
Role-based Templates for Cloud Monitoring

The An Binh Nguyen, Melanie Siebenhaar, Ronny Hans, Ralf Steinmetz
Multimedia Communications Lab (KOM)

Technische Universität Darmstadt
Rundeturmstr. 10, 64283 Darmstadt, Hessen, Germany

{The.An.Binh.Nguyen, Melanie.Siebenhaar, Ronny.Hans, Ralf.Steinmetz}@kom.tu-darmstadt.de

Abstract—Cloud computing has evolved in the recent years to
a well established computing paradigm. With this evolution, the
complexity and requirements for monitoring cloud-based services
have also increased. Without a doubt, monitoring for cloud
computing is a crucial task which has been addressed in a number
of research works. However, monitoring for cloud computing is
often designed to be carried out by cloud providers. Monitoring
by cloud providers on the one hand offers the flexibility and
full control required for monitoring; on the other hand, the
trustworthiness of the cloud provider is often questioned. In
this work, we present a generic approach that can harmonize
both of the aforementioned issues. Our solution abstracts from
the complexity by using role-based templates for monitoring in
combination with autonomous agents; thus, this approach can
be used by both, cloud consumers and cloud providers. With a
proof of concept prototype, we show that our approach can be
adapted for large scale cloud monitoring scenarios. Furthermore,
we discuss the possibility that our monitoring solution can be
extended to be applicable for different domains.

I. INTRODUCTION

Cloud computing is one of the most widely used computing
models nowadays. It provides many advantages not only for
cloud consumers, but also for cloud providers [1]. On the
one hand, cloud consumers enjoy the pay-as-you-go and on-
demand services [2]; on the other hand, cloud providers can
maintain their services as well as leverage their infrastructure
more efficiently. As a consequence, cloud monitoring is im-
portant for both, cloud providers and consumers [3]. While
cloud providers require monitoring to assess the performance
of their provided services and to maintain their resources,
cloud consumers are concerned if the performance of the
cloud services adheres to the agreement negotiated with cloud
providers. Based on the taxonomy of cloud computing, there
are three main service categories, i.e., Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), Software as a
Service (SaaS) [4]. Services from one category can be further
combined with services from other categories to create a new
cloud service, i.e. cloud consumers of one cloud service can
become a cloud provider for other types of service [1]. Hence,
the roles of the stakeholders in cloud computing are flexible
and dynamic. Thus, the complexity and flexibility in the
service model of cloud computing makes monitoring in cloud
computing more difficult compared to other computing models.
Moreover, cloud services can also be deployed across different
cloud providers which makes aggregation of monitoring data a
demanding task. As a consequence, holistic monitoring is one
of the most challenging tasks for cloud computing [3].

Since the roles of cloud stakeholders can be dynamic, i.e,
cloud consumers can be at the same time cloud providers

for others, we need to take the roles of the actors into
consideration for monitoring. Even for the same users, their
different roles can lead to different monitoring requirements.
Besides, cloud consumers and cloud providers have a different
expertise and different capabilities for monitoring tasks. Cloud
consumers as the real end users do not possess the required
skills for monitoring as cloud service developers/providers.
Furthermore, real end users do not have the same monitoring
concerns as a developer or cloud provider. For instance, an end
user only requires to be notified if the cloud service is available
or not, while a service developer wants to know more about
resource related information of the infrastructure. All in all,
the different roles of the stakeholders in cloud computing can
affect monitoring tasks and need to be tackled carefully [5].

Very often, monitoring tasks are carried out by cloud
providers because cloud providers have all the capabilities
and expertise required for monitoring. But the validity of the
monitoring data provided by cloud providers can be ques-
tioned, since cloud providers might want to hide information
in order to avoid paying penalties for cloud consumers. On the
contrary, cloud consumers that want to monitor the service to
verify the promised performance often lack the capability and
resources (e.g, computing capacity, human capacity) needed
for monitoring. A solution for the mentioned issues is a trusted
third party who can take care of monitoring activities and act
as a broker for both cloud providers and cloud consumers [6].

Cloud computing is the evolution of distributed computing,
therefore, many legacy approaches for monitoring distributed
systems can also be applied for cloud computing. In addition to
the characteristics inherited from distributed computing, cloud
computing can also be scaled up and down dynamically, which
makes adaptivity an important aspect for cloud monitoring.
Autonomous agents are often used to solve many problems in
distributed systems. Even though agents are an old technology,
they can still fulfill many requirements for monitoring in
cloud computing [7], [8]. An agent is referred to as an
entity (in general software entity) that can act autonomously
within a system given appropriate intelligence. Agents can be
moved from one container to another container, this feature is
called the mobility feature. While the autonomous behavior of
agents can support adaptivity and automatic task execution, the
mobility feature supports dynamic and flexible deployment.

