
[BB08] Zdravko Bozakov, Michael Bredel; SSHLauncher.KOM - A Tool for Experiment Automation in
Distributed Environments. July 2008.

A Tool for Experiment Automation in Distributed Environments
Zdravko Bozakov, Michael Bredel

TECHNISCHE
UNIVERSITfiT
DARMSTADT

KOM -Multimedia Communications Lab
Prof. Dr.-lng. Ralf Steinmetz

Abstract

Simulation and emulation experiments are widely used for verifying new approaches as well as existing
theories in communication networks. In this report, we present a tool for performing automated experi-
ments in distributed testbeds such as Emulab or PlanetLab. Using an intuitive configuration file Syntax,
large Sets of complex command sequences can be executed with minimal User interaction. As a result, re-
peated execution of experiments and the generation of controlled, documented, and reproducible results
is greatly facilitated.

The current version of the SSHLaunchecKOM Software together with this documentation can be found
at: http://www.kom.tu-damstadt.de/en/downloads/software/sshlauncherkom/

Contents

1 SSHLauncher.KOM Overview 2

2 System Setup 2

3 Usage 3
. 3.1 Program Concept 3

4 Configuration File Setup 4
. 4.1 Notation 4

. 4.2 Defaults and Variables 4
4.3 External Variables . 5

5 Notes and Tips 5

6 Sample Configuration 6

7 Summary 7

1 SSHLauncher.KOM Overview

Simulation is a widely used paradigm for verifying existing theories as well as novel approaches in
communication networks. In order to ensure the validity and credibility of simulation results, it is
crucial that sufficiently large numbers of simulation runs are performed and statistics and corresponding
confidence intervals are presented. Unfortunately, the generation of sufficiently large amounts of data
can often be painstaking. In fact, the widespread credibility problem of simulation studies has been
analyzed in [SI and [3].

Setups which rely on a number of different tools are typically cumbersome to configure and difficult
to automate. In cases where a Set of tools must be executed in a distributed environment, the task of
efficiently performing large numbers of experiments becomes even more difficult.

Towards this end, the SSHLauncherKOM software aims to facilitate the automated execution of ex-
periments in distributed environments. Moreover, the software allows users to execute large sets of
experiments and study the effects of parameter variation, with minimal User intervention. The repetition
of experiments becomes a matter of executing a single command, allowing researchers to concentrate
on research tasks. In the Course of our research we did not find existing tools which adequately address
these goals.

Each experiment is defined by a clear configuration script. As a side effect, users are encouraged
to generate documentation for their work. Moreover, the experiment configuration file can be made
available to the community leading to easily reproducible results. Faults in the experimental setup can
be identified and addressed more quickly. The importance of reproducible research has been pointed out
in [7, 61.

2 System Setup

SSHLauncherKOM enables users to automate the execution of a Set of commands on different hosts.
A typical setup is depicted in Fig. 1. The hosts, corresponding commands and the dependencies which
govern the execution order are specified in a configuration file stored on the control machine. As a result,
after an initial configuration has been specified, complex experiments may be repeated an arbitrary
number of times requiring almost no interaction from the User. The sole prerequisite is that all hosts

Figure 1: Typical SSHLauncher.KOM setup. Dashed lines represent control connections.

allow remote SSH logins from the control machine. This is the case for almost all UNIX based operating
Systems and, using Cygwin, also under Windows. Additionally, a Python installation must be available
on the control machine. Note that for experiments sensitive to network load it is advisable that separate
data and control interfaces are present in the experiment setup, in order to minimize interference with
ongoing measurements.

The Emulab [9] and PlanetLab [2] testbeds are examples of highly suitable environments for the use
of SSHLauncherKOM.

SSHLauncherKOM utilizes the pexpect and pxssh modules written by Noah Spurner [8], which are also
included in our distribution.

