
 An approach for the Management of Service-oriented
Architecture (SoA) based Application Systems

Rainer Berbner1, Tobias Grollius2, Nicolas Repp1, Oliver Heckmann1,
Erich Ortner2, Ralf Steinmetz1

1Multimedia Communications Lab –
KOM

Technische Universität Darmstadt
Merckstrasse 25
64283 Darmstadt

Germany
berbner@kom.tu-darmstadt.de

repp@kom.tu-darmstadt.de
heckmann@kom.tu-darmstadt.de
steinmetz@kom.tu-darmstadt.de

2Department of
Business Information Systems

Technische Universität Darmstadt
Hochschulstr. 1

64289 Darmstadt
Germany

grollius@winf.tu-darmstadt.de
ortner@winf.tu-darmstadt.de

Abstract: Flexible business processes are a key success factor for enterprises to
succeed in globalised markets. The Service-oriented Architecture (SoA) concept is
very well suited to support flexible business processes and application systems
because capabilities (in form of services) can be composed in the most efficient
way to achieve a high level of agility. However, the management of SoA-founded
application systems is often neglected. Thus, we present an approach that enhances
the traditional SoA concept by additional management functionality, e.g.
monitoring mechanisms and SLA management. As a validation of our concept we
introduce WSQoSX, a prototypical implementation based on Web Services.

1 Introduction

In a globalised world, companies of nearly any size are confronted with a continuously
changing environment. A crucial competitive factor is the ability to react quickly,
flexibly, and efficiently to changes of the environment by adapting the business strategy
and business to the new conditions, e.g. [HC03].

 We thank our colleagues of the E-Finance Lab for the constructive discussions. A special thanks goes to
Michael Spahn who has supported us by the implementation of WSQoSX. The work on this paper is partly
sponsored by the E-Finance Lab (http://www.efinancelab.de).

If the business strategy needs to be flexible and quickly adaptable, the same requirement
applies to the business processes derived from that business strategy. Furthermore, as IT
applications support or execute parts of a company’s business processes or even the
processes as a whole, the flexibility of the processes strongly depends on the flexibility
of the underlying applications and IT architecture [Oe95]. Today, companies mostly use
standard software to support or execute parts of their business processes. But instead of
adapting this standard software to existing business processes, the processes are aligned
to those pre-configured by the selected standard software [Oe05]. Even simple changes
of business processes demand a tremendous customizing effort. Meeting this challenge,
there is an evolution that aims at flexible, agile and reliable application systems realised
by a clear separation of control and business logic [LR00]. As a consequence, changes at
the process layer can be made with almost no effects on the business logic and vice
versa. Additional flexibility can be achieved at the process layer by using reference
models [FL04]. This means that processes do not have to be modelled from scratch, but
can be derived from domain specific models. An even more effective way of process
modelling is the reusability of process components that can be orchestrated to business
processes. However, a necessary requirement is the availability of sufficient number of
process components to realize individual processes [La97]. Related to the business logic
additional flexibility can be achieved by following the component-based application
development approach, e.g. [Or05], [SGM02]. The basic idea behind this concept is that
software components can be composed and orchestrated to complex applications. A
major advantage of this approach is that process components designed at the process
layer can be mapped onto software components. The assembly of components can be
made at design or at run time. The selection and assembly of components at run time
leads to loosely coupled application systems that provide a very high degree of
flexibility and agility [GO05].

Nowadays, the Service-oriented Architecture (SoA) paradigm is recommended as an
emerging architectural blueprint enabling flexible process-oriented application systems.
In this paper we propose the enhancement of a SoA by dedicated management
functionalities to discover, select, assemble, and execute appropriate components for
orchestrating flexible component-based application systems, e.g. monitoring and Service
Level Agreement (SLA) management. As a validation of our approach we present
WSQoSX as a prototypical implementation based on Web Service technology.

Research in the area of SoA and SoA-based technologies (e.g. Web Services) has been
mainly focused on certain issues, e.g. SLA management ([DLP03], [SHM02], [JMS02])
or Quality of Service (QoS) aspects ([GKG03], [KKL03], [Ra03]). However, the
realisation of flexible and reliable application systems by dedicated management support
has been either not addressed or there are no prototypical implementations that could
proof the feasibility of the proposed concepts, e.g. [ET04].

