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Abstract. In order to provide useful energy saving recommendations,
energy management systems need a deep insight in the context of energy
consumption. Getting those insights is rather difficult. Either exhaus-
tive user questionnaires or the installation of hundreds of sensors are
required in order to acquire this data. Measuring the energy consump-
tion of a household is however required in order to find and realize saving
potentials. Thus, we show how to gain insights in the context of energy
consumption directly from the energy consumption profile. Our proposed
methods are capable of determining the user’s current activity with an
accuracy up to 98% as well as the user’s current place in a house with
an accuracy up to 97%. Furthermore, our solution is capable of detect-
ing anomalies in the energy consumption behavior. All this is mainly
achieved with the energy consumption profile.

1 Introduction

The realization of energy efficiency in buildings has become an important re-
search topic in industrial as well as research community. The main motivation
for this increasing importance is the conservation of energy in a world where
energy prices are always fluctuating and very sensitive to political as well as
natural crises. This is also driven by the wide spread of wireless sensor networks
which made it possible to collect fine-grained data about the building context
as well as the context of its inhabitants. In this paper, we develop three novel
experiments which exploit the huge information provided by the smart home
to achieve the main goal of our research efforts which is to conserve energy in
smart homes while maintaining user comfort. The main focus of our work in
this paper is the analysis of our smart home dataset which we call from now
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on SMARTENERGY.KOM dataset4. SMARTENERGY.KOM dataset is a large
dataset which contains about 42 million data points of sensor readings and user
feedback which we have collected from two smart home environments for the
primary purpose of detecting human activities based on wireless sensor net-
works [2], thus to save unnecessary consumed energy. In the first deployment, a
wireless sensor network was deployed for about 82 days. More than 22 million
activity related sensor events were generated by corresponding sensors. The du-
ration of deployment 2 was about two months, during which about 20 million
sensor readings were recorded. We have used two types of wireless sensor nodes
in both deployments. On one hand we deployed Plugwise5 sensors for sensing the
appliance-level power consumption of the household. Each device in the house
was connected to a Plugwise sensor which measures the load of the device. On
the other hand we deployed Pikkerton6 sensors for sensing the temperature,
brightness as well as the motion in the environment. In both deployments, nine
daily user activities were monitored:
Deployment 1 : Sleeping, Watching TV, Not at Home, Reading, Eating, Cook-
ing, Working at PC, Making Coffee and Cleaning Dishes.
Deployment 2 : Sleeping, Watching TV, Not at Home, Reading, Eating, Mak-
ing Tea, Listening Radio, Slicing Bread and Ironing.
These activities have been chosen based on the available electrical appliances
which can be monitored at home. Some of these activities like “Watching TV”
can be directly related to the power consumption. Other activities such as “Sleep-
ing” and “Not at Home” can be indirectly inferred from the power consumption.
This list of activities does not necessarily contain all the activities performed by
the user at home. Therefore, we have provided the user with the option “Ignore”
which implies as a feedback that the user’s current activity does not belong
to the list of activities provided by us. This option helps preserving the pri-
vacy of the user as well by giving her/him the choice whether to report her/his
current activity or not. All sensor readings which are related to the option “Ig-
nore” have been excluded from the dataset before conducting our experiments.
Based on these two deployments, we have built an activity detection framework
which uses the feedback provided by the user to learn his current activity and
relate it to the collected sensor readings. The remainder of this paper is struc-
tured as follows. Section 2 surveys related research projects whose main focus
is the analysis of datasets collected by wireless sensor networks in the context
of smart home. In Section 3, we present our novel concept for user localization
in indoor environments based on real-time appliance-level power consumption.
In Section 4, we analyze the temporal relations between the user activities and
examine whether the discovered relations could increase the accuracy of our
activity detection framework. In Section 5, we analyze the user’s daily power
consumption behavior. We conclude the paper in Section 6.