3 Usage

3.1 Proaram Concent

The idea behind SSHLauncherKOM is to automate the process of logging into remote hosts and executing
a Set of software tools. To achieve this the experiment commands are split into blocks and stored in a
configuration file. Each configuration file block is associated with a specific SSH session. Similarly
to the UNIX program expec t , dependencies based on output strings of individual commands may be
specified. In other words, each block of commands may contain numerous constraints as to when they
can be executed. An analogy from project management are tasks in a Gantt chart, where certain tasks
cannot begin before one or more other tasks have been completed.

The SSHLauncherKOM batch execution is initiated using the following command:

where <conf ig> is a mandatory configuration file containing a series of hosts, commands and de-
pendencies governing the execution order. The configuration format will be described in detail in the
following chapters. The program establishes an SSH connection to all hosts specified in the configuration
file and executes the specified commands, taking into account all given dependencies. As soon as the
execution of a specific configuration block is finished, i.e. the bash prompt is reached on the destination
host, the SSH session is terminated. The SSHLauncherKOM terminates, when all configuration blocks
have been evaluated.

The optional Parameter -d enables a debugging mode, causing SSHLauncherKOM to generate log-files
containing the terminal output for every opened SSH connection. The files are created in the current
working directory. Additionally, the program verbosity is increased.

P P - p - -

4 Configuration File Setup
-

4.1 Notation

Throughout this document <> brackets will be used to denote an arbitrary text string. Section tags not
placed in brackets must be written exactly as depicted. If not mentioned othenvise, square brackets are
to be treated as the literal characters [and 1 .

The SsHLaunche~KOM configuration file consists of a series of so-called blocks or sections which spec-
i f i the commands to be executed on the destination host, as well as the order in which these are to be
run. The file format is based on the windows . I N I file convention. Each section is identified by a unique
section id and is associated with a Single SSH connection. The corresponding SSH Session is initiated
when all block dependencies have been met, and is terminated when all block commands have finished
executing. The id tag may contain any sequence of letters and digits and must be enclosed in square
brackets. The section id is followed by a number of Parameters identified by special tags. The tags in-
clude a user-name, destination host name and the commands to be executed. Furthermore, a password
can be specified if SSH key authentication is not configured. The format for a configuration file section
is as follows:

<cornment>
[<id> 1
user: <name>
password: <password>
host: <hostname>
comrnand: <bash-commands>

The section tags are case-sensitive however, their order is not relevant. Moreover, the order of the
file sections may also be arbitrary and does not effect the execution order. The number of sections in
a configuration file is only limited by the maximum number of active SSH connections allowed by the
System. Lines beginning with # are treated as comments.

In addition to the tags described above, sections may contain the aper tag. This tag implies, that the
current section command should only be executed after a specific string has been issued by a command
of another section. It is possible to include several id/string pairs, separated by commas. In this case the
section command is executed after all strings have been matched. The aper tag uses the python language
dictionary notation:

4.2 Defaults and Variables

In addition to the sections described above, which are always associated with an SSH connection, a
special default section can be specified in the configuration file. This section contains default tag/value
pairs which are appended to all other section in the file. Tags also defined in a section override tags
specified in the default section. Furthermore, it is possible to define variables which are accessible from
within the sections. The format of the default section is described below:

[DEFAULT]
<varnamel> = <valuel>
<varnarne2> = <value2>

user: <name>
password: <password>

Variables can be useful as a shorthand for frequently used pathnames or log filenames. To Substitute
a variable into any other Part of the configuration file formatted as a string the following notation must

be used: % (<varname>) s. For more details on variable usage, please refer to the examples chapter 6
of this document.

4.3 Externat Variables

It is possible to define Special variables in the Bash shell, which are imported and substituted into the
configuration fiie. This feature can be useful when performing large numbers of experiments, where only
a few Parameters change in every run. The Bash variables are declared as usual, however their name
must be prefixed with SL-.