The remainder of this paper is organised as follows: In Section 2 we introduce the basic
concept of workflow technology, SoA, and component-based system engineering as well
as how these approaches fit together. The management of SoA-based application
systems is discussed in Section 3. In Section 4 we describe the implementation of an
application management system based on Web Services. The paper closes with a
summary and outlook on future research issues.

2 Basic Concepts

In this section we introduce the core concepts needed to implement our management
approach for SoA-based application systems.

2.1. Workflow Technology

Workflow management systems (WfMS) are used to model and control business
processes (workflows). Workflow schemas are the results of workflow modelling and
the basis of the control of a business process. A workflow schema describes a workflow
under different perspectives, e.g. functional, informational and operational, using the
language of the workflow management system [JB96]. In order to create flexible
business processes in the sense that modifications like changes of the process sequence
or the insertion or omission of sub processes can be made quickly and efficiently, the
component-oriented approach shall be applied on workflow management: Workflow
schema parts (so called process components) are assembled to a workflow schema as a
complete description of the business process. For further details we refer to similar
approaches presented by [MCH03], [Aa99] and [Ac04].

2.2. Component-based Application Development

In the previous chapter, we briefly mentioned how to build flexible processes and control
them using workflow technology. If the tasks in a process should be executed by
software, the software application has to be as flexible as the processes. Applications
built of loosely coupled components offer this flexibility. According to [Ac02], a
component “consists of different (software) artefacts. It is reusable, self-contained and
marketable, provides services through well-defined interfaces, hides its implementation
and can be deployed in configurations unknown at the time of [its] development.”

To connect and control loosely coupled components, workflow technology, in particular
WfMSs are well-suited following the principle of a strict distinction between control and
execution of business processes. If a sub process of a business process is supported or
executed by a software component, the WfMS invokes the previously determined
software component via its interface, provides it with required input parameters and - if
so - receives the results of the execution in order to transfer them to following
organisational resources. Binding software components to process components of a
WfMS-controlled business process abolishes the restrictions for flexible process design

and changes that are related to conventional IT applications. As an additional
prerequisite to flexible applications, only the selection of variants of a component but not
their modification can be allowed [RR03]. Variants of a component differ slightly in
particular characteristics such as functionality or interfaces. If only similar components
are available opposed to a perfectly suitable component, these should not be adapted to a
special usage in an application. Instead of that, a new variant of the component has to be
produced and used in the planned application [GO05].

Software components as well as process components must be specified in an unified way
and stored in a component catalogue. A unified specification framework was proposed
by [Ac02].

2.3. Service-oriented Architecture (SoA)

There are a lot of definitions of the term software architecture, e.g. [BCK03], [Fo02].
For our purpose we prefer the comprehensive definition of Krafzig, Banke and Slama
[KBS05]: “A software architecture is a set of statements that describe software
components and assign the functionality of the system to these components. It describes
the technical structure, constraints and characteristics of the components and the
interfaces between them. The architecture is the blueprint for the system and therefore
the implicit high level plan for its construction”.

A Service-oriented Architecture (SoA) is a specific software architecture based on
services as fundamental elements for integrating and developing applications, e.g.
[KBS05], [Pa03], [Ba03]. Services are specific software components. They are well-
defined, self-contained and encapsulate high-level business functionality. Services
communicate with each other by sending and receiving messages. Services can adopt
different roles. When acting as a service provider a service publishes its interfaces that
can be invoked by other services that play the role of a service requestor. A SoA is
characterised by the loosely coupling of the services involved. This means that services
can be replaced by other services at runtime. A SoA supports location transparency. This
means that services should have their definitions and location information stored in a
repository and be accessible by a variety of clients that could locate and invoke the
services irrespective of their location [Pa03]. To enable agile applications and processes
a SoA aims at reducing complexity. This is achieved by the loosely coupling of the
involved services and the decoupling of the technologies used at provider and requestor
sides [KBS05]. As a consequence, a SoA shifts the focus from technical to business
requirements. From a business perspective, SoA-based processes and application
systems have the potential to achieve significant cost saving due to the reduction of
maintenance costs and the fact that a SoA can bee seen as an enabling framework for
BPO (Business Process Outsourcing) ([BMS04], [Be05], [SBM04]). However, it is not
possible to eliminate technological dependencies at all because an appropriate
infrastructure (e.g. enterprise service bus) is still required. Furthermore, standardisation
is a key success factor and there are still open issues in this field.