In this paper, we introduce a user-oriented approach to
allow holistic monitoring for cloud computing:

• We design a role-based template to extend model-
based monitoring.

• We make use of agent mobility [9] in combination

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

rst
Textfeld
The An Binh Nguyen, Melanie Siebenhaar, Ronny Hans, Ralf Steinmetz: Role-based Templates for Cloud Monitoring. In: Randy Bilof: Proceedings 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing (UCC 2014), p. 242-250, Computer Society Conference Publishing Services, December 2014. ISBN 9781479978816



with our proposed role-based templates to enhance
flexibility and adaptability of monitoring activities.

• We propose to use third-party monitoring as a service
as the main facilitator for the previous two proposi-
tions. With a trusted third-party, we can also realize
independent monitoring.

The rest of this paper is structured as follows: In Section II,
we review and discuss the related work. Section III discusses
our proposed role-based templates for cloud monitoring and
their specification. Section IV discusses the incorporation of
mobile agents in our approach to allow for holistic monitor-
ing. In Section V, we describe the results of the conducted
experiments with our proof-of-concept prototype. Finally, the
conclusion and outlook for future work will be provided in
Section VI.

II. RELATED WORK

Monitoring distributed systems has been one of the most
challenging problems since decades. Accordingly, there have
been several prominent monitoring solutions for distributed
systems which are still in use in practice today, e.g., Nagios
[10], Ganglia [11]. However, these systems are designed to
target distributed servers; as a result they focus on monitoring
infrastructure and lack support for services of higher layers
in cloud computing, i.e., SaaS. In addition to the existing
monitoring solutions for distributed systems, there have been
many research works that address different issues of cloud
monitoring.
The services model of cloud computing requires the bridging
between low-level and high-level monitoring metrics. In gen-
eral, there are different performance metrics, some of them
can be measured directly, some of them have to be derived
from other metrics. LoM2HiS [12] is such an approach that
attempts to map the monitoring metrics from the infrastructure
level to a higher level. The monitoring is carried out by
monitoring agents on the corresponding cloud infrastructure.
Only the hardware and network resource metrics are collected
and sent to a remote host monitor. The low-level monitoring
data is forwarded through a message queue to a complex event
processing (CEP) engine for further processing as well as
mapping to higher layer monitoring metrics.
CASVID [13] deals specifically with SLA management and
application monitoring for cloud computing. The framework
uses a front end to allow users to deploy pre-configured cloud
instances. Collection monitoring data is conducted using the
SNMP protocol. The management node polls the monitoring
data periodically from the SNMP agent running on each VM
instance. To determine the most effective polling interval, the
authors design an algorithm which looks for the most optimal
interval from a list of possible intervals by comparing the net
utility obtained from these.
Hoßbach et al. [14] present a monitoring architecture which is
based on CEP and a message broker for data delivery. Mon-
itoring data collected from different cloud layers by capable
sensors is sent as stream. Streaming data can be aggregated
and filtered easily by a CEP engine. A message broker is
in charge of routing data streams from one component of
the monitoring system to the other and is the central entity
of the proposed architecture. By connecting all modules of
the monitoring system and the cloud system to the message

broker, the cloud system and the monitoring system are able
to communicate with each other and make use of data streams
produced by other modules. Thus, a high level of aggregation
can be achieved.
MISURE [15] exploits different existing monitoring solutions
and adapts them for cloud monitoring. MISURE is based on
the publish/subscribe model to disseminate monitoring data.
Monitoring data collected from different sources is published
as stream. Data streams can be aggregated or split in different
ways which will result in appropriate streams to be delivered
to subscribers. The subscription can be done in three ways,
i.e., a subscription through notification, a subscription through
storage engine and a PaaS API intended for developers. The
ability to exploit and plug existing monitoring solution into
the system makes the MISURE approach extensible.
DARGOS [16] also follows the publish/subscribe model and
focuses on reducing the amount of transmitted data generated
by monitoring. DARGOS bases its data delivering system on
DDS - Data Distribution Service. In DARGOS, the cloud
hosts need to be deployed hierarchically and grouped together
into zones. Each monitoring agent is in charge of receiving
data from one zone, but a hypervisor agent can receive data
from several zones, which supports multi-tenancy for cloud
computing. The system also allows tenants to configure the
monitoring view adaptively with regard to the requirements
by subscribing to different topics.
Leitner et al. [17] use Aspect Oriented Programming to move
execution code to a remote cloud host. Moving code remotely
allows the system to adapt the execution of tasks dynamically.
Moreover, the authors also propose a generic architecture for
event based monitoring. Each component of the monitoring
system can emit events which will go through a CEP engine
and be correlated to a higher-level monitoring event. The
designed architecture comprises three correlation levels, i.e.,
host level, resource level and metric level. Grouping events
hierarchically is an important step in order to define metrics
for holistic monitoring in cloud computing.
König et al. [18] introduce another cloud monitoring architec-
ture which collects data from all layers of cloud computing.
They divide their monitoring system into three layers. The data
layer makes use of different adapters to collect monitoring
data from different sources; the processing layer uses a meta
language to define queries and policies which are executed
by the operators to aggregate monitoring data; the distribution
layer is in charge of deploying the monitoring components on
the cloud infrastructure according to the definition from the
monitoring policies.
Although SAaaS [19] with the main focus on security is
designed for abnormal incident detection, its architecture is
still suitable to monitor performance in cloud computing. The
system makes use of autonomous agents to detect violations
or possible threats. The threats of business flows can be
represented using a special security modeling language. This
formal representation allows the agents to react automatically
on detected security breaches.
Shao et al. [5] present a model-based monitoring framework
for cloud computing. The authors realize the importance of
abstracting from the concerns such as types of servers or types
of databases to reduce complexity for monitoring. As a result,
an entity model is constructed which represents a running
cloud. The entity model focuses on functional aspects of a
cloud instance. Based on the profile model, cloud monitoring



