"+ [BHMSt04b] — Hannes Birck, Oliver Hecf;mmrflhﬁfeasfllfauﬁeﬁ?ailf Steinmetz; The Two-Step ¢ OVerEyf !
pproach;

Network Simulation

2004 International

Conference on Software,

Telecommunications and Computer Networks SoftCOM. Split, Oktober 2004. S.

The Two-Step Overlay Network Simulation Approach

A Framework for Message- and Packet-Level Simulation

Hannes Birck, Oliver Heckmann, Andreas Mauthe and Ralf Steinmetz

KOM Multimedia Communications Lab
Department for Electrical Engineering and Information Technology & Department for Computer Science
Darmstadt University of Technology
Merckstr. 25, 64283 Darmstadt, Germany

{birck,heckmann, mauthe, steinmetz}@kom. tu-darmstadt.de

Abstract— In this paper a tool collection is introduced that can be used
to analyse the effect & requirements of P2P applications on application
and on network layer. P2P applications are complex and deployed on
a large scale, pure packet level simulations do not scale well enough to
analyse P2P applications in a large network with thousands of peers. It
is also difficult to assess the effect of application level behavior on the
communication system. We therefore propose an approach starting with
a more abstract and therefore scalable application level simulation. For
the application layer a specific simulation framework was developed.
The results of the application layer simulations plus some estimated
background traffic are fed into a packet layer simulator like NS2 (or
our lab testbed) in a second step to perform some detailed packet layer
analysis such as loss and delay measurements. This can be done for a
subnetwork of the original network to avoid scalability problems.!

1. INTRODUCTION

IMULATIONS are currently a popular way to investigate cru-
S cial issues and possible system behavior within communication
networks. However, a good design for a simulator that reflects the
network behavior realistically is not so easy. In this paper a novel
approach for a application layer simulation (ALS) is introduced. This
is an extension of the packet level simulation toolset KOM ScenGen
[1]. This new approach presents a way to analyze behavior at ap-
plication layer, as well as considering the underlying communication
system. The introduced framework is applicable for all systems based
on application layer overlays.

A further important item is the fast progress in the area of overlay
applications - particularly peer-to-peer. Many new protocols and
methods are developed, but there is hardly a possibility to make a
comparison between them. Scalable simulation can help comparing
and evaluating these protocols and applications.

The simulation model uses two steps, the first step is simulating
the behavior at application layer. The result is then considered in
the second step, viz. the packet level simulation. By these two
steps approach we have the possibility to avoid problems related
to performance, and the the accuracy and the detail level of the
modeling as for instance discussed in [2].Thus the system complexity
is kept low while still maintaining a realistic model at each of the
corresponding levels. This is in contrast to many of the current peer-
to-peer simulator designs that mostly concentrate on the functionality
of a peer-to-peer system and do not explicitly consider a realistic
network environment. Hence, they stress protocol behavior rather than
looking at the influence of network parameters such as delay, number
of routers and links, geographical locations, distances, etc. A good
overview for peer-to-peer demonstrators and simulators can be found
at the P2PJournal web page [3].

This work was supported by E-Next project, a consortium of 41 european
institutions to build a sucessfull European Research Area (FP6/2002/IST/1).

With this ALS approach we aim at an exact mapping of the
protocol and additionally a realistic network environment without
neglecting packet level details crucial for evaluating the influence
of application behavior on the underlying network. Additional it
is possible to compare different protocols, taking account realistic
network conditions.

The remainder of this paper is organized as follows. Section 2
describes the packet-level simulation and emulation toolset. Section 3
presents the novel application layer simulation approach, and Section
4 finished with the summary and the conclusion.

2. SYSTEM OVERVIEW

In this section we give an overview how networking experiments
are supported by our tool collection. We start with some terminology
and discuss how traffic can be represented in experimentation envi-
ronment. Next, the different steps of conducting an experiment are
described from beginning to end. In the next section, we will focus on
the application level simulation step which is the main contribution
of this paper.

2.1 Terminology and Traffic Description

The term traffic is used to describe the amount of bits that are
transmitted over one link or are sent by a node. With the term
traffic we always mean Internet (IP) traffic. Traffic can be modeled
at different layers with different degrees of abstraction.