2.4. Flexible SoA-based Application Systems

Based on the results of a functional business process decomposition as part of an in-
depth business process analysis in most cases it is possible to derive process
components, which are composed to a complete business process and can be mapped
onto software components later on (e.g. services as an integral part of a SoA).

Figure 1 shows the result of the decomposition of a generic credit process. The credit
process was decomposed into the sub processes “loan request”, “credit assessment”,
“servicing” and “workout”. In our example, the sub process “credit assessment” is
decomposed again. Results of this decomposition are the sub processes “internal rating”,
“external rating” and “decision”, which itself can be decomposed. A further step of
decomposition of the sub process “internal rating” leads to the activities “evaluate
documents”, “evaluate employment” and “evaluate income”.

 Process Components:
1 Loan request
2 Credit assessment
3 Servicing
4 Workout

2a Internal rating
2b External rating
2c Decision

2a1 Evaluate documents
2a2 Evaluate employment
2a3 Evaluate income

A

B

C

1 3 4

2a 2b

2a1 2a2

2

Decomposition

Decomposition

2c

2a3

Figure 1: Decomposition of a generic credit process [BHS05]

As shown in Figure 1 every single activity, sub process and process itself can be a
process component. Thus, it is possible to map both a single activity and a complete sub
process to a software component, depending on the degree of granularity and flexibility
needed and desired by the business. The functionality to support or implement process
components can be supplied by services that are specialised software components (cp.
Section 2.3).

A modification of an existing business process will primarily affect the order and scope
of service invocations and does not automatically result in changes of the underlying IT
architecture. In order to increase flexibility, services are not connected to each other
directly but using a WfMS as an orchestration engine (cp. Section 2.1). There are two
main advantages of this approach: On the one hand, existing business processes can be
rapidly adapted to a changing environment by recombining existing and novel services.
On the other hand, it is possible to integrate legacy systems by encapsulating them with a
service interface allowing a transparent usage of their functionality. Furthermore, using
loosely coupled services it is possible to obtain services not only from internal service
providers but from external service vendors supporting a certain type of Business
Process Outsourcing (BPO). This concept, called Service-based BPO, is depicted in
Figure 2.

Business Strategy

Backend Systems/ Legacy Systems

S1 S3S2 S4 S6

ProviderCommunication
Networks

(WAN,…)
Repository

PC1 PC2 PC3 PC4 PC5 PC6

S5

PCi : Process Component i
Sj : Service j

Business Strategy

Backend Systems/ Legacy Systems

S1 S3S2 S4 S6

ProviderCommunication
Networks

(WAN,…)
Repository

PC1 PC2 PC3 PC4 PC5 PC6

S5

PCi : Process Component i
Sj : Service j

Figure 2: Service-based Business Process Outsourcing (BPO)

Our approach supports the reusability of process components in different business
processes, which leads to cost reduction, improved reliability and a faster development
of component-based and IT-supported business processes. Business processes can be
plugged together out of process components using a construction kit [Ma99].
Repositories [Or99] can be used to manage and store those process components,
information about services and mappings between them.

3 Management of SoA-based Application Systems

We present the Service-oriented Architecture (SoA) concept as an architectural blueprint
for enabling flexible processes and application systems based on components. To
establish flexible and reliable application systems we have designed a management
system for SoA-based applications that provides additional functionality. Components
offering this management functionality form an application management system (Figure
3). Depending on their main usage time in an application system lifecycle, the
components are separated into two groups: construction and execution components.

3.1. Discovery Component

As an initial step of the construction process of an application system, adequate services
supporting the business processes have to be discovered. The most suitable ones are
selected to be integrated in the application system in the subsequent step (selection).
Assuming the business process is already decomposed into process components, the
Discovery Component performs a search for appropriate services. To generate highly
flexible application systems a mapping between process components and services has to
be created for every process component on the lowest level of the process hierarchy. But
from a business perspective it also makes sense to search for services on a higher level of
the process hierarchy in order to find services supporting larger functionality.