can be orchestrated accordingly during run-time.
Comparable to our proposed approach are the works of [5]
and [19]. In contrast to [5], [19], our user-oriented template
model is able to represent monitoring requirements that are
specific to a particular role. Both functional and non-functional
requirements are supported. With role-based templates, we are
able to reduce the complexity for personalized monitoring.
Even though the monitoring roles abstract from individual
users with similar interests in monitoring, they can still be
adjusted to individual needs. The use of monitoring roles also
allows the users to better control the collection of monitoring
data, thus supports privacy protection. Last but not least, our
architecture is designed to support adaptivity for monitoring
during run-time. In the following sections, we will gradually
present the design of the components that constitute our
monitoring system.

III. ROLE-BASED TEMPLATES FOR MONITORING

A monitoring task can vary a lot based on the context
and the demands of a user. With regard to cloud computing,
it gets even more complicated. A cloud consumer of one
service can be a cloud provider of another service. Even when
using the same service, different roles will lead to different
concerns, e.g., an end user using a cloud storage instance is
concerned whether the storage instance is available, while a
service developer might want to get more information from
the instance such as network overload from data access. Given
the fact, that a cloud actor can take on different roles at the
same time, the importance of distinguishing roles for cloud
monitoring is emphasized.

A general service establishment process involves the leas-
ing of infrastructure resources from a provider, the creation of
the service on the basis of the leased resources and the usage of
the service. Based on the taxonomy of cloud computing with
three main service models (IaaS, PaaS, SaaS) [4] and the ser-
vice establishment process, we identified three main roles for
cloud monitoring, i.e., end user, developer and infrastructure
operator. A similar role classification scheme can also be found
in [5]. An end user is the service consumer who usually has no
expertise about maintaining the service. An end user simply
wants to use the service to fulfill her goal. A developer is
referred to as the creator of a service. A developer is usually an
expert with the deep knowledge about the cloud services stack
and the underlying resources required to run the services. An
infrastructure operator is the owner of the infrastructure, whose
main concern is to keep the infrastructure available and com-
pliant to the agreements and demands negotiated with the cloud
consumers. Further role classification schemes are possible if
we consider cloud computing from other perspectives. One
other role classification is to further distinguish between private
users and enterprise users. While a private user often uses
public cloud services, an enterprise user can set up and build
hybrid cloud infrastructures. Hence, the monitoring concerns
and responsibilities for these two roles are different. Depending
on the scenarios, we can create monitoring roles that capture
common requirements for particular contexts. Hence, a roles
database can be conceivable. Another advantage of using mon-
itoring roles can be noticed in monitoring data transmission.
Given different concerns, different roles will require different
data. An end user without expertise about the infrastructure is
not interested in low-level monitoring parameters, rather he

is more concerned to get notified in case his demands for
the service are not met. In this case, it is sufficient for the
user to receive only a short notification, without sending the
whole monitoring information required for service developers.
In another example, a service developer needs to get detailed
information about the underlying infrastructure so that he can
react to failures. Thus, the amount of data that is transmitted
in these two examples is extremely different. Therefore, it is
beneficial to determine, which data to send and how much
data to send depending on different contexts. By doing so,
we will be able to spare a considerable amount of data given
millions of users and cloud instances. The separation of roles
helps us to achieve this goal. By assigning suitable roles for
each cloud service, users are able to determine which data and
how much data to be sent individually for various scenarios.
Hence, the amount of monitoring data to be transmitted can be
reduced intelligently. A template depending on the respective
role predefines the maximum amount of monitoring data, and
can be further adjusted to suit the need of each single user.

