nodes 20, 40, 60, 80

WiFi Transmission Range 75 m

Mobility Model LevyWalkMobilityModel

#ATMT-Tasks 100, 1000

Naı̈ve Greedy full, limited
Work Stealing full, FCFS, equalized
Local Optimization proactive, reactive

We repeated each simulation ten times and plotted all
obtained results with 90% confidence intervals. The following
evaluation metrics were used to analyze the results:
(a) Success rate denotes the ratio between the number of

successfully completed ATMT tasks that can be delivered
back to the main delegator and the total number of tasks.

(b) Communication overhead is defined as the total number
of ATMT messages that are generated and duplicated by
the handover strategies.

(c) Completion time is the time elapsed since the main del-
egator injects tasks into the network, until all processed
results come back to the main delegator.

(d) Jain index is proposed by Jain et al. in [24] as follows:
JI(x1, x2, ..., xn) =

(
∑n

i=1 xi)
2

n∗
∑n

i=1 x2
i

, wheres xi denotes the
resource consumed (in our scenario the number of oper-
ations executed) by node i. Jain index with value closer to
1 indicates higher fairness among the resources consumed
by all nodes. Thus, Jain index is able to quantify the
quality of load balancing mechanisms.

(e) Redundancy factor is defined as the ratio between the
number of redundantly executed operations and the orig-
inal number of operations in the network.

B. Handover Mechanisms Analysis

Naive: The evaluation for naive mechanisms has two objec-
tives: (i) assessment of ATMT tasks dissemination in scarce
and dense opportunistic networks and (ii) identification of
suitable tasks queue’s size which benefits load balancing
quality as a baseline for further analysis.

In our simulation, each node possesses a number of prede-
fined services which this node can execute. For evaluation of
naive mechanisms, we set up three different classes character-
izing the availability of the services on all nodes, i.e., high,
medium, low. The distribution of the services availability on
the nodes in each class follows a normal distribution. The high
class assigns 50% of the nodes with all 5 available services
required for the operations defined in the ATMT task; the
medium class assign 50% of the nodes with between 2 and
3 available services; and the low class assign 50% of the
nodes with no services, the majority of the rest are assigned
only 1 single service. Fig. 6a and 6b show the dependency of
success rate on the availability of the services. Low services
availability decreases the success rate, which is visible in case
complex tasks are executed in sparse network with only 20
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Fig. 6: Analysis of naive handover.

nodes. The success rate in this case only reaches around 20%
(cf. Fig. 6a). However, the success rate despite low services
availability can be compensated through higher number of
devices as we anticipated. Fig 6b shows, that the success
rate for complex tasks with low services availability can be
improved from 20% (with 20 nodes) to 80% (with 80 nodes).

The effect of tasks queue’s size on the performance and the
quality of load balancing was examined. Fig. 6c shows slightly
better values for Jain index over the executed operations when
decreasing task queue’s size, compared to the maximum size
(100 in our simulation), indicating slightly improved fairness
in the system. Shorter queue size also means less resource has
to be contributed by the nodes. With respect to the completion
time, a shorter tasks queue does not have any negative effect.
Rather, the completion time depends on the number of devices,
i.e., faster completion time can be achieved with more devices
in the network as shown in Fig. 6d. Overall, the analysis of
naive handover mechanisms suggests reducing the size of the
tasks queue, thus frees resources for participating nodes.

Work Stealing: We compare thee options for work stealing
as introduced in Section V-B against naive flooding handover
mechanisms (N-Full). The 3 options for work stealing are
respectively: WS-Full which tries to exploit the full capacity of
the work stealing node, WF-Equal in which the work stealing
node divides the accepted capacity equally among neighbors,
and WS-FCFS which follows first come first serve principle.

It can be observed that greedy behavior when handing over
tasks in WS-Full decreases the success rate (down to 70%
with 80 nodes), while generating even more communication
overhead compared to the naive handover N-Full. This neg-
ative effect is due to the redundant task handovers triggered
by the neighbors in WS-Full, which the work stealing nodes
have to drop at overloaded capacity. On the contrary, the two
other work stealing options, WS-Equal and WS-FCFS slightly
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Fig. 7: Analysis of work stealing mechanisms.
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Fig. 8: Analysis of different modes for local optimization.

improve the success rate and even the completion time in some
cases compared to N-Full (cf. Fig. 7a, 7c). The reason is,
work stealing with WS-Equal and WS-FCFS can free some
resources of the nodes locally; in contrast, naive handover
mechanism generates more redundant operations (cf. overall
comparisons, Fig. 9b). However, depending on the distribution
of the nodes in the area, the chance for a work stealing node
and an overloaded node to meet cannot always be guaranteed.
Correspondingly, Jain index values obtained through work
stealing display no major load balancing improvement using
work stealing concept (cf. Fig. 7d).

Local Optimization: Since the local optimization looks for
the best next destination within a search radius to assign the
handover, we anticipate the size of this search radius affects
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Fig. 9: Comparison of handover mechanisms.N-Full denotes the flooding based naive handover; N-Limited denotes the naive
handover with limited task queue; WS-FCFS represents work stealing, using first come first serve; LOpt-P denotes the proactive
local optimization; LOpt-R denotes the reactive local optimization.
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Fig. 10: Completion time of handover mechanisms.

all evaluation metrics. Hence, we vary the size of the search
radius and analyze the corresponding influences. The results
are shown in Fig.8. We evaluate two modes of the local
optimization as introduced in Section V-C, i.e., proactive mode
which triggers the local optimized handover upon receiving
new shared context, and reactive which triggers the local
optimized handover only for overloaded situations.