Monitoring

SLA
Management

Accounting

R
ating

D
iscovery

Construction

APPLICATION MANAGEMENT SYSTEM

Repository

Process
Component

Catalog

Normative
Expert

Language

Service
Catalog

History

Application System

Strategy
Layer

Process
Layer

IT
Layer

Business Strategy

A
ssem

bly

Execution
Engine

(W
fM

S)

Execution

S
election

Monitoring

SLA
Management

Accounting

R
ating

D
iscovery

Construction

APPLICATION MANAGEMENT SYSTEM

Repository

Process
Component

Catalog

Normative
Expert

Language

Service
Catalog

History

Application System

Strategy
Layer

Process
Layer

IT
Layer

Business Strategy

A
ssem

bly

Execution
Engine

(W
fM

S)

Execution

S
election

Figure 3: A management system for SoA-based applications and processes

If the search is not successful as one or more services are not available or not known to
the repository, the Discovery Component has to stop the construction process and inform
the application system designer about the missing components. Either the business
process has to be adapted or the missing components have to be implemented. A
precondition of searching is the detailed specification of services to search for using a
reference specification. Based on the reference specification, services are searched for in
both internal (e.g. an enterprise repository) and external service catalogues (e.g. a service
marketplace). The comparison of the reference specification with services specifications
may result into difficulties, as the characteristics can be specified by the service
requestors and providers in different ways. To overcome those difficulties, the
specification of all characteristics should be standardised. For this purpose a normative
expert language could be used for the specification of the functionality of process
components and services. Alternatively semantic web technologies [LS99] or ontologies
[Fe03] can be used.

3.2. Selection Component

The Selection Component decides which services are to be integrated in the application
system. For that purpose, it assesses and compares the characteristics of the services
being delivered by the Discovery Component. Besides the functional compliance, the
Selection Component also considers the non-functional metrics, e.g. costs or availability.
Assessment, comparison and decision-making methods are provided by the field of
decision theory. For example, Kontio introduced the AHP (Analytical Hierarchy
Process) as a decision-supporting method for component-oriented software construction
[Ko95].

3.3. Rating Component

The Rating Component calculates a ranking based on a given SLA and runtime
behaviour of former executions of the according service. In a SLA, different criteria for
QoS are defined, both measurable and non-measurable values. Both types of criteria
have to be evaluated by the Rating Component, although non-measurable values like
reputation and security have to be assessed by IT experts before. This assessment can be
done based on an evaluation matrix [Be05]. After the assessment by the IT expert and
the evaluation of measurable values, a score of the according service is calculated, which
again is used to create a ranking of all potential services [Be05]. This ranking can be
used as a basis for a posterior dynamic selection of services. In addition to the ranking
created by the Rating Component, an IT expert is able to define constraints concerning
further QoS requirements (e.g. “response time always smaller than 10ms”).

3.4. Assembly Component

After determining the services, their integration in an application system has to be
prepared. As mentioned before, we recommend a clear and strict distinction between the
control and execution of processes. We propose using workflow technology as a basic
system for the generic control function. Therefore, it is necessary to enable and ensure
the interaction between the services and a workflow engine. The Assembly Component
provides wrapping services to overcome any kind of heterogeneity, e.g. by converting
data types of input or output message elements.

3.5. Execution Component

After constructing the application system, the main task of an application management
system at run-time is to control the execution of the business process and to invoke the
participating services in the correct sequence, at the right time and providing them with
the required input – if necessary - via wrapping services. This task could be assigned to a
WfMS as Execution Component that is capable to manage not only software services but
also other organisational resources (employees, knowledge, etc.) [JB96].

3.6. Accounting/ Billing Component

Accounting is the process of tracing information systems activities to a responsible
source [ATI01] usually conducted by the service provider as a foundation for charging
and billing. Accounting activities aim at keeping track of which requests and responses
have been sent to or received from partner services. The Accounting/ Billing Component
enables the realisation of different billing strategies, e.g. pay-per-use or flat fees.

3.7. Monitoring Component

At execution time the QoS parameters defined by the SLA are monitored by the
Monitoring Component. The component analyses the data collected by the Accounting

component and compares them to the guaranteed metrics defined in the SLA. In case of
deviations between SLA and measured data the provider of the particular service as well
as the service requestor are notified. Furthermore, not only notifications to service
provider and requestor are sent in case of non SLA compliant Web Services, but bad-
performing services can be automatically substituted by other services with the same
functionality sending a message to the Selection Component.