Having the classification into roles that capture the spe-
cific requirements for different services, the complexity of
cloud monitoring can be reduced considerably. Moreover, it
is possible to further enhance the monitoring process with
a kick-off template. A monitoring template is an abstract
description which helps to model the monitoring requirements.
A monitoring template represented in a modeling language
with a standard syntax can be processed automatically. For dif-
ferent roles, we can predefine different templates which serve
specifically for their needs. Users are allowed to configure the
template based on their demands. Multiple templates can be
nested together which allows to cope with more complex use-
cases. All in all, role-based monitoring templates can be reused
easily across different domains and cloud providers.

Inspired by the SLA template model from SLA@SOI
[20], we designed an abstract model for monitoring templates.
The abstract monitoring templates capture the most important
aspects which are required for monitoring. The abstraction
can be represented using different modeling languages which
allows for exchange and task automation. The abstract model
for the monitoring templates is shown in Figure 1. To support
model re-usability, the monitoring templates which have been
created before are stored in a database together with multiple
meta-information. The meta-information altogether character-
ize the context of the respective monitoring scenario. The users
depending on their corresponding roles can query the database
to look for templates with similar contexts based on the meta-
information. If similar templates can be found, these templates
will be returned back and can be used directly by the user or
can be adapted respectively. If no result can be returned, a
default template will be recommended to the user according
to his role.

A template comprises three main components, i.e., cloud
endpoint, monitoring variable and monitoring policy (cf. Fig-
ure 1). Cloud endpoint contains monitoring layers of the cloud
services (IaaS, PaaS or SaaS for further recommendations
regarding monitoring parameters) and deployment details of
the monitoring units. Since cloud instances can be located
at many places, remote deployment of monitoring units is
an important aspect. Hence, under deployment details, the
user needs to provide information how to connect to the



Fig. 1. Abstraction model of role-based templates for cloud monitoring

cloud services. This information is captured by the parameters
defined in the location component of the template. Location
parameters can be, for example, a URL address or a SSH
address. To make sure that the monitoring units get official
access rights to the cloud service, the access information of
the user such as password or private key have to be specified
under authentication parameter. Furthermore, in authentication
detail, the user can also specify to which extend the monitoring
entity is allowed to access his cloud instance with regard
to the granted role. Monitoring variables are a crucial part
of the monitoring template. The user has to specify what
he wants to measure. We classify the monitoring variables
into two main types, i.e., simple variables and composite
variables. Simple variables are the monitoring parameters
which can be measured directly. Low-level resource metrics
and operating system statistics are examples of this type of
variable. The composite metrics represent a combination of
multiple simple metrics. An example for a composite metric is
availability which can be calculated by uptime and downtime.
The composite metrics tend to be high-level metrics which are
often of concern for the end user. The monitoring variables
dictate which metrics to measure. To complete the monitoring
template, we still need to know how to measure the monitoring
data and what to do with the obtained data. This information
is defined under monitoring policies. Accordingly, there are
two sub-components under monitoring policy, i.e., monitoring

rules and operation. The monitoring rules are the expressions
that indicate how to measure the monitoring variables and
what are the conditions that the rules need to be aware of.
For instance, the CPU utilization of an instance needs to be
measured every 30 seconds and checked if it exceeds 99%
(this might indicate an overload that requires proper reaction).
Last but not least, it is important to define which operations
to execute after collecting monitoring data. A simple but
very common operation is to send the monitoring report to
a dedicated destination. Further automatic reaction is possible,
such as automatic scale up or scale down of the infrastructure.
The operation definition in the template can also be used
as an interface to integrate the monitoring system into other
management processes such as billing or analytic systems.

IV. AGENT-BASED MONITORING ARCHITECTURE

Agents are an old but powerful technology which is still
used a lot in scientific researches. Agents can be understood
as a software entity which can act autonomously based on the
intelligence it is given. Therefore, agents are generally useful
for distributed systems and particularly for monitoring. We
combine our proposed model for role-based templates with
agents for cloud monitoring. We define and use three types of
agents in our monitoring architecture: activator agent, sensor
agent and collector agent. The functions of these agents will
be described together with the monitoring workflow. We divide



Fig. 2. Monitoring architecture by incorporating monitoring roles, monitoring templates and various types of agents

the monitoring workflow into two main steps and describe
these steps respectively in the following subsections: monitor
deployment and monitor data collection. The overall design of
our monitoring approach can be found in Figure 2.