On the lowest layer IP traffic can be modeled as a series of
packets. Each packet is characterised by a generation time and size
plus source and target node and port plus protocol number. Traffic can
also be modeled on higher more abstract layers. If traffic is aggregated
in time we call this the intensity layer which specifies traffic as the
number of bytes transmitted between a source and destination(s) or
on one link in a single period of specified length. The information
about the individual packet sizes is lost this way. It is non-trivial to
split an intensity into individual packets again. Traffic matrices are
an example that typically use traffic intensities. Also some trace files
specify traffic intensities and some self-similar traffic models specify
how to generate traffic intensities.

If traffic is not aggregated in time but instead by context we speak
of the flow layer. Each flow gencrates a series of packets with a
flow-type specific algorithm. A CBR flow transmits packets of fixed
size in constant intervals. A greedy TCP Reno flow transmits packets
as fast as possible using the TCP Reno flow and congestion control
algorithm. The advantage of flow layer traffic is that it is obviously
very powerful and memory efficient since all packets belonging to a
flow can be described by a few flow parameters. However each flow
type (CBR, greedy TCP, etc.) has a very different set of parameters
and the flow algorithm has to be implemented both in the simulator

and traffic emulator. All flows have a start time and a node/port
pair. The greedy TCP source has the following additional parameters:
Packet size, Amount of data to be transferred and TCP algorithm
parameters.

The next highest layer is the session layer. A session consists of a
number of closely related flows or intensities. A simple IP telephony
session for example might contain a number of CBR flows following
each other with switching directions. A session can be seen as the
runtime instance of one application.

The highest layer - the application mix layer - models how many
sessions of which traffic model respective application are generated
in one edge node (e.g. 40 IP Telephony, 20 Peer-to-Peer and 100
WWW sessions). The application mix is specified in the node & link
property step (see below).

Our application level simulation framework (see Section 3) breaks
the application mix layer information down to session and flow
information.

In network simulation computer models of real network compo-
nents are used to estimate the behavior of the network to some input
considering to typical networking parameters such as loss, delay,
throughput. Network simulators like NS2 [4], JavaSim [5], OpNet [6]
etc. are uses for network simulation. Our presented approach currently
uses NS2 for packet level simulations and our own framework for the
application level simulations (see Section 3). Contrary to simulations,
in a real-world or a testbed experiment the behavior of a network
to specific input is observed based on measurements made in a
real physically existing computer network, either a testbed, research
network or production network.

2.2 Conducting an Experiment

Topology Node & Link A Leval B
Generation Properties Trafﬁc Generatlon Traﬂ"r Generauon
SN f\ ﬁ\ A
— & = L ‘/ — &
o o
. . % .
Network Level
Simulation
(.
} Plausibility Check
quluauon Touchup & Export

T \ S >
i':_

Figure | — Conducting a Network Experiment

4?

Figure I shows the different steps of conducting a network exper-
iment. First a topology is created either manually or automatically.
To support this, we offer a library of real-world topologies [7] and
a converter for different topology generators like TIERS [8], BRITE
[9]1, [10], GT-ITM [11] and Inet [12]. Topologies can also be created
with a special GUL See also Section 3.1.

It has been also investigated how to choose the parameters of the
topology generators in order to obtain realistic topologies. The results
show that the topology generators above can indeed produce realistic
topologies with respect to outdegree distribution, the hop-plot and
some other metrics.

Next, the properties of the links and nodes are set manually or
automatically. These properties include

« Delay of a link

« Bandwidth of a link

o Queueing algorithm and queue size of a link

« Traffic properties of a node

These properties can be set automatically with a script or manually
using the GUI mentioned above.

In the next step we run the application level simulation that
is described in detail in Section 3. It uses the topology and traffic
information to simulate the application behaviour on that topology.
Currently this step focuses on simulating the behaviour of P2P
applications but other applications could be supported as well. This
step generates flows and sessions that represent realistic P2P traffic.
For some experiments this might be everything the researcher is
interested in, in that case the experiment can stop after this step.
Otherwise background traffic is added in the next step to run
network level experiments (simulation or testbed experiment) later on.
For adding background traffic we implemented some smaller traffic
models, for example an aggregated WWW model based on the traffic
generator of Kramer [13].