3.8. SLA Management Component

SLAs (Service Level Agreements) are bilateral contracts between a customer and a
service provider used to guarantee Quality of Service (QoS), especially the levels of
availability, performance and serviceability of a service. Besides, a SLA can contain
pricing, contractual and other information. SLAs are the result of a negotiation between
a customer and a service provider. SLAs are defined in RFC 3198 [We01]. In our
approach SLAs are handled by the SLA Management Component. This component
parses a given SLA and extracts the relevant information about guarantees to provide the
Monitoring Component with.

3.9. Deconstruction Component

The Deconstruction Component manages the necessary controlled removal of services.
The Deconstruction Component identifies the effective dependencies between the
service to be removed and other services and the consequences of removing the service
for active workflow instances and the workflow schema [CL00].

3.10. Enterprise Repository System as Integration Means

Repositories are documentation systems. On a meta-language-level language artefacts,
(e.g. data structures, software components, or process components) are described in a
structured way. The data structure for the documentation of these language artefacts is
called meta schema or documentation structure of a repository system. As an essential
element of an application management system the repository includes catalogues for
process and software components as well as descriptions of other organisational
resources [GO05]. The domain-specific integration of the components of different
categories and the component-based application systems (e.g. the overcoming of
semantical heterogeneity) can be managed using a normative expert language that is also
documented in the repository [Or99].

4 WSQoSX: A Prototypical Implementation using Web Service
Technology

In this chapter we introduce the prototypical implementation of the SoA-based
application management system presented in chapter 3 using Web Service technology.

4.1. Web Service Technology

Web Services can be regarded as a SoA-based technology. A Web Service is defined a
self-contained, modular business application that has open, Internet-oriented, standard-
based interfaces [Be04]. The Web Service core standards are formed by WSDL (Web
Service Definition Language), SOAP (Simple Object Access Protocol) and UDDI
(Universal Description, Discovery and Integration). WSDL is used as interface definition
language, SOAP as communication protocol and UDDI as a repository to publish and
search for particular Web Services (e.g. [Al04]).

4.2. QoS related to Web Services

To establish robust business processes it is crucial that requirements on the business
process layer can be mapped onto the underlying IT architecture. Changes in business
processes (e.g. new business requirements) have to be reflected in the underlying IT
architecture and the involved Web Services. Derived from those business requirements
the Quality of Service (QoS) parameters can be defined. As a consequence, the IT
architecture needs modules that explicitly manage Quality of Service. QoS related to
Web Services refers to the non-functional properties of a Web Service, e.g. [MN02].
Enterprises are not willing to rely on Web Services hosted by external service providers
if there is no guarantee about their QoS needs. The most important QoS parameters are
([GKG03], [KKL03]) are availability, throughput, response time and error rate.
Additionally, there are as well non-measurable QoS attributes like security and
reputation. However, the management of these QoS metrics is often neglected. Thus, we
introduce our prototypical implementation based on Web Service technology that offers
a comprehensive QoS-aware management support.

4.3. WSQoSX – An Application Management System based on Web Services

As a proof-of-concept, a prototype of an application management system supporting
QoS in a Web Services based Service-oriented Architecture was developed at
Technische Universität Darmstadt. The application management system called WSQoSX
(Web Service Quality of Service architectural Extension) can be seen as a partial
implementation of the concepts presented in section 3. The implementation uses
BPEL4WS (Business Process Execution Language for Web Services) to execute
processes, but is not restricted to BPEL4WS. To realize those concepts and to achieve
the required QoS, different components were designed and implemented.

- Portal-based Web Service Registration: The provider of a service has to register
at the web front end (portal) of the application management system in order to
announce information about his business and services. After the registration the
provider is allowed to publish his Web Services according to pre-defined
categories (e.g. credit rating). Furthermore, a corresponding SLA has to be
referenced as well, which defines the core QoS parameters of the offered
services. At the time a potential user of the service agrees to this offer a contract
between provider and user is established.

- SLA Management: A SLA Management Component is responsible for the
evaluation of submitted SLAs. The component extracts information about Web
Services, e.g. provider name, name of the Web Service and guaranteed QoS
metrics, prepares it for further processing and stores the information inside the
repository of the application management system. SLAs are modelled based on
IBM’s Web Service Level Agreement (WSLA) framework ([KL02], [Lu03]).