A. Monitor deployment

Our monitoring architecture is designed following a trusted
third party approach. In our architecture, a trusted third party
will take care of the monitoring for a cloud actor regardless if
he is an end user, a developer or cloud operator. Nevertheless,
the same workflow can also be executed by the cloud providers
themselves. In order to deploy the monitoring solution for
the respective cloud services, a user configures a monitor-
ing template as described in Section III. The configuration
and generation of a monitoring template are done through a
gateway provided by a trusted third party. With the chosen
roles and the configured monitoring template, the trusted third
party now obtains enough information to deploy the actual
monitoring service. An activator agent will be created at this
point for the deployment task. The activator agent can extract
the cloud endpoint from the template. With the endpoint
information, the activator agent moves itself to the cloud
instances to be monitored. In the cloud endpoint definition, the
activator agent can also extract the appropriate authentication
data in order to obtain the required access rights to execute
the actual deployment on the cloud instance. The access rights
also allow the activator agent to check for the dependencies
and requirements to activate the monitoring activities on the
cloud. After validating that all the desired conditions are met,
the activator agent will create the corresponding sensor agent
and remove itself from the monitored cloud instances to spare
resources. The use of a separate activator agent as mobile
agent to carry the parameters required for monitoring and
the creation of the sensor agent for the actual monitoring
task directly on the cloud will further reduce the network

traffic. This is due to the fact that in most cases, the activator
agent only has to contain simple behavior (less code/data)
for the activation, while the sensor agent often requires more
complex behaviors (more code/data). Since a cloud can contain
thousands of instances, moving complete sensor agents to all
these instances will obviously generate more traffic compared
to moving only activator agents. In addition, sensor agents may
fail during their monitoring activities, e.g., due to an outage of
the underlying infrastructure. Hence, appropriate approaches
for robust monitor placement are required that are explored in
our ongoing work in [21], [22].

B. Monitor data collection

After having been created on the cloud systems, the sensor
agent will carry out the real monitoring tasks based on the
monitoring policies defined in the monitoring template. The
activator agent from the previous step already checked the
dependencies required for the monitoring activities; thus, upon
creation, the sensor agent is capable of collecting monitoring
data according to the template and executing appropriate
actions. The data collected by sensor agents can be low-level
monitoring data such as CPU and memory usage or high-
level monitoring data obtained by aggregating the low-level
data. For example, availability is calculated using mean time
to failure and mean time to repair. Both types of data can
be collected or derived by the sensor agent. To facilitate the
collection of low level-monitoring data, the sensor agent can be
equipped and extended with further tools and libraries which
enable to access the required information. The definition of
monitoring variables in the template allows the sensor agent
to calculate high-level monitoring metrics by combining the
collected low-level metrics.

Monitoring data collected from the cloud instances can
be evaluated directly on the cloud or be disseminated to



other remote components in the monitoring system for further
processing. These are specified in the operation entry located
under the monitoring policy entry of the template. In case
that the monitoring data needs to be disseminated remotely,
the operation will contain the destinations of the receivers.
The corresponding receivers in our monitoring architecture
are also realized through agents, i.e., collector agents. Col-
lector agents are a special type of agents which are able to
communicate directly with sensor agents. The communication
between two agents is bidirectional. The collector agents can
be started based on the preferences of the user defined in the
monitoring template. Hence, collector agents can be run on
the infrastructure of the trusted third party or on a dedicated
server of the user. A service developer often owns other
servers besides cloud instances. In addition to the task of
receiving monitoring data from a sensor agent, the ability to
communicate bidirectionally with a sensor agent also allows
the user to send commands to the sensor agent through the
collector agent. In consequence, with appropriate intelligence,
the sensor agent can adapt itself upon receiving commands.
Therefore, such set-up will allow our monitoring system to be
adaptive during the monitoring process.

We also employ complex event processing (CEP) in our
monitoring architecture since a CEP engine can filter and
aggregate monitoring data efficiently. We deploy CEP engines
at two different levels. A CEP engine is started together
with one sensor agent in order for a sensor agent to filter,
correlate and evaluate the monitoring data directly on the
cloud. Similarly, a CEP engine is started together with a
collector agent. The collector agent is intended to receive
monitoring data from multiple sensor agents. Hence, with the
CEP engine in conjunction with a collector agent, we can
correlate information from multiple cloud instances that make
up the underlying infrastructure for the cloud services.

The position of CEP at two levels has two main advantages.
At the cloud instances, this allows the sensor agent to filter
monitoring data which reduces the network traffic caused
by monitoring data transmission. The sensor agent with the
CEP engine is also able to correlate raw low-level data to
high-level user oriented monitoring metrics. For the collector
agent, the CEP engine allows to correlate data from multiple
cloud instances belonging to the user. Thus, holistic monitoring
across providers can be achieved.

V. EVALUATION

Based on the previous design of our monitoring approach,
we implemented a prototype as a proof of concept for eval-
uation. The architecture of our prototype is shown in Figure
2. In the evaluation, we analyzed the overhead caused by the
monitoring system. We used the agent development framework
JADE1 to implement the different types of agents of our
concept. An agent can be extended with further libraries for
more functionalities. Furthermore, we used the JADE Inter-
Platform Mobility (jipms)2 to move agents from one container
to another remote container.