4 The dataset is available for download under: http://www.kom.tu-
darmstadt.de/research-results/software-downloads/software/smartenergykom

5 http://www.plugwise.com/
6 http://www.pikkerton.com/
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2 Related Work

In recent years, analyzing datasets collected from wireless sensor networks in
smart homes has become of great interest to computer science researchers. This
is mainly driven by the great potential offered by these datasets for developing
IT services which can improve the life quality as well as the energy efficiency of
the smart homes. Data mining techniques have been utilized in order to extract
all the possible useful hidden patterns contained in such datasets. In the work
of Chen et al. [4], they analyzed a dataset which contains more than 100,000
sensor events collected from two apartments. The primary purpose of their work
was to recognize human activities performed in these two apartments and under-
stand the related energy usage. They applied clustering techniques for identifying
the normal power consumption patterns, thus to detect abnormal energy usage.
Using classification techniques, they trained a model for predicting the energy
usage of an inhabitant based on her/his currently performed activities. Another
example is given by Hoque et al. [8], where 26 days of activity related sensor
events collected from a single resident home is analyzed. Based on the hypoth-
esis that each activity will trigger a set of specific sensors, they applied pattern
mining to find all simultaneously fired sensors. In the next step, different to [4],
clustering is used for discovering events based on previously extracted patterns.
Besides, they utilized clustering for labeling the instances. Finally, they build a
classification model for recognizing the activities. Fogarty et al. [6] analyzed 3.4
million sensor readings from a home shared by two adults. Their goal was to de-
tect water usage related activities by configuring microphone based sensors that
listen for the water flow into and out of a home. They applied the classification
algorithm support vector machine to train a model for recognizing different types
of water usage. Fluctuations of sound waves returned by the sensors are consid-
ered as features for training the classification model. Activated sensors together
with their temporal characteristics are then combined to form patterns for iden-
tifying the activities. Different from the aforementioned research projects, our
analysis is conducted on a much larger dataset. Moreover, the three experiments
conducted in our work have not been covered by any of these research works
although similar data mining techniques are utilized.

3 Sensing Power Consumption For User Localization

User localization has always been one of the central challenges in the design
of smart home environments. A wide variety of sensors such as Passive Infrared
sensors can be used in order to achieve this goal. Currently, the usage of electric-
ity consumption data for occupancy detection started to gain attention among
the research community as we see in [11] where the authors used the data col-
lected from smart meters for the purpose of occupancy detection. This leads us
to the idea of utilizing new kind of sensors for user localization in smart home,
namely the appliance-level power sensors which sense the power consumption of
individual household appliances. Therefore, in this paper we examine the usage
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of these sensors for the purpose of user localization in smart home where we aim
at localizing users with a better resolution than shown in [11]. Usually, users per-
form specific activities in specific places, such as cooking in the kitchen, sleeping
in the sleeping room and so on. Therefore, each activity is associated with cer-
tain appliances which consume energy during this activity. In other words, by
knowing the devices which are consuming energy, we can infer the location of
the user in the smart home. In order to verify this theory, we use supervised
learning techniques where the input of the classification model will be the user’s
real-time appliance-level power consumption and the output is the location of
the user. In the following sections, we explain the construction of the training set
for the supervised learning model and we evaluate the accuracy of this model.

3.1 Construction of The Training Set

The first step in supervised learning is to construct a training set for building
the classification model. As mentioned before, each user’s location in the smart
home is accompanied with a set of sensor readings representing the real-time
appliance-level power consumption. These sensor readings represent the input
for the supervised learning model along with the labels which represent the user’s
location. Sensor readings were recorded every ten seconds during the deployment.
However, activities normally last for several minutes or even hours e.g. sleeping.
In other words, if we directly construct a training set from these sensor readings,
the size of the training set will be extremely large leading to an inefficient model
construction. Therefore, we need to reduce the size of the training set without
affecting the accuracy of the trained classification model. To this end, we divide
the whole time series of sensor readings into timeslots of two minutes. We chose
the period of two minutes as it helps achieving a good accuracy while minimizing
the overlapping between activities in one timeslot. Then, for each sensor, we
extracted its maximum value in each timeslot as one feature for constructing the
feature vector. This means, every two minutes will represent a training instance
in which the features are the maximum values of sensor readings during this
timeslot. In order to provide the labels of the training instances, we relied on
the user feedback which informs us about the user current activity. By knowing
the current user activity, we can infer the current location of the user, because
each activity is performed in one and only one location. The labeling process
mainly relies on the time interval between one activity and the next activity,
namely the duration of each activity. Therefore, by examining in which time
interval the timestamp of an instance is falling into, we can assign the location
of the corresponding activity in that time interval to the instance. The final
generated form of the instances is shown in Eq. 1, where Sn max(sloti) means
the maximum sensor value of sensor n in ith timeslot, and m is the total number
of timeslots. Therefore, the training set is composed by a set of such instances
< I1, I2, ..., Im >.