A typical Bash script that invokes SSHLauncherKOM with a varying Parameter, in this case packets per
second, is depicted below:

#!/bin/bash
for ((i=l; i<=24; itt)) ; do

echo I'==== running test nr. Si ===="

calculate packets per second
let SL-PPS=${SL-I)*85
export SL-PPS
export SL-I=$i
sshlauncher.py spruce.config
scp zbozakov@node0.Dumbbell.BigExperiment.emulab.net:-/logs/*bz2 . /

done

In the example above the variables SL-I and CL-PPS are available from within the configuration file
spruce . config and may be used as follows:

D . .

command: ITGSend -a node4 -t 600000 -C 2040 -C %(CL-PPS)s -rp 8999
. . .

5 Notes and Tips

Within a configuration section, it is legal to concatenate several Bash commands using standard Bash op-
erators such as ; or & &. These commands are then executed sequentially using a single SSH connection.
On the other hand, execution speed can be increased if commands are run in parallel using separate
SSH connections. In order to keep the number of simultaneously opened SSH sessions to a minimum, a
connection is only established when all strings in the afcer tag have been matched.

Certain programs do not produce any text output. If other SSH section commands depend on the
termination of such a program, the User can manually generate a string after the program completes
using the echo command. This works reliably using the Bash shell.

command: <bash-command>; echo 'finished command'

For tools which do not have a built-in logging Support, it is often desirable to redirect the output to a
file. At the Same time the program's output should be available to SSHLauncherKOM in order to trigger
the execution of other command blocks. The Unix command tee can be useful for these cases.

command: %(bindir)s/iperf - s I tee -i -a %(logdir)s/%(SL-1)s-iperf-rcv.log

A common source of problems is that some programs pipe their output to stderr, making it difficult
for SsHLaunche~KOM to pick up the output. To circumvent this, Bash I/O redirection may be used, e.g.
2 > & 1 redirects stderr output to stdout.

command: %(bindir)s/pathchirp-snd 2 > & 1 1 tee -a -i %(logdir)s/snd.log

5

Figure 2: Dumbell topology

To avoid polluting the Bash history of the destination hosts, history saving is disabled.
It should be noted that the User must take care to avoid circular references in the configuration file,

which would cause the scripts to wait indefinitely.

6 Sam~le Confiauration

In this section a configuration file from a real-world scenario will be outlined. A simple dumbbell setup
in Emulab will be used to start two sender and two receiver instances of the rude/crude traffic generator
[4]. The topology is depicted in 2. The first flow will be sent from nodeO to node5 and the second one
from nodel to node4.

First we will define some default variables containing the tool paths. Because the username is the Same
for all SSH connections it is also included here. In our example SSH-key authentication is configured, so
there is no need to specif) a password.

[DEFAULT]
log = /proj/BigExperiment/exp/results/active
bin = /proj/BigExperirnent/exp/wifi-sirnple/tools/rude~O.7O/bin
home = /users/zbozakov

user: zbozakov

Next, we will do some cleaning up, i.e. rernove all log files which might have been left over from
previous runs. As this section has no after tag, it will be executed right at the beginning. Note that
because the r m command usually does not produce any output, a stnng is manually printed after the file
deletion.

cleanup dirs # # # #
[cleanup]
host: node3.Dumbbell.BigExperiment.emulab.net
cornmand: rm % (log) s/*bz2; rrn % (log) s/*log; echo ' logs deleted'

In the next two sections the receivers are started on nodes 4 and 5. The after tag ensures that the
cleanup section has completed before the connections are established. Moreover, we make use of the
variables defined in the default section.

start receivers # # # #
probe traffic receiver
iprcvl
host: node4.Durnbbell.BigExperiment.ernulab.net
command: killall crude; %(bin) s/crude -P 1 -p 10001 -1 % (log) s/p-crude. bin. log
af ter: { ' cleanup' : ' logs deleted')

cross traffic receiver
[xrcv]
host: node5.Dumbbell.BigExperiment.emulab.net
command: killall crude; %(bin)s/crude -P 1 -p 10001 -1 %(log)s/x-crude.bin.log
after: { ' cleanup' :' logs deleted')