The server as a trusted third party which allows a user
to configure monitoring templates is realized using Apache

1http://jade.tilab.com/
2http://sourceforge.net/projects/jipms/

5s 60s

Dissemination interval
0

1

2

3

4

5

C
PU

 u
sa

ge
 in

 %

VM monitoring
Application monitoring
Holistic monitoring

Fig. 3. CPU overhead measured by deploying a sensor agent on a client

VM Monitoring Applicaton Monitoring Holistic Monitoring
0.0

0.1

0.2

0.3

0.4

0.5

N
et

w
or

k 
tra

ffi
c 

ra
te

 K
B/

s

Fig. 4. Data transmission rate measured by a monitored instance in three
sample scenarios

Tomcat Server with a communication gateway to the JADE
platform. A user configures a monitoring template by choosing
his role. Depending on the role, different forms and different
parameters will be presented to the user. These can then be
configured by users. Depending on the scenario and demands
of a user, the collector agents can be created in advance if the
monitoring is carried out by the trusted third party; or the user
can specify a destination of his own to run collector agents as
well. By specifying a destination for collector agents, the user
can control the final aggregation and storage of monitoring
data. The information extracted by the submitted form will
be transferred through a gateway to a JADE main container.
The activator agent is created at this point with the monitoring
parameters. Next, the activator agent will move itself to the
designated cloud instance. The sensor agent will be created
there as a result with the required dependencies to collect
monitoring data. We use Sigar3 to collect monitoring data from
the cloud instances. In our design, we also emphasized the
necessity of a CEP engine at two different collection levels.

3http://www.hyperic.com/products/sigar



50 100 150 200 250 300
Number of concurrent Sensor Agents

100

200

300

400

500

600
N

e
tw

o
rk

 t
h
ro

u
g
h
p
u
t 

in
 K

B
y
te

s 
a
t 

C
o
lle

ct
io

n
 A

g
e
n
t'

s 
si

d
e

Application monitoring
VM monitoring
Holistic monitoring

Fig. 5. Data throughput measured at the monitoring server in three sample
scenarios

0 50 100 150 200 250 300 350 400

Number of concurrent Sensor Agents
0

500

1000

1500

2000

2500

Ti
m

e 
to

 fi
ni

sh
 c

on
cu

rre
nt

 J
ob

s 
of

 C
ol

le
ct

io
n 

Ag
en

t i
n 

m
s

Linear Regression: y=4.71x+65.40,R2 =0.96

Collected samples

Fig. 6. Execution time measured at the monitoring server

Therefore, each sensor agent and collector agent will start
an instance of a CEP engine upon their creation. We use
Esper4, a Java based CEP engine. After having been collected,
the monitoring data will be stored in a NoSQL database by
the collector agent. We choose MongoDB5 as the solution
for a database. MongoDB provides several benefits which
address some requirements of our concept. First, we transform
the monitoring data into JSON format, which is officially
supported by MongoDB; second, MongoDB is a document-
oriented database and does not require a user to specify a
database schema in advance. As a consequence, MongoDB
allows users to change and store different data structures during
the monitoring process.

The evaluation scenarios are carried out using two Amazon
EC2 micro instances6 with the minimum configuration. Both
instances run Ubuntu Server 12.04.1 LTS with an Intel(R) CPU

4http://esper.codehaus.org/
5http://www.mongodb.org/
6http://aws.amazon.com/de/ec2/instance-types/

E5-2650, 2Ghz, 8GB space, 0.613 GB memory. On the first
instance, we deployed the server for the user to configure
the monitoring template; the second instance was intended
to be monitored. All in all, we emulated three monitoring
scenarios, i.e., VM monitoring, application monitoring and
holistic monitoring. VM monitoring emulates the collection
of raw monitoring data while application monitoring emulates
the monitoring tasks that aim to collect data related to the
processes generated by a particular application. The holistic
monitoring scenario emulates the collection of both, raw
resource information and application processes related metrics.
We collected CPU utilization, free memory, used memory and
system uptime for the VM monitoring scenario. In the ap-
plication monitoring scenario, we collected used memory and
the uptime of the corresponding processes. The data collection
in holistic monitoring contained all of the aforementioned
metrics. Furthermore, we used two different data transmission
intervals in the evaluation: one short interval with 5 seconds
and one longer interval with 60 seconds. Each test scenario
was repeated 20 times.

On the monitored instance, we measured the CPU overhead
and network traffic generated by the monitoring system. The
results are visualized in Figures 3 and 4. It can be observed
from Figure 3, that the CPU overhead is negligible and smaller
than 3% in all runs. There is almost no difference between the
two dissemination intervals of 5 seconds and 60 seconds. This
indicates that the CPU overhead generated by the system is
not caused by the data transmission, but rather by the data
collection process and by other dependencies such as the CEP
instance. One noticeable fact is that the CPU overhead in the
application monitoring scenario is very close to that of the
holistic monitoring scenario but almost double compared to
the VM monitoring scenario. This is to be expected because
application monitoring and holistic monitoring need to look
for a process and its corresponding monitoring metrics while
VM monitoring only needs to read the monitoring data directly
from the file system.