Ii =< S1 max (sloti) , S2 max (sloti) , ..., Sn max (sloti) ,

Class(sloti) > i ∈ [1,m]
(1)
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3.2 Building and Evaluation of The Classification Model

After obtaining the training instances, we built the prediction model for both
deployments by applying the random forest classifier provided by Weka [7]. We
have chosen the random forest algorithm as it proved to be the most suitable
algorithm for our dataset as well as other datasets similar to it as shown in
[5][16]. In order to find a good balance between accuracy and size of model e.g.
to prevent overfitting the model, we first build the model with training instances
of one week and then accumulate the training set by one week data points each
testing. This is necessary as in real-life deployments, the learning phase should
be as short as possible. Both deployments have the following four locations to
be predicted, by “Outside”, we refer to the instances where the user was not at
home:
Deployment 1 : Kitchen, Living room, Work area, Outside.
Deployment 2 : Kitchen, Living room, Sleeping room, Outside.
To evaluate the built model, we apply10-folds cross validation [12] which parti-
tions the training set into 10 subsets and always uses one subset to test the model
built upon the remaining 9 subsets. This process is repeated 10 times and pro-
duces a mean accuracy over all rounds. Figure 1(a) demonstrates the accuracy of
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(b) Plugwise + time of the day

Fig. 1. Accuracy of location recognition model built for deployment 2.

the model built for deployment 2. As we can see in the figure, the random forest
algorithm reaches its highest accuracy, namely 85.5% with a training set of 8
weeks. However, we can conclude from the figure that a training set of 2 weeks is
already sufficient for acquiring a high accuracy. This conclusion is based on the
fact that the accuracy only rises about 2.5% when the number of weeks included
in the training set increases from 2 weeks to 8 weeks. This conclusion allows us
to shorten the duration of the data collection process in the deployments to come
which lessens the burden on the user in providing feedback and therefore leads
to a more acceptance of the system. In order to obtain a better understanding
of the classification accuracy, we list the precision, recall, and F-measure values
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Table 1. Accuracy by classes for deployment 2 by using two weeks dataset

Classes Precision Recall F-Measure

(K)itchen 87.40% 49.30% 64.10%

(S)leeping room 76.70% 99.80% 86.80%

(L)iving room 97.70% 94.10% 95.90%

(O)utside 0.00% 0.00% 0.00%

Table 2. Confusion matrix for deployment 2 by using two weeks dataset

(K) (S) (L) (O)

(K) 49.33% 44.91% 5.76% 0.00%

(S) 0.10% 99.83% 0.07% 0.00%

(L) 2.11% 3.82% 94.08% 0.00%

(O) 0.34% 99.49% 0.17% 0.00%

for each location in Table 1. Moreover, we show the associated confusion ma-
trix in Table 2. The result represents the model built for deployment 2 with a
training set of 2 weeks. Although the overall accuracy reached by this model is
83% (cf. Figure 1(a)), the recall values of the classes “Kitchen” and “Outside”
are very low with 49.3% and 0% respectively as shown in Table 1. In order to
understand the reasons for this phenomenon, we have to look on the confusion
matrix in Table 2. From the confusion matrix, we can see that 44.91% of the
instances of the class “Kitchen” have been falsely classified as “Sleeping room”
instances. Besides, almost all the instances of the class “Outside” have also been
falsely classified as “Sleeping room” instances. This can be explained based on
the following facts. First of all, the confusion between the classes “Outside” and
“Sleeping room” can be returned to the fact that when the user is outside or
sleeping, all Plugwise sensors were almost keeping in silence as no appliances are
required to perform these activities. Although, there are some values of Plug-
wise sensors (e.g. lamp sensor) related to the “Sleeping room” class stored in the
dataset, the lamp was in most cases not turned on while sleeping. Furthermore,
the instance of the class “Outside” were classified as “Sleeping room” and not the
other way around because “Sleeping room” is a dominant class. This is due to the
fact that the duration of sleeping is much longer than that of being outside in this
deployment which leads to more training instances for the class “Sleeping room”
than for the class “Outside”. The activity of “Eating” was the major reason of
falsely classifying instances of “Kitchen” into “Sleeping room”. This activity is
supposed to be identified through the Plugwise sensor connected to the radio in
the kitchen. However, the radio was not always turned on or only turned on for
a part of time during the activity of “Eating”. To solve this problem, we need
a strong discriminator which can help distinguishing the classes “Outside” and
“Sleeping room”. We thought about a feature which can be used in the learning
process in order to achieve this task. One feature which can fully perform this
role is the time of the day. By using the time of the day as a feature for building
the machine learning model, we add a strong discriminator especially between
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Table 3. Accuracy by classes for deployment 2 by using two weeks dataset (with time)