After the traffic generation steps are completed, the resulting
experiment setup is exported. During the export a plausibility check
can be run which checks parameters critical for the experiment
for plausibility. An example would be estimating the bandwidth
necessary for the generated traffic and comparing it with the available
bandwidth. We implemented two algorithms to estimate the used
bandwidth, one uses fixed rates for the TCP connections and given?
loss probabilites while the other one is more sophisticated and based
on M/M/1 queues and the TCP formula [14]. If much more bandwidth
is needed than offered the operator might want to change the scenario
parameters before investing time in the actual simulation or testbed
experiment. After the plausibility check the scenario is exported to
NS2 and/or the testbed:

The NS2 export module can automatically create an OTcl file for
NS2 called run.zcl that sets up the topology and the traffic sources
and starts them. To allow the user to finetune the setup process for
his needs we do not directly configure NS2 in the run.tcl script but
instead call setup functions that are defined in a second OTcl file
header.1cl. Usually, the operator only has to adapt the headertcl to
his specific scenarios needs while the run.tcl file can be generated
automatically and does not have to be changed.

The testbed export module is written for the testbed of our lab
that consists of 24 FreeBSD routers. It can be easily adapted to
similar testbeds. The export module of the scenario generator creates
a number of configuration files and scripts. When the masterscript is
started it sets up the testbed completely automatic. When a second
script is started the experiment is also started automatically.

First SSH host keys on the machines are exchanged. Next the DNS
and DHCP server on the control machine are configured and restarted,
then all machines in the testbed are rebooted. The IP addresses of
their interfaces are distributed by the DHCP server, the DNS server
allows us to address the machines with the same names as in the
scenario file. Next the switch is configured automatically, VLANSs
are set up to represent the links of the topology. Unused network
interfaces are put into dummy VLANS. Because VLAN headers will
be added to every packet we had to modify the Ethernet network
drivers because otherwise full-size ethernet packets could not be sent.
We use a shortest path algorithm to calculate the routes and set up
static routing in all nodes. After that ALTQ [15] and dummynet
[15] configuration files are distributed to all nodes and ALTQ is
started. ALTQ is a traffic management software that enables certain
QoS mechanisms on PC-based routers. Dummynet can be used to
emulate a wide variety of network conditions by applying bandwidth
and queue size limitations and emulate delays and losses. Then the
configuration files for the traffic emulator tool written introduced in
[16] are distributed to all nodes and can be started automatically. The

2Estimated by the experimenter

clocks of our testbed machines are synchronized by a GPS receiver.
After the export step the packet level simulation or testbed exper-
iment can be started and evaluated.

3. THE APPLICATION LAYER SIMULATION

In this section the Application Layer Simulation (ALS) step is
described in more detail. In this step application messages instead of
IP packets are analyzed. Every message has a well-defined size and
content. In the context of the simulation, the underlying network
structure is based on realistic physical structures respectively on
Internet structures. Since this approach concentrates on a higher
abstraction level it is possible to avoid the problems that arise in
the simulation of large networks [17], [18], [2]. With the exact traffic
model for the application layer, the ALS system is used for packet
level traffic generation. Additional ALS can accomplish studies for
analysis and optimization at application layer. It is beneficial to do
this kind of studies with realistic simulation environment.

The ALS framework itself is implemented in C++ and is based
on the ComNets Class Library (CNCL) [19]. CNCL is an object
oriented library for event driven simulations. For graphical task the
Boost Graph Library (BGL) [20] is used.

The application level simulation framework is roughly subdivided
into four parts, the physical topology creation, the user/data model,
the traffic forwarding and the protocol. In the following each part
will be discussed in more detail.

3.1 Physical Topology Creation

We start with the description of the underlying network topology
for the ALS framework. That means a real-world network topology
and not the overlay topology constructed by the application protocol
as discussed in the Section 3.4. The topology is usually significantly
influencing the outcome of the simulation. Important properties such
as end-to-end delay and packet loss depend on the used network
topology. This topic is discussed in more detail in the Traffic
Forwarding Section 3.2 paragraph.

In order to proof the functionality of a particular peer-to-peer
protocol in general, it is sufficient to use a small topology, which
is optimized for the considered problem. There are a number of
demonstrators for special peer-to-peer protocols [3]. For an effective
analysis of the impact of large peer-to-peer networks on the underly-
ing network it is meaningful to use realistic topologies with a large
amount of routers and links [2], [21].