- Dynamic Web Service Selection: The dynamic selection of Web Services is
conducted by the Selection Component. It invokes Web Services after
comparison of the services QoS attributes stored in the repository by the Rating
Component. In our prototype invocations of Web Services are created by a
BPEL4WS engine executing a given process description. Furthermore, the
accounting mechanism is started as well while invoking the service through the
Selection Component. The Accounting Component tracks every event needed
for settlement like start and end time of Web Service usage (e.g. in case of
time-based accounting) as well as potentially occurring errors.

- Dynamic replacement of bad-performing Web Services at runtime: Based on
information gathered by the QoS Monitoring Component at runtime, the system
is able to substitute Web Services not fulfilling the SLAs requirements during
the execution of a process. This is realised by sending a message to the
Selection Component to terminate the bad-performing Web Service and to start
another Web Service with the same functionality as far as such a service is
known to the application management system.

The BPEL4WS engine does not invoke a Web Service (e.g. a credit rating Web Service)
directly. Web Service invocation is managed by a Proxy Component instead. To
facilitate this kind of indirection, the SLA Management Component automatically
substitutes the physical address of the Web Service for the address of the Proxy
Component at the time of service registration at the portal. Acting as a server waiting for
Web Service invocations in form of SOAP messages encapsulated in HTTP requests, the
Proxy Component works as a dispatcher in this architecture. Whenever a Web Service
invocation is received on a dedicated port of the server, it starts a client thread which
itself is responsible to process the actual invocation made by the BPEL4WS engine and
to route back the results of the invocation. The interaction of the participating
architectural components is depicted in Figure 4.

After receiving an HTTP request containing the Web Service URL and the SOAP
message sent by the BPEL engine (Step 1 in Figure 4), the Proxy Component creates both
a client thread (Step 2) and a request object based on the data received (Step 2.1). The
client thread of the Proxy Component will be closed after the execution of the Web
Service. The request object is passed to the Selection Component by the client thread of
the Proxy Component (Step 2.2). The Selection Component is responsible for the
retrieval of a suitable Web Service using the results calculated by the Rating Component.
Based on these calculations the Selection Component chooses the best suitable Web
Service and is now able to invoke the Web Service (Step 4). For accounting purposes,
the Accounting Component is started (Step 4.1). Every possible output of the Web

Service will be sent by the Selection component as a response to the client thread of the
Proxy Component, which itself will forward the output to the BPEL4WS engine (Step
4.2.1). During the execution of the Web Service, the QoS Monitoring Component checks
for violations of the given SLA (Step 5). In case of a violation, a warning is created in
order to inform the provider of the particular Web Service (Step 5.1).

BPEL engine Proxy Component

1: Send Web Service invocation
4.2.1 [If output available]: Send response

Selection Component

2.2: Send request object
4.2 [If output available]: Send response

2: Generate client thread
2.1: Generate request object

3: Find optimal Web Service
4: Invoke Web Service

Accounting Component

4.
1.

 S
ta

rt
A

cc
ou

nt
in

g

QoS Monitoring Component

5: S
tart Q

oS Monitoring

5.1 [SLA violation]: Send warning

Discovery Selection

Monitoring Accounting

Figure 4: Interaction of the different components

5 Summary and Outlook

In this paper we presented an approach for managing SoA-based application systems.
For this purpose, we extended the basic SoA concept with additional management
functionality, e.g. monitoring mechanisms and SLA management. As a proof-of-concept
we introduced WSQoSX, a prototypical implementation of our approach.

Our further research activities aim at extending the concepts and architectural
approaches introduced in this paper as well as completing the development of WSQoSX.
Furthermore, we are researching on a simulation environment for the evaluation of the
underlying concepts. Especially, we focus on QoS-aware selection mechanisms for Web
Services based on optimization problems.

References

[Aa99] van der Aalst, W. M. P.: Flexible Workflow Management Systems: An Approach Based
on Generic Process Models. Berlin, 1999.

[Ac02] Ackermann, J. et al.: Standardized Specification of Business Components. Gesellschaft
für Informatik, Bonn, 2002.

[Ac04] Acker, H. et al.: Aspekte der komponentenorientierten Entwicklung adaptiver
prozessorientierter Unternehmenssoftware. 1st joint conference on architectures,
components, and applications (AKA 2004), Augsburg, 2004.