Classes Precision Recall F-Measure

(K)itchen 81.80% 73.30% 73.30%

(S)leeping room 98.20% 99% 98.60%

(L)iving room 96.10% 96.80% 96.50%

(O)utside 83.50% 86.30% 84.90%

Table 4. Confusion matrix for deployment 2 by using two weeks dataset (with time)

(K) (S) (L) (O)

(K) 73.32% 9.59% 4.99% 12.09%

(S) 0.99% 98.97% 0.03% 0.0%

(L) 0.65% 0.0% 96.84% 2.50%

(O) 7.77% 0.33% 5.57% 86.31%

the classes “Outside” and “Sleeping room”. We use the “hh:mm:ss” time format
as Weka can deal with this time format automatically. After using the time as
a feature in addition to the previous features, the overall accuracy of the model
has increased as shown in Figure 1(b). To better understand the effect of adding
the time to the feature set, we present the precision, recall, and F-measure values
for each location in Table 3. Furthermore, we present the associated confusion
matrix in Table 4. The results in these two tables have been achieved for de-
ployment 2 with a training set of 2 weeks. As we can see from Table 3 and
Table 4, the time has functioned as a strong discriminator between the class
“Sleeping room” and the classes “Outside” and “Kitchen” respectively. The use
of the time as a feature makes it easy to solve the confusion between the class
“Sleeping room” and the class “Outside” as the user in deployment 2 always
goes outside during the day and not during the night. The location “Kitchen”
can also benefit from the usage of time as a feature, because the user performs
most of his activities in the kitchen during the day.

4 Mining Human Behavioral Patterns

As humans tend to follow a regular routine in their daily life, their everyday
activities tend to happen in a certain order which mostly repeats itself every-
day. Discovering temporal relations between these daily activities may assist in
enhancing the accuracy of our activity detection framework. Hence, in this sec-
tion, we first try to detect any behavioral patterns which might exist in the data
collected in both deployments and then we examine whether these detected pat-
terns can help increasing the accuracy of the activity detection framework we
have previously developed.
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4.1 Extraction of Temporal Activity Patterns

As mentioned in [3], temporal relations between two activities (A, B) can be rep-
resented as A happens after B, before B, overlaps with B and so on. According to
the user feedback in both deployments, activities were performed consecutively
one after another which was a precondition for our dataset. Hence, we only ex-
amine the “before” and “after” relations between two activities. In the following
section, we introduce four terms related to the analysis before explaining the
operations of the pattern mining process.
Episode: According to [15], an episode is characterized by a pair of begin and
end timestamps, during which one or more activities can happen. As the user’s
daily activities are the major interest of our analysis, we specify the duration of
an episode as a single day. Hence, an episode is composed of all activities per-
formed during the day, namely all the activities between timestamps [00:00:00,
23:59:59]. This concept is expressed in Eq. 2, where A represents one activity, T is
the associated timestamp, n is the number of activities of the day, while d refers
to the number of days in that deployment. After that, we construct an episode
dataset by collecting all episodes during the whole deployment. By examining
the dataset, we obtained 64 valid days for deployment 1 and 61 valid days for
deployment 2. Days of deployment 1 are much less than the actual duration of
the deployment (about 82 days). This is due to the fact that the feedback was
not provided by the user in the last 18 days.

Episodei =< A1(T1), A2(T2), ..., An(Tn) > i ∈ [1, d] (2)

Sequence: A sequence is formed by at least two successively performed activi-
ties. For instance, <Eating, WatchingTV> means the activity “Watching TV”
happens directly after “Eating”.

4.2 Apriori Algorithm

For the extraction of the temporal relations between activities, we apply the
Apriori algorithm [1] which aims to discover frequent activity sequences based
on what is called their support and confidence:
Support: In our case, support measures the frequency of an activity sequence
appearing in the episodes dataset. It is computed as the number of episodes
that contain this sequence, divided by the total number of episodes (Eq. 3). A
frequent sequence can be defined as a sequence whose support is larger than a
predefined threshold (minSupp).