Besides CPU overhead, we also analyzed the amount of
network traffic generated by the dissemination process at the
monitored instance. For this test, we only measured the traffic
rate for the 5 seconds interval scenario, since the amount of
traffic will be obviously higher compared to the 60 seconds
interval. In all three scenarios, the traffic rate at the monitored
cloud instance is only around 0.4 KB/s and the standard
deviation of the traffic rate values is smaller than 0.001 KB/s.
Hence, the traffic rate for one day will be around 35 MB.
All in all, the overhead on the monitored instances caused by
the sensors and the corresponding dependencies for monitoring
activities is small.

On the other cloud instance which represents a trusted
third party, we are interested to assess the overhead caused
by the collector agent when it has to handle more than one
sensor agent. We emulated this scenario by starting multiple
sensor agents and let them send monitoring data concurrently
to the collector agent. We increased the number of sensor
agents gradually to the limit that EC2 micro instance can
still support. For the evaluation, we measured two types of
overhead, i.e., the traffic throughput that one collector agent
has to handle and the execution time that this collector agent
needs for processing monitoring data. The execution time of



the collector agent is measured from the point in time where
the collector agent receives the monitoring data until it finishes
writing the data into the database. The results are visualized in
Figure 5 and 6. The highest throughput which can be observed
from the test is caused by 300 sensor agents in the holistic
monitoring scenario (300 sensor agents are the limit which an
Amazon EC2 micro instance can still hold up to). Even in
this case, the measured throughput is very small: 577.28 KB.
Furthermore, with the increased number of sensor agents, the
traffic throughput only increases linearly. The results measured
for the execution time of the collector agent in Figure 6 clearly
show that the collector agent is able to handle a great number
of monitoring data in linear time. The execution time data
sampled from the test cases can be fitted by the linear line
y = 4.71 ∗ x + 65.40 with R2 = 0.96. This shows that the
execution time of the collector agent only increases linearly
with the growth of the number of sensor agents. This indicates
that the collector agent can deal with the demand for scalability
in cloud monitoring. In summary, one single collector agent
can deal with the scalability in cloud computing; if we increase
the number of collector agents, the overhead of each collector
agent will be further reduced.

VI. CONCLUSION AND FUTURE WORK

Since monitoring has been one of the major concerns for
cloud computing in the recent years, there have been many
research works that address different approaches for various
aspects and requirements of cloud monitoring. The work at
hand proposes a role-based template approach in conjunction
with agents technology. Combining roles and templates allows
us to abstract from the monitoring tasks compared to model
based monitoring. Furthermore, the monitoring templates are
reusable for the same roles under different scenarios. We also
designed an abstraction model for the monitoring templates.
The abstraction model of the templates can be represented by
other formal modeling languages and standard syntax, which
allows the automatic processing of the templates. A monitoring
template created based on the demands of different roles helps
a user to get started with the monitoring more easily. Even
under the same role, templates can still be configured and
adapted individually for different users with different demands.
This ensures the flexibility of our approach. In addition, the
monitoring roles also give us the ability to extend the template
for security monitoring by specifying additional parameters
such as access restrictions for different components during the
monitoring process.

In our work, the core idea of role-based monitoring tem-
plates is further combined with agent technology. Agents
with their autonomous behaviors and intelligence increase the
flexibility in monitoring and permit dynamic configuration
during runtime. With a monitoring template, an agent is given
the intelligence to execute monitoring tasks autonomously and
adaptively. The monitoring templates also allow the monitoring
system to be further extended and coupled with other important
components of cloud computing systems such as: analysis,
planning and automatic reaction on violation of constraints.
We combined role-based monitoring templates and agent tech-
nology with complex event processing to a holistic monitoring
system for cloud computing that can also serve as a basis for
further cross-layer extensions.

For future work, we will extend and improve our mon-
itoring approach concerning the following aspects. We plan
to employ machine learning techniques for the sensor agents
to allow the sensor agents not only to be adaptive but also
to be predictive towards monitoring tasks. Besides, we will
work on the integration of our monitoring approach with
other management processes of cloud computing, e.g., the
monitoring template can be extracted from the result of the
SLA negotiation process between a cloud consumer and a
cloud provider. Finally, automatic actions can also be trig-
gered depending on the detected events. Therefore, a complete
MAPE (Monitoring, Analysis, Planning and Execution) cycle
will be considered in our future work.