[Al04] Alonso, G. et al.: Web Services. Concepts, Architectures and Applications., Springer
Verlag, Berlin, Heidelberg, 2004.

[ATI01] ATIS Committee: Accountability. 2001; http://www.atis.org/tg2k/_accountability.html,
accessed on 19.08.2005.

[Ba03] Barry, D. K.: Web Services and Service-Oriented Architecture: The Savvy Manager's
Guide. Morgan Kaufmann Publishers, 2003.

[BCK03] Bass, L.; Clements, P.; Kazman, R.: Software Architecture in Practice. Addision-
Wesley, 2003.

[Be04] Bellwood, T. et al.: UDDI Version 3.0.2. OASIS, 2004;
http://uddi.org/pubs/uddi_v3.htm, accessed on 13.05.2005.

[Be05] Berbner, R. et al.: Eine Dienstgüte unterstützende Web Service-Architektur für flexible
Geschäftsprozesse. Wirtschaftsinformatik, vol. 47, no. 4, 2005; pp. 268-277.

[BHS05] Berbner, R.; Heckmann, O.; Steinmetz, R.: An Architecture for a QoS driven
composition of Web Service based Workflows. Networking and Electronic Commerce
Research Conference (NAEC 2005), Riva Del Garda, Italy, 2005.

[BMS04] Berbner, R.; Mauthe, A.; Steinmetz, R.: Unterstützung dynamischer E-Finance-
Geschäftsprozesse. Konferenz Elektronische Geschäftsprozesse 2004 (EGP 2004),
Klagenfurt, Österreich, 2004.

[CL00] Crnkovic, I.; Larsson, M.: Component Configuration Management. Blekinge, 2000.
[DLP03] Dan, A.; Ludwig, H.; Pacifici, G.: Web service differentiation with service level

agreements. IBM, 2003; http://www-
106.ibm.com/developerworks/webservices/library/ws-slafram/, accessed on 14.05.2005.

[ET04] Esfandiari, B.; Tosic, V.: Requirements for Web Service Composition Management.
11th HP-OVUA 2004 Workshop, Paris, 2004.

[Fe03] Fensel, D.: Ontologies - A Silver Bullet for Knowledge Management and Electronic
Commerce. Springer-Verlag, Berlin, Heidelberg, 2003.

[FL04] Fettke, P.; Loos, P.: Referenzmodellierungsforschung. Wirtschaftsinformatik, vol. 46,
no. 5, 2004; pp. 331-340.

[Fo02] Fowler, M.: Patterns of Enterprise Application Architecture. Addision-Wesley, 2002.
[GKG03] Gouscos, D.; Kalikakis, M.; Georgiadis, P.: An Approach to Modeling Web Service QoS

and Provision Price. 4th International Conference on Web Information Systems
Engineering Workshops (WISEW’03), Rom, Italien, 2003.

[GO05] Grollius, T.; Ortner, E.: A Concept of Configuring Flexible Application Systems for
Business and Administration Processes. 4th International Conference on Information
Systems Technology and its Applications, Palmerston North, 2005.

[HC03] Hammer, M.; Champy, J.: Rengineering the Corporation: A Manifesto for Business
Revolution. HarperBusiness, New York, 2003.

[JB96] Jablonski, S.; Bussler, C.: Workflow Management. International Thomson Computer
Press, London, 1996.

[JMS02] Jin, L.-j.; Machiraju, V.; Sahai, A.: Analysis on Service Level Agreement of Web
Services. HP Laboratories, Palo Alto, USA, HPL-2002-180, 2002.

[KBS05] Krafzig, D.; Banke, K.; Slama, D.: Enterprise SOA. Service-Oriented Architecture. Best
Practices. Prentice Hall, Upper Saddle River, USA, 2005.

[KKL03] Kalepu, S.; Krishnaswamy, S.; Loke, S. W.: Verity: A QoS Metric for Selecting Web
Services and Providers. 4th International Conference on Web Information Systems
Engineering Workshops (WISEW’03), Rom, Italien, 2003.

[KL02] Keller, A.; Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. IBM Research Report, 2002.

[Ko95] Kontio, J.: OTSO: A Systematic Process for Reusable Software Component Selection.
University of Maryland, College Park, USA, 1995.

[La97] Lang, K.: Gestaltung von Geschäftsprozessen mit Referenzprozessbausteinen. Gabler
Verlag, Wiesbaden, 1997.