Support(< A,B >) =
#episodesContaining < A,B >

#episodes
(3)

Confidence: It represents the dependency between two activities i.e. the proba-
bility that one activity occurs given that a certain previous activity has occurred.
Hence, confidence for the sequence <A, B> is computed as the support of <A,
B> divided by the support of A. The main principle of the Apriori algorithm is
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Table 5. Examples of temporal activity patterns

A Cooking Eating Making Coffee

B Eating WorkingAtPC Eating

Supp. (%) 25.0 51.6 28.2

Conf. (%) 84.2 67.4 53.1

to scan the whole episodes dataset in order to find all frequent items (activities)
and exclude those which are rarely performed. However, a rarely performed ac-
tivity does not necessarily imply the nonexistence of a regular temporal activity
pattern which involves this activity. An example from our dataset is the “Read-
ing” activity. This activity has a support of 4.7% in deployment 1. However, if
the user always sleeps after reading, then the sequence <Reading, Sleeping> can
also be considered as a meaningful pattern due to its high confidence. As shown
above, a threshold has to be specified which determines the minimum value the
support of a sequence should have in order to be considered by the Apriori algo-
rithm as a regular sequence. This threshold is called the minSupp. On one hand,
a high minSupp value might cause the exclusion of meaningful patterns because
it involves activities with low support value. On the other hand, a small minSupp
value might cause the generation of a numerous number of meaningless patterns
by the Apriori algorithm. In order to overcome this problem, we utilize the mul-
tiple minimum supports mechanism [14]. This mechanism assigns a miniSuppi
to each item (Ai) by multiplying a user defined global miniSupp by the item’s
own support as shown in Eq. 4. By doing this, useful patterns regarding to the
rarely performed activities will not be neglected during the process. Meanwhile,
patterns regarding to one activity with support lower than the assigned minSupp
will be filtered out. Therefore, we define the global minsupp as 18%.

minSuppi = global minsupp× support(Ai) (4)

By applying Apriori algorithm, we obtained a list of temporal activity patterns
for each deployment. Table 5 lists some of the extracted patterns from the first
deployment where A denotes the previous activity and B denotes the current
activity. As we can see from the table, the user usually starts with the eating
activity directly after cooking with a confidence of 84.2%. After eating he often
works at PC with a confidence of 67.4%. The activity after making coffee is
also eating with a confidence of 53.1%. These examples show the existence of a
certain routine in our daily life. In the following section, we use the extracted
patterns in the activity detection process in order to see if it can help improving
the accuracy of this process.

4.3 Utilizing Patterns in Activity Detection

In this step, we integrate the patterns extracted by Apriori algorithm as extra
features in building the activity prediction model. The features we used for
the activity detection process were the maximum sensor values (Plugwise and
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Table 6. Activity detection accuracy with and without patterns (random forest)

Deployment 1 Deployment 2

Accuracy F-Measure Accuracy F-Measure

without 92.8% 92.7% 97.3% 97.3%

with 96.1% 96.1% 98.3% 98.3%
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Fig. 2. Activity detection accuracy by classes, results of with and without patterns are
compared.

Pikkerton) in timeslots of two minutes. As extra features, we added the previous
activity combined with the most likely current activity as it appears in the
sequences extracted by Apriori algorithm. Hence, the new feature vector is a
combination of all these features as shown in Eq. 5, where An−1 and An represent
the previous and the most probable current activity respectively. For labeling
the instances, we use the user feedback denoted as Class(sloti).

Instancei =< S1 max(sloti), S2 max(sloti), ..., Sn max(sloti),

An−1, An, Class(sloti) > i ∈ [1,m]
(5)

Table 6 shows the accuracy of the activity detection process for both deploy-
ments before and after adding the patterns extracted by Apriori algorithm. The
used classification algorithm is random forest. The overall accuracy explicitly
increases after adding the patterns. Furthermore and in order to obtain a more
comprehensive representation of the classification accuracy for each individual
activity, Figure 2 shows the results coming from deployment 2 using random for-
est. As we can see in Figure 2, the detection accuracy of each activity has also
explicitly increased after adding the patterns. The reason for this improvement is
that, besides the intrinsic features of the activities, namely the sensor readings,
the machine learner will also learn the temporal relations between the activities
from the patterns, thus recognize activities that occur in certain patterns more
accurately.
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5 Analysis of The Daily Power Consumption Traces