In accordance with real-world network structures, here topologies
which are hierarchically structured and based on power law graphs
[22] are used. A topology is represented as a graph G(V, E') which
contains sets of vertices’s and edges. In the Internet context the vertex
is a router with properties like capacity and location. A edge is a link
with the bandwidth and a start- and end router. All links of a graph are
per default bidirectional. Thus the links (edges) become duplicated
to unidirectional back- and forward-edges. Optionally, we can define
the bandwidth for every direction separately. Each node has a fixed
geographical location and for one and only node. If there are several
nodes at one place there they are aggregated into one node.

Generally, we use a typical Internet topology at the Autonomous
System (AS) level that contains three layers, a backbone, several
regions and at the lowest level the access network respectively the
LANs. The LAN structures are not mapped in an absolutely exact
way, because the end-systems are connected directly with the access
router (Point-of-Present, PoP) of the backbone. This abstraction is
taken since the distances in the LAN are quite small compared to the
distances in the backbone.

There are two address spaces, one for the physical network
structure and the second for the overlay network. To a physical node
in the network more than one overlay node (resp. a application end-
system) can become allocated. Thus, the ALS has an address system
analogical to the real-world with overlay address and TCP/IP address
space. This differentiation is necessary to model real-world behavior.
For example, weeks after the turn-off of our experimental peer-to-peer
system, a considerable amount of traffic, addressed to this peer-to-
peer system, was still measurable.

As already described in Section 2, both ALS and the ScenGen
packet level simulation are based on an identical topology. So we can
use the results from the ALS as input for the ScenGen simulations.
With the exact traffic model for the application layer, the ALS system
is used for traffic generation at packet level. In the following Table
I, a example for this output data is given.

TABLE 1

INTERCHANGE DATA OF ALS AND SCENGEN
stime packet snode intermediate enode
0.0728907 LOGIN(52) 45 13,2,3,6 25
0.0895437 CONNECT(52) 295 6,3,1,12 58
0.0923754 ACK(52) 58 121,36 25
0.0943661 LOGIN(52) 51 10:1:2,13 45
0.0963656 LOGIN(52) 45 13,2,1,10 51
0.101625 CONNECT(52) 51 10,1,3,6 25

stime: start time in minutes, packer: message type and size, snode: physical
address of start node, intermediate: comma separated list of intermediate
nodes, enode: end node

By means of a graph model, which is based on the Boost Graph
Library {20], all graphical tasks are computed such as the routing in
a realistic network. The shortest path routing (similar to the prevalent
Open Shortest Path First, OSPF) to model a realistic routing behavior
is used. The routing information and the graph structure are basis for
the traffic forwarding in the next Section.

3.2 Traffic Forwarding

The Traffic Forwarding describes the transport of data from the
source to the destination over a communication network. The main
property is the duration of a transmission, i.e. the end-to-end delay. A
good overview on modeling the end-to-end (e2e) delay can be found
in [23], [24]. ALS applies an empirical model for the e2e delay. In
the next paragraph it will be discussed.

In current peer-to-peer networks, several millions of users can
be active simultaneously. Packet-layer simulations of such large and
complex systems are limited by the performance. The difficulties in
simulating large communication networks are discussed in studies
[25], {17]. Therefore, in this approach a upper abstraction level is
applied and consider only the application messages. Depending on
the peer-to-peer protocol, the size and the content of a message is
given. In the next step we are interested in the duration of the transfer
of the message from the source to the destination peer. So the relevant
property of a transmission in a communication network is in our
approach the end-to-end delay.

There are many factors which influence the end-to-end delay.
Considering all these factors (e.g. background traffic resp. noise,
packet loss, etc.) could result in a suboptimai solution since to handle
so many complex and difficult parameters consequently prohibits
scalability. Thus we pursue the idea of using measurements as
statistical pattern for the end-to-end delay. In the following, the
modeling of the traffic forwarding in our simulation is described.

The end-to-end delay between the peers Py and P> must deter-
mined, see Figure 2. The dashed line in Fig. 2 represents the end-

Application

Transport

Intemet

Capacity Network Interface

Phyiscal

Distance

Figure 2 — Example scenario for a traffic forwarding in a peer-to-peer overlay
network

to-end delay between both end-systems. All the traversed links and
routers are known. From this the end-to-end delay between two
communicating peers is estimated. Messages from the peers incurring
transmission delay T}, the queuing delay @, processing delay Sh
and propagation delay P, at each hop h from the source to the
destination. Thus we get