After the logs have been deleted and both receivers are running, the senders can be started. Because
the receiver (crude) prints its version information immediately after start up, we can use the string
' crude version' for matching. To ensure that old instances of the sender (rude) will not interfere
with the current run, these are killed first. Both senders run for a predefined time and we emit a string
to Signal that they are finished.

start senders # # # #
probe traffic sender
[psndl
host: nodel.Dumbbell.BigExperiment.emulab.net
command: killall rude; % (bin) s/rude -s % (horne) s/prb. cfg > % (log) s/psnd. log; echo end
after : { ' cleanup' : ' logs deleted' , xrcv' : ' crude version' , ' prcv' : ' crude versionr }

cross traffic sender
[xsnd]
host: nodeO.Dumbbell.BigExperiment.emulab.net
command: killall rude; % (bin) s/rude -s % (home) s/trc.cfg > % (log) s/xsnd. log; echo end
after: (' cleanup' : ' logs deleted' , ' xrcv' : crude version', ' prcv' : ' crude version' }

Finally, we include two more sections which kill the receivers and compress the generated log files
after both senders have terminated, i.e. the string end has been issued by the senders.

terminate receivers and compress logs # # # #
probe traffic receiver
[prcv-end]
host: node4.Durnbbell.BigExperirnent.emulab.net
command: killall crude; bzip2 %(log)s/p*.log
af ter : { ' psnd' : ' end' }

cross traffic receiver
[xrcv-end]
host: node5.Dumbbell.BigExperiment.emulab.net
command: killall crude; bzip2 %(log)s/ar*.log
af ter: (' xsnd' : ' end' }

7 Summary

We presented SsHLaunche~KOM, a tool which facilitates the execution of multiple commands with de-
pendencies in a distributed environment. Using an intuitive configuration file Syntax, large Sets of com-
plex experiments can be performed with minimal user interaction. SSHLaunchezKOM was born out of
necessity and was heavily employed for generating data in [I]. We hope that other users will also find
the software useful.

The current version of the SSHLaunchezKOM software together with this documentation can be found
at: http://www.kom.tu-damstadt.de/en/downloads/software/sshlauncherkom/

Acknowledgements

This work has been funded by an Emmy Noether grant of the German Research Foundation.

Bibliography

[I] Michael Bredel and Markus Fidler. A Measurement Study of Bandwidth Estimation in 802.11g
Wireless W s using the DCF. In Proceedings of IFIP Networking, number 4982 in LNCS, pages 314-
325. Springer, May 2008.

[2] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike Wawrzoniak, and Mic
Bowman. PlanetLab: An Overlay Testbed for Broad-coverage Services. SIGCOMM Comput. Commun.
Rev., 33(3):3-12, 2003.

[3] Stuart Kurkowski, Tracy Camp, and Michael Colagrosso. Manet simulation studies: the incredibles.
SZGMOBILE Mob. Comput. Commun. Rev., 9(4):50-61, 2005.

[4] Juha Laine, Sampo Saaristo, and Rui Prior. Real-time UDP Data Emitter & Collector for RUDE.
http://rude.sourceforge.net/.

[5] K. Pawlikowski, H.-D.J. Jeong, and J.-S.R. Lee. On Credibility of Simulation Studies of Telecommu-
nication Networks. Communications Magazine, IEEE, 40(1): 132-139, Jan 2002.

[6] Robert Gentleman and Duncan Temple Lang. Statistical Analyses and Reproducible Research. Jour-
nal of Computational und Graphical Statistics, 16(1), March 2007.

[7] Matthias Schwab, Martin Karrenbach, and Jon Claerbout. Making scientific computations repro-
ducible. Computing in Science and Engineering, 02(6):61-67, 2000.

[8] Noah Spurrier. Pexpect - Pure Python Expect-like module. h t t p : //www . noah . org/wiki/Pexpect,
2008.

[9] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold, Mike Hibler,
Chad Barb, and Abhijeet Joglekar. An Integrated Experimental Environment for Distributed Systems
and Networks. In 5th Symposium on Operating Systems Design and Implementation (OSDI 'OZ), pages
255-270, Boston, MA, December 2002.