[LR00] Leymann, F.; Roller, D.: Production Workflow, Concepts and Techniques. Prentice Hall,
Upper Saddle River, USA, 2000.

[LS99] Lassila, O.; Swick, R. R.: Resource Description Framework (RDF) Model and Syntax
Specification. 1999; http://www.w3.org/TR/PR-rdf-syntax/, accessed on 26.08.2005.

[Lu03] Ludwig, H. et al.: Web Service Level Agreement (WSLA) Language Specification. IBM
Corporation, 2003; http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf,
accessed on 14.05.2005.

[Ma99] Malone, T. W. et al.: Tools for Inventing Organizations: Toward a Handbook of
Organizational Processes. Management Science, vol. 45, no. 3, 1999; pp. 425-443.

[MCH03] Malone, T. W.; Crowstone, K.; Herman, G. A.: Organizing Business Knowledge. The
MIT Press, Cambridge, USA, 2003.

[MN02] Mani, A.; Nagarajan, A.: Understanding quality of service for Web services. IBM
developerWorks, 2002; http://www-
106.ibm.com/developerworks/webservices/library/ws-quality.html, accessed on
15.04.2005.

[Oe05] Oehler, K.: Business Engineering bei der Einführung betriebswirtschaftlicher
Standardsoftware - Auswirkungen einer serviceorientierten Architektur. HMD-Praxis
der Wirtschaftsinformatik, vol. 241, no., 2005; pp. 35-44.

[Oe95] Österle, H.: Business Engineering: Prozess- und Systementwicklung. Springer-Verlag,
Berlin, Heidelberg, 1995.

[Or05] Ortner, E.: Component-Based Application Architecture for Enterprise Information
Systems. Data Management in a Connected World 2005, 2005.

[Or99] Ortner, E.: Repository Systems. Informatik Spektrum, vol. 22, no. 4, 1999; pp. 235-251.
[Pa03] Papazoglou, M. P.: Service -Oriented Computing: Concepts, Characteristics and

Directions. Fourth International Conference on Web Information Systems Engineering
(WISE’03), Rome, Italy, 2003.

[Ra03] Ran, S.: A model for Web Services discovery with QoS. ACM SIGecom Exchanges,
vol. 4, no. 1, 2003; pp. 1-10.

[RR03] Ravichandran, T.; Rothenberger, M. A.: Software Reuse Strategies and Component
Markets. Communications of the ACM, vol. 46, no. 8, 2003; pp. 109-114.

[SBM04] Steinmetz, R.; Berbner, R.; Martinovic, I.: Web Services zur Unterstützung flexibler
Geschäftsprozesse in der Finanzwirtschaft. in Handbuch Industrialisierung der
Finanzwirtschaft. Gabler Verlag, Wiesbaden, 2004.

[SGM02] Szyperski, C.; Gruntz, D.; Murer, S.: Component Software. Addison-Wesley, Upper
Saddle River, 2002.

[SHM02] Sahai, A.; Durante, A.; Machiraju, V.: Towards Automated SLA Management for Web
Services. HP Laboratories, Palo Alto, USA, 2002;
http://www.hpl.hp.com/techreports/2001/HPL-2001-310R1.pdf, accessed on 14.05.2003.

[We01] Westerinen, A. et al.: RFC 3198 - Terminology for Policy-Based Management. 2001;
http://www.faqs.org/rfcs/rfc3198.html, accessed on 12.07.2005.

	1 Introduction
	2 Basic Concepts
	2.1. Workflow Technology
	2.2. Component-based Application Development
	2.3. Service-oriented Architecture (SoA)
	2.4. Flexible SoA-based Application Systems
	3 Management of SoA-based Application Systems
	3.1. Discovery Component
	3.2. Selection Component
	3.3. Rating Component
	3.4. Assembly Component
	3.5. Execution Component
	3.6. Accounting/ Billing Component
	3.7. Monitoring Component
	3.8. SLA Management Component
	3.9. Deconstruction Component
	3.10. Enterprise Repository System as Integration Means

	4 WSQoSX: A Prototypical Implementation using Web Service Technology
	4.1. Web Service Technology
	4.2. QoS related to Web Services
	4.3. WSQoSX – An Application Management System based on Web Services

	5 Summary and Outlook
	References