D= Y (Ta+Qn+Sh+Ps))
he€Path

The only random component of the delay equation (1) consists of
the queuing delay in the network, Q@ = Ehe patn @n- The value
of the total delay depends on the number of intermediate nodes
(routers). In the example of Figure 2 we have five hops and four
intermediate routers. The deterministic part of the transmission over
the five links can be determined by the message size, the distance and
the electromagnetic travel time in through the physical path. In [26],
[27] the authors propose several distributions to determine the e2e
delay that are based on measurement results in the Internet. Thus
we are able to determine a realistic e2e delay with the suggested
distributions and depending from the traversed route in the network.
Later on, there is the possibility to verify the results in the ScenGen
packet level simulation and if necessary restart the ALS with new
parameters. At the moment the different e2e delays in the simulations
is a problem. The estimation of the e2e delay delivers other results
than the fairly exact computation of ScenGen, but the deviations are
quite small.

3.3 User and Data Model

Our user model describes the behavior of a user who uses a peer-
to-peer client software. We use the notations “peer client”, “peer” and
“user” as synonyms because in this model a user can only start one
client and a client corresponds to a peer. The data model represents
the resources of a peer-to-peer network such the probability of the
resource sizes. Both models are interdependent because in a peer-
to-peer system the behavior of the user is based on the search of
resources. At first we describe the user model and hereafter the data
model.

A typical action of a peer-to-peer user is to connect with the peer-
to-peer network. In the next step he can start to search for resources or
stay online and the peer-to-peer client is able to process requests from
other clients. After a certain duration the user leaves the peer-to-peer
system. The user behavior depends on the peer-to-peer system (see
the protocol Section 3.4), the daytime and many more parameters.
There are many real-world observations and analysis of peer-to-peer
traffic characteristics 28], [29], [30] that deal with these peer-to-peer
parameters and distributions. ALS models a peer-to-peer user as an
exponential ON/OFF source. Thereby the ON state is again divided in
two sub-states : the ACTIVE state and the IDLE state. In the ACTIVE
state the peer-to-peer client is currently sending a request to the peer-
to-peer network. Otherwise the client is in the in the IDLE state.
Thus the client is ready to process queries from the other peers. For

changing between both states the Pareto or Exponential distributions
are used. The distribution and the parameter depends on the used
peer-to-peer protoco!l (see Section 3.4). The next important property
of the user behavior is the mean upstream and downstream bandwidth
of a peer-to-peer client. As well distributions based on the specific
protocol [21], [31] are used.

Further we describe the data model which characterize the size and
the rank of the shared resources. For the distribution of the size of
files we can use some measurements for example [30], [31]. In the
first step we apply a log-normal distribution for the determination
of the file sizes like in [32]. But this approach is not exact and
does not fit to each peer-to-peer system. For example the author of
the measurement study presented in [33] argue that KaZaA client
users share more video data than the eDonkey users. So the file
size distribution of both peer-to-peer systems are quite different. The
second item of the data model is the rank of a file. Based on the
observation that only a few files produce the majority of the traffic
volume the choice of the shared files have a big influence on the
underlying Internet. If a peer starts to send a request, first by the
distribution laws the rank and the size of the searched file will be
determined. A possibility for a distribution is Zipf’s law [21]. Then
the request will be sent to adjacent peers. By the rank of the requested
file every peer can determine the chance of success for an incoming
request. The requesting peer gets messages from each peer who can
provide the searched resource whereby all the steps for a query in a
peer-to-peer system depends on the peer-to-peer protocol we handle
in the next Section.

3.4 Protocol

The last part of the ALS framework is the protocol implementation.
It is a quite generic part in order to create simulations with several
protocol implementations. As already described in the introduction
we consider peer-to-peer systems. For the conception phase we apply
an implementation of a virtual super-peer protocol as described in
[34]. We use this virtual protocol approach as a first step for further
development toward most popular peer-to-peer systems like Gnutella,
eDonkey and KaZaA. The central task of a peer-to-peer protocol
is to support the searching for resources in the peer-to-peer search
(overlay) network .