In this section we focus on the analysis of daily power consumption traces in our
two deployments. The main goal is to understand the daily power consumption
of individuals in smart homes and to find out based on time series analysis if the
people follow a regular power consumption pattern which repeats itself over the
days. The result of this analysis can be of great importance in many application
scenarios: it can help developing applications which allow individuals living in
smart homes to inspect their energy usage over the time leading to a more
energy-aware power consumption behavior. Besides, it can be of great benefit
to utility companies which by knowing the power consumption behavior of their
customers can recommend a more suitable tariff and direct the smart grid to
work more efficiently, thus to save energy.

5.1 Obtaining Hourly Power Consumption of Each Day

For the analysis to be conducted, we first need to compute the hourly power
consumption of each day. We calculate the power consumption for each hour
by summing up the power consumption within all timeslots of two minutes in
that hour. However, since Plugwise values are stored in unit “Watt”, we need
to convert them into “Wh” (Watt hour) for acquiring the power consumption.
To do this, we first compute the associated power consumption of each Plugwise
sensor in each timeslot. This is achieved by averaging the readings of each sensor
in that timeslot and dividing the average value by 30. We divided the average
by 30 as we only need the power consumption in timeslots of two minutes.
Then, for obtaining the total power consumption in each timeslot we sum all
the converted values of the Plugwise sensors in that timeslot. The computation
is indicated in Eq. 6, where j denotes the sensorId, i denotes the ith timeslot,
Sj(Sloti) denotes the average value of sensor j during timeslot i, and n denotes
the number of sensors. To compute the total power consumption in an hour, we
sum up the power consumption in all timeslots within that hour as indicated in
Eq. 7 where m denotes the number of timeslots, and h denotes the hour of the
day.

Psloti =

n∑
j=1

Sj(Sloti)

30
(6)

Ph =

m∑

i=1

Psloti h ∈ [1, 24] (7)

To make the results more comprehensive, we plot the obtained hourly power
consumption for each day. Figure 3 shows an example in which we see that
the user consumes more energy from 01:00 pm to midnight than from 3:00 am
to noon. When comparing this distribution to another one obtained from the
same deployment as shown in Figure 4, we can easily observe the similarity be-
tween these two distributions. In both days, the user followed a similar power
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Fig. 3. Power consumption with regard to the hours of the day on 2013-04-06 from
deployment 1.
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Fig. 4. Hourly power consumption distributions on 2013-04-06 and 2013-05-21 from
deployment 1, consumption values are normalized.

consumption pattern only shifted in time. The values in the figure are all nor-
malized so that they have a mean of zero and a standard deviation of one for the
purpose of comparison. Based on our observation from Figure 4, we conduct a
similarity comparison process on all the distributions which belong to the same
deployment. By verifying that all the distributions from the same deployment
follow some level of similarity, we can prove the user to have a regular power
consumption behavior which is the goal of this experiment as stated before. In
the following section, we introduce the process of similarity comparison, the used
algorithm, as well as the obtained results.

Similarity =
1

1 + warping score
(8)

5.2 Similarity Comparison

Similarity comparison between two time series can be conducted using several
algorithms. One of the these popular algorithms is the approach of symbolic
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Table 7. Results of similarity comparison of power consumption distributions in each
deployment