REFERENCES

[1] A. Fox, R. Griffith, and A. Joseph, “Above the Clouds: A Berkeley View
of Cloud Computing,” Dept. Electrical Eng. and Comput. Sciences,
University of California, Berkeley, Rep. UCB/EECS, vol. 28, 2009.

[2] P. Mell and T. Grance, “The NIST Definition of Cloud Computing
(draft),” NIST Special Publication, vol. 800, 2011.

[3] G. Aceto, A. Botta, W. de Donato, and A. Pescapè, “Cloud Monitoring:
A Survey,” Computer Networks, vol. 57, 2013.

[4] B. Rimal, E. Choi, and I. Lumb, “A Taxonomy and Survey of Cloud
Computing Systems,” in INC, IMS and IDC, NCM, Fifth International
Joint Conference, 2009.

[5] J. Shao, H. Wei, Q. Wang, and H. Mei, “A Runtime Model Based
Monitoring Approach for Cloud,” in Cloud Computing (CLOUD), IEEE
3rd International Conference, 2010.

[6] L. Sun, J. Singh, and O. Hussain, “Service Level Agreement (SLA)
Assurance for Cloud Services: a Survey from a Transactional Risk
Perspective,” in Proceedings of the 10th International Conference on
Advances in Mobile Computing & Multimedia, 2012.

[7] J. Ahn, “Lightweight Fault-Tolerance Mechanism for Distributed Mo-
bile Agent-Based Monitoring,” in Consumer Communications and Net-
working Conference, 2009. CCNC 2009. 6th IEEE, 2009.

[8] R. Aversa, L. Tasquier, and S. Venticinque, “Agents Based Monitoring
of Heterogeneous Cloud Infrastructures,” in Ubiquitous Intelligence
and Computing, 2013 IEEE 10th International Conference on and
10th International Conference on Autonomic and Trusted Computing
(UIC/ATC), 2013.

[9] A. Liotta, G. Pavlou, and G. Knight, “Exploiting Agent Mobility for
Large-scale Network Monitoring,” Network, IEEE, 2002.

[10] “Nagios.” [Online]. Available: http://www.nagios.org/
[11] “Ganglia.” [Online]. Available: http://ganglia.sourceforge.net/
[12] V. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, “Low Level

Metrics to High Level SLAs - LoM2HiS Framework : Bridging the
Gap Between Monitored Metrics and SLA Parameters in Cloud En-
vironments,” in High Performance Computing and Simulation (HPCS)
International Conference, 2010.

[13] V. Emeakaroha, T. Ferreto, M. a. S. Netto, I. Brandic, and C. a. F. De
Rose, “CASViD: Application Level Monitoring for SLA Violation De-
tection in Clouds,” in Computer Software and Applications Conference
(COMPSAC), IEEE 36th Annual, 2012.

[14] B. Hoßbach, B. Freisleben, and B. Seeger, “Reaktives Cloud Monitoring
mit Complex Event Processing,” Datenbank-Spektrum, vol. 12, 2012.

[15] M. Smit, B. Simmons, and M. Litoiu, “Distributed, Application-Level
Monitoring for Heterogeneous Clouds using Stream Processing,” Future
Generation Computer Systems, vol. 29, 2013.

[16] J. Povedano-Molina, J. Lopez-Vega, J. Lopez-Soler, A. Corradi, and
L. Foschini, “DARGOS: A highly Adaptable and Scalable Monitoring
Architecture for Multi-tenant Clouds,” Future Generation Computer
Systems, vol. 29, 2013.

[17] P. Leitner and C. Inzinger, “Application-Level Performance Monitoring
of Cloud Services based on the Complex Event Processing Paradigm,”
in Service-Oriented Computing and Applications (SOCA), 5th IEEE
International Conference, 2012.



[18] B. König, J. Alcaraz Calero, and J. Kirschnick, “Elastic Monitoring
Framework for Cloud Infrastructures,” IET Communications, vol. 6,
2012.

[19] F. Doelitzscher, C. Reich, M. Knahl, A. Passfall, and N. Clarke, “An
Agent based Business aware Incident Detection System for Cloud
Environments,” Journal of Cloud Computing: Advances, Systems and
Applications, vol. 1, 2012.

[20] “SLA & SLA Template Model (Abstract Syntax),” http://wiki.sla-at-soi.
eu/@api/deki/pages/1970/pdf [last access 15.07.2014].

[21] M. Siebenhaar, U. Lampe, D. Schuller, and R. Steinmetz, “Robust Cloud
Monitor Placement for Availability Verification,” in Proceedings of the
4th International Conference on Cloud Computing and Services Science
(CLOSER), 2014.

[22] M. Siebenhaar, D. Schuller, O. Wenge, and R. Steinmetz, “Heuristic
Approaches for Robust Cloud Monitor Placement (accepted for publi-
cation),” in Proceedings of the 12th International Conference on Service
Oriented Computing (ICSOC), 2014.