Thus the protocol supports the evaluation of incoming queries and
if necessary the forwarding of this requests. Also it sends the own
request toward the network and checks the number of hops of the
request in the network. Because a peer-to-peer system is decentral
organized, the protocol is responsible for the maintenance of the
structure of the search network. For example in a super-peer structure
many peers are connected with one super-peer. If too many peers are
connected with one super-peer the system has to restructure itself. In
a first step an additional super-peer is appointed and the peers are
divided between the two super-peers. The rules for these functions are
all central and must accomplish this functionality. Thus the protocol
in a peer-to-peer systems has crucial influence on the whole search
network and consequently to the underlying network resources. The
properties of a peer-to-peer protocol are the:

« structure of the peer-to-peer search network,

» search behavior (e.g. number of hops, searching with distributed

hash tables)

« network contro! (for example create or finish a connection, still

alive messages, etc.)

« initial behavior (bootstrapping)

« influence of the user behavior

e etc.

In order to make a meaningful study about the impact of a peer-to-
peer system at the underlying Internet it is very important so model

Simultancous peers and sum of all sent messages

:
e

=
g
3
g
£
£
&
3
Z
g
&
£ 7
g g
= /7
/' Messages
>
o= L 1 1 1 s
[200 400 600 800 1000

Time minutes)

Figure 3 — ALS Simulation at bootstrap phase

the protocol as realistic as possible.

As proof of concept, Figure 3 shows an example of a simulation
run using our simulation framework software. In this example a
simple peer-to-peer broadcast protocol was implemented and tested.
The graph depicts the bootstrap phase of the simulated peer-to-peer
overlay network. The AFS results are calibrated with the packet level
simulation.

4. SUMMARY AND CONCLUSIONS

This paper provides a description of our tools for application
and packet level simulations. Our application level simulation (ALS)
framework is specialized for analyzing P2P applications on the
application level. Our approach is much more scalable than a pure
network level simulation approach. ALS takes into account the
physical network structure and a realistic delay distribution. It can
model the characteristics of different P2P protocols. For our analyzes,
we focus on super-peer applications at the moment. The result of
the application level simulation are fed into a packet level simulation
using our KOM ScenGen tool collection. It can also be used as traffic
generator for our lab testbed consisting of 24 FreeBSD routers. This
way the ALS results can be verified on a subnetwork and certain
network parameters like loss and queuing delay can be measured
more exactly than with a pure application level experiment.

A big challenge is to model peer-to-peer systems in our simulation
environment. Consequently, we plan to implement several more
realistic peer-to-peer protocol. We are able to generate reproducible
results at the application and packet level. Goal is to analyze the
impact of peer-to-peer traffic of the subnetwork of a ISP. We are
convinced that traffic from overlay networks like peer-to-peer have
strong effects to the network planning in the future.

Another important challenge is the enhancement of the peer-to-peer
systems. There the issue to enable interworking of the peer-to-peer
protocols with the underlying Internet. Further, to create a IP friendly
overlay protocol. This does not any apply for peer-to-peer systems
but other overlay approaches like GRID, too. Our simulation tool can
help analyzing the effects of these effects.

REFERENCES

[11 O. Heckmann, K. Pandit, J. Schmitt, and R. Steinmetz, “KOM ScenGen
- The Swiss Army Knife For Simulations and Emulation Experiments,”
MIPS, 2003, recipient of the Best Paper Award.

[2) V. Paxon and S. Floyd, “Why We Don't
Simulate The Internet,” in In
Communication Conference, December
citeseer.nj.nec.com/paxon99why.htm!

(3] “P2P Journal - P2P Simulator,” 2003, http://www.p2pjournal.cony/.
[Online]. Available: http://www.p2pjournal.com/

[4] “Network Simulator NS2,” http://www.isi.eduw/nsnam/ns/.

Know How To
Proceedings of the Winder
1997. [Onlinel. Available:

[5] *JavaSim Network Simulator,” http://www.javasim.org/.

[6] “OpNet Network Simulator,” http://www.opnet.conmy/.

(7] O. Heckmann, “Topologies for ISP level network simulation (website),”
http://www.kom.e-technik.tu-darmstadt.de/ heckmann/topologies/.

[8] TIERS., “Tiers Topology Generator,” 2003. [Online). Available:
http://www.isi.edu/nsnam/ns/ns-topology.html#tiers/

[9] BRITE, “Boston University Representative Internet Topology Genera-
tor,” http://www.cs.bu.eduw/brite/.

[10] A. Medina, 1. M. Lakbina, and J. Byers, “BRITE: Universal
Topology Generation from a User's Perspective,” 2001,
http://www.cs.bu.edwbrite/.