Deployment 1 Deployment 2

Min similarity 81.72% 88.13%

Max similarity 97.13% 97.68%

Avg similarity 90.32% 93.50%

representation [13] in which we convert each time series into a sequence of sym-
bols and calculate the distance of these resulting sequences of symbols. The
main disadvantage of this approach is that it does not take time shifting into
consideration. Thus, it will not recognize two series like the ones shown in Fig-
ure 4 similar to each other only because they are shifted in time. In order to
address this problem, we apply the Dynamic Time Warping (DTW) algorithm
[10] which aims to find the best alignment between two time series. The result is
represented by a warping path that indicates how each point of one distribution
is aligned to the point of another distribution. Besides, it also produces a warp-
ing score to indicate the distance between two distributions after the alignment.
In order to verify the similarity between each pair of distributions, we converted
the warping score into a similarity measure based on Eq. 8 as clarified in [9].
The result after applying the DTW algorithm is a set of similarity values coming
from the warping scores after comparing all the distributions. Table 7 summa-
rizes the minimum, maximum as well as the average similarity obtained from
both deployments. As shown in the table, the power consumption distributions
in deployment 1 are at least 81.72% similar to each other while the minimum
value in deployment 2 reaches a similarity value of 88.13%. The maximum val-
ues in both deployments exceed 97%. Moreover, daily power consumptions in
deployment 1 are 90.32% similar to each other on average. The average value
reaches 93.50% in deployment 2. As a result of this analysis we can conclude
that the daily power consumption in both deployment follows a regular pattern
which confirms the fact that the inhabitants in both deployments tend to con-
sume power in a regular pattern which repeats itself everyday. Additionally, as
similarity values from deployment 2 are higher than those from deployment 1,
we can say that the user in deployment 2 tends to have a more regular power
consumption behavior. In order to verify these results, we conducted a further
analysis in the following section in which we examine abnormal power consump-
tion values which occur very rarely in both deployments but might contradict
with our conclusion in this section. By examining these values and showing that
they are rare and untypical, we make our conclusion in this section more reliable.

5.3 Further Analysis

In order to filter out abnormal power consumption behavior, we extracted the
minimum and maximum power consumption of each hour over the whole deploy-
ment. Using these values we formed an area as shown in Figure 5(a) where the
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(a) Original range
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(b) Doubled average for cropping
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(c) Cropped range
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(d) Normal power consumption pattern

Fig. 5. The generation of normal power consumption range for deployment 2.

x axis represents the hour of the day, and the y axis represents the associated
power consumption. By doing this, all power consumption values are ensured to
be contained in this area. Figure 5(a) is generated from the values of deploy-
ment 2. As we can see from the figure, although the daily energy distributions
were verified to follow similar trend, they fluctuate in a certain range. At some
point in time, the fluctuation is especially large. For instance, value at 14:00
varies from 0 to 160Wh. In order to verify whether the peaks in Figure 5(a)
are only outliers and do not represent the regular power consumption behavior,
we defined an empirical threshold which is equal to the double of the average
hourly power consumption. If the power consumption at a certain hour exceeds
this threshold, this consumption is considered to be an outlier and thus should
be excluded from the dataset. The threshold for cropping the area is indicated
in the dashed line in Figure 5(b). Figure 5(c) is the cropped area which covers
the majority of the power consumption values. As we can see from the figure,
a part of the area was cropped out, especially the peaks. This verifies that the
peaks are actually the abnormal power consumption values and do not reflect
the regular consumption pattern. Figure 5(d) depicts the remaining area after
cropping. The dotted line with the asterisks indicates the average value after
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removing the outliers. As shown in the figure, the power consumption keeps low
from the beginning of the day to the midday. There are several reasons for this
phenomenon. First of all, the user normally sleeps during some hours of this
range which leads to almost no power consumption. Furthermore and according
to the user feedback, the user in deployment 2 used to get up early. The activ-
ity after getting up was either eating or going out with both activities having
low power consumption. Although the radio was used sometimes during eating,
only small amount of energy is required for this activity. Another activity which
happens in the morning is “Making Tea”. Although this activity consumes a
high amount of energy, it was only performed three times during the whole de-
ployment with a short duration. This also explains why some outliers existing
during this period. The higher power consumption in later hours is mainly due
to the activity of “Watching TV”. The extracted power consumption range can
be of great benefit and importance in many application scenarios. One applica-
tion scenario is security combined with energy conservation in which the user
can be alerted if her/his real-time power consumption exceeds the normal power
consumption area.

6 Conclusions

In this work we presented three experiments conducted on our SMARTEN-
ERGY.KOM dataset. In the first task, we successfully built a classification model
that is able to predict a user’s current location based on his real-time power con-
sumption. In the second experiment, we extracted the temporal relations between
the activities performed in each deployment. Furthermore, we showed that these
temporal patterns can be treated as features for improving the accuracy of our
activity detection platform. In the third experiment, we studied the distributions
of daily power consumption with regard to the hours of the day. By comparing
the similarity of these distributions we showed that the user in each deployment
has a regular power consumption behavior. Moreover, we extracted the normal
power consumption pattern for each user which can be of great benefit in many
application scenarios. Our solution is capable of determining the user’s location,
activity as well as common patterns. All this information is mainly mined from
electricity consumption of common home appliances. Thus, our work is a strong
foundation for energy consumption feedback systems and represents the next
important step towards energy management systems without a human in the
loop.
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