The success rate for both proactive and reactive modes
are high (almost always at 100%) regardless of the size of
the search radius. Obviously, larger search radius leads to
more communication overhead. Proactive local optimization
generates more communication overhead compared to reactive
local optimization; since the context in an opportunistic mobile
network tends to change rapidly, leading to more frequent
information exchange in proactive mode (cf. Fig. 8b). A
longer completion time for proactive mode is visible when
increasing the size of the search radius, which is the trade-
off for obtaining better result for optimization. In contrast,
the completion time for reactive mode is quite stable, since
it only triggers the local optimization at circumstances (cf.
Fig. 8c). Fig. 8d shows improved Jain index values with
larger search radius. With proactive mode, the Jain index
value increases from 0.37 with 75 m search radius, up to

0.75 with 125 m search radius. Reactive mode increases the
Jain index value from 0.5 at 75m, up to 0.65 at 125 m.
Increasing the search radius more than 125 m shows no more
fairness improvement, suggesting converge quality for load
balancing. Hence, the search radius should be restricted in
order not to waste communication overhead. Between two
modes, proactive local optimization yields better quality for
load balancing than reactive mode at larger search radius. This
can be explained by the fact, that proactive mode reacts on the
context changes of the network, while reactive mode waits for
an overloaded situation.

C. Handover Mechanisms Comparison

Having analyzed the handover mechanisms individually in
Section VI-B, we now compare all mechanisms against each
other. To cover the performance indicators for both sparse and
dense network situations, we use two setups: (i) a low load
setup with 100 tasks distributed to 20 or 40 nodes and (ii)
a high load setup with 1000 tasks distributed to 60 or 80
nodes. Selected results for the comparison regarding the Jain
index, redundancy factor, success rate and completion time
are presented accordingly in Fig. 9a, 9b, 9c, 10. For a sparse
network, the quality for load balancing fluctuates, regardless
of handover mechanisms. It is to be expected, since a sparse
opportunistic network tends to be partitioned; many nodes
are therefore isolated the whole time, providing no way for
their resources to be exploited. Evidently, the quality for load
balancing can be improved with more nodes in the network.
Fig. 9a shows that our proposed proactive local optimization
can achieve the best Jain index value (around 0.8 in case of 80
nodes), outperforms other handover mechanisms. The quality
of load balancing obtained by reactive local optimization,
despite being less than proactive local optimization, is still
comparable to flooding based naive handover (both achieve
Jain index values at around 0.65 with 80 nodes). Proactive
local optimization yields the lowest redundancy factor (at avg.
1.5), compared to a very high redundancy factor of N-Full
(at avg. 2.5, the worst case up to more than 4) (cf. Fig. 9b).



This confirms that the resources in naive mechanisms are used
redundantly, while our proposed local optimization mecha-
nisms help to alleviate this problem. As already discussed in
the analysis of work stealing, work stealing cannot improve
the overall load balancing, but can achieve higher success
rate compared to naive mechanisms. The result shown in
Fig. 9c again confirms this observation. The same result also
demonstrates that our proposed local optimization mechanisms
not only outperform other mechanisms w.r.t. load balancing,
but are also able to outperform others w.r.t. success rate. More-
over, the marginal variances shown in the box plot obtained
from the results of both local optimization modes, prove the
robustness of the mechanisms, against the rapid changes in
dynamic, mobile networks. The improvements achieved by
local optimization mechanisms, however, have to take into
account longer completion time (cf. Fig. 10).

VII. CONCLUSION AND FUTURE WORK

In this paper, we extended the adaptive task-oriented mes-
sage template (ATMT) defined in our previous work [5]
and proposed several handover mechanisms that enable load
balancing for distributed processing of complex tasks. Our
proposed mechanisms were designed focused mainly on op-
portunistic networks, thus do not require any centralized
coordination. The evaluation results show that we were able
to achieve better load balancing through local optimization,
leveraging only locally shared context information. Overall,
our proposed task message template facilitates distributed
coordination and is thus suitable for decentralized, highly
dynamic environment.

Several directions are possible as our future work. First,
the load balancing mechanisms proposed in this work can be
further evaluated using real hardwares, which allows us to
determine over-utilized situation in realistic conditions, e.g.,
based on CPU load or energy consumption level. This will also
allow us to incorporate, and consequently study the effect of
heterogeneity in terms of hardware configuration, energy con-
sumption when executing a complex operation on distributed
load balancing. Second, the handover mechanisms, especially
work-stealing can be further augmented by prioritizing tasks,
i.e., setting higher handover priority for nearly completed
tasks can benefit the success rate, while setting higher priority
for computation-intensive tasks will work in favor of load
balancing. Third, within the context of information centric
ad hoc network (ICN), it is shown that situational data can
be collected by mobile devices [14]. Hereby, we want to
combine the design of ATMT with data transport phase in ICN
to deliver processed high-valuable information to the query
initiator.
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