[11] GT-ITM, *“Georgia Tech Internetwork Topology Models,”
http://www.cc.gatech.edwprojects/gtitny.

[12] “Inet Topology Generator,” http:/topology.eecs.umich.edw/inet/.

[13] G. Kramer, “UC Davis Generator of Self-Similar Traffic,”

http://fwwwecsif.cs.ucdavis.edu/ kramer/code/trf_gen2.htmi.

[14]). Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Throughput: A Simple Model and its Empirical Validation,” in Proceed-
ings of the ACM SIGCOMM, 1998.

{15] K. Cho, “The Design and Imlementation of the AltQ Traffic Management
System,” Ph.D. dissertation, Keio University, January 2001.

[16] “KOM RSVP Engine,” http://www.kom.tu-darmstadt.de/rsvp/.

[17] G. F.Riley and M. H. Ammar, “Simulating Large Networks: How Big is
Big Enough?” Proceedings of First International Conference on Grand
Challenges for Modeling and Simulation, Jan. 2002.

[18] P. Huang, “Enabling Large-scale Network Simulations: A Selective
Abstraction Approach,” USC Computer Science Department
Technical Report 99-715, September 1999. [Online]. Available:
citeseer.nj.nec.com'huang99enabling.html

[19] ComNets Lehrstuhl fir Kommunikationsnetze der RWTH Aachen,
“ComNets Class Library and Tools (CNCL),” http://www.comnets.rwth-
aachen.de/doc/cncl.html.

[20] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, Boost Graph Library,
The: User Guide and Reference Manual. Addison-Wesley, 2001,
http:/fwww.boost.org/libs/graph/doc/.

[21] S. Sen and J. Wang, “Analyzing Peer-to-Peer Traffic Across Large Net-
works,” Second Annual ACM Internet Measurement Workshop, Novem-
ber 2002.

[22] C. R. Palmer and J. G. Steffan, “Generating Network Topologies That
Obey Power Laws,” in GLOBECOM 2000, 2000.

[23] M. J. Coates and R. D. Nowak, “Network Tomography for Internal
Delay Estimation,” In Proceedings of IEEE International Conference
on Acoustics, Speech and Signal Processing, Salt Lake City, UT, 2001.

[24]) M. Allmann and V. Paxson, “In Estimating End-to-end Network Path
Propertiers,” SIGCOMM'99, 1999.

[25] S. Floyd and V. Paxson, “Difficulties in Simulating the Internet”
IEEE/ACM Transactions on Networking., 1997. [Online]. Available:
Available at http://www.aciri.org/floyd/papers.html.

[26) G. Hooghiemstra and P. V. Mieghem, “Delay Distributions on Fixed
Internet Paths,” Delft University of Technology, Technical Report
20011020, 2001.

[27] C. Bovy, H. Mertodimedjo, G. Hooghiemstra, H. Uijterwaal, and P. V.
Mieghem, “Analysis of End-to-end Delay Measurements in Internet,”
Proceedings of Passive and Active Measurement (PAM2002), Fort
Collins, USA, March 25-27, pp. 26-33, 2002.

[28] Z. Ge, D. R. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley,
“Modeling peer-peer file sharing systems,” in Proc. of Infocom, 2003.
[Online]. Available: citeseer.nj.nec.com/560486.html

[29] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A Measurement Study
of Peer-to-Peer File Sharing Systems,” Technical Report UW-CSE-0I-
06-02, 2001.

[30] N. Leibowitz, M. Ripeanu, and A. Wierzbicki, “Deconstructing
the Kazaa Network,” 3rd IEEE Workshop on Internet Applications
(WIAPP'03), San Jose, CA, June 23-24,, 2003.

[31] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “Measuring and Analyzing
the Characteristics of Napster and Gnutella Hosts,” Multimedia Systems
Journal, Volume 8, Issue 5, November 2002.

[32] G. D. Costa and O. Richard, “Impact of Realistic Workload in Peer-to-
Peer Systems - a Case Study Freenet,” In Proceedings of the ISPDC,
2002.

[33] Sandvine Incorporated, “Regional characteristics of P2P - File sharing
as a Multi-application, Multi-national Phenomenon,” An Industry White
Paper, 2003.

[34] B. Yang and H. Garcia-Molina, “Designing a Super-peer Network,” in
19th Int’l Conf. Data Engineering, IEEE Computer Society Press, Los
Alamitos, CA., Mar. 2003.

