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Abstract—The global trend of increased urbanization makes
space rare in city environments in general and for parking in
particular. In addition, cars become bigger and often use more
than one parking space. As a result neighboring parking spaces
can be affected by a parked car. So, a basically free parking
space might be too narrow for an arriving car depending on the
arriving car’s size. Therefore, means to detect car positions on
parking spaces in a fine granular way are required to detect
such situations and avoid inefficient parking space searches.
Wireless sensor networks provide the possibility to sense the
exact occupation of a parking space and potential influences
on neighboring parking spaces. However, current solutions focus
only on the detection if a parking space is occupied or not.
In our work, we present a sensor deployment and a machine
learning-based approach able to provide the mentioned more
fine-granular detection level. We have conducted an extensive
real-world evaluation of our solution, in particular considering
different characteristics of today’s car bodies. In our tests, our
approach achieved an accuracy of more than 98%.

Index Terms—wireless sensor networks, magnetic field sensor,
parking sensor, parking position

I. INTRODUCTION

The continuously increasing urbanization all over the world
makes space a scarce good in today’s city environments [1].
Simultaneously, the amount of registered cars is still extensively
growing and car sizes are still becoming bigger (cf., e.g., [2]
[3]). Thus, parking space has become rare and the available
space for parking must be known in detail and efficiently used.

Only with a detailed knowledge and efficient usage of
parking space, a sufficient degree of utilization of the relatively
expensive space for parking lot operators can be achieved and
long search times for drivers looking for an appropriate parking
space can be avoided. The necessary detailed knowledge and
efficient usage requires a fine-grained detection of car positions
on parking spaces, because a detection solely on the occupancy
of a parking space is not enough, as parked cars might influence
adjacent parking spaces due to their size or the way the car
is parked. This leads to situations in which a basically free
parking space might not be usable for an arriving car anymore.

With their sensing capabilities and extendability in addition
to their communication and local computing and storage
capabilities, wireless sensor nodes (motes) and their fusion
to wireless sensor networks (WSNs) provide the opportunity
to realize such a fine-grained sensing of car positions. Using
appropriate sensors and locally fusing measurements received
from other motes, a mote can decide on the position of a
parked car and its potential influence on adjacent parking

spaces. Afterwards, the mote can transmit this information for
example to a central intelligent parking space control system.

Current approaches usually focus on simple decisions
whether a parking space is occupied or not and do not conduct
any measurements on car sizes or specific parking positions,
which might influence adjacent parking spaces. Additionally,
most approaches rely on a threshold-based detection of the
presence of a car using magnetic field-based sensors. Such
pure threshold-based car detection approaches might become
problematic when car bodies are not mainly made of steel.

In consequence, we present a sensor setup for parking
space monitoring, which allows a detailed determination of
a parked car’s position as well as influences on neighboring
parking spaces and simultaneously incorporates the varying
characteristics of different car bodies. For this purpose, a sensor
deployment is required, which provides the possibility to gather
diverse data on a sufficiently detailed level. In addition, an
approach is needed for the analysis of the gathered data and
the decision how a parking space is occupied and how an
occupying car influences adjacent parking spaces. Our approach
described in the work at hand is based on a WSN constituted
of motes equipped with magnetic-field based sensors and an
analysis method employing machine learning techniques. The
development of our approach has been conducted iteratively on
the basis of different field tests. We used as well real-world tests
to finally evaluate our approach and the achievable position
detection granularity against the background of varying car
types. Thus, the major contributions of this paper are:

• A sensor setup enabling data gathering for fine-grained
determination of vehicle positions within parking spaces.

• A data fusion and machine learning-based approach for
determining car positions on a parking space and effects
on adjacent parking spaces.

• An extensive evaluation with real-world tests.

The remainder of this paper is structured as follows: We
provide an overview of related work in Section II. In Section III,
we sketch our considered application scenario. The development
of our sensor setup for vehicle position detection in parking lots
is presented in Section IV. Section V describes our machine
learning-based approach for determining a vehicle’s position
on a parking space and potential effects on adjacent spaces.
The evaluation setup and results are presented in Section VI.
We summarize our findings and provide an outlook on future
work in Section VII.
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II. RELATED WORK

The detection of cars is not only relevant in parking lots,
but as well for example at intersections with traffic lights.
Thus, several base technologies already exist which facilitate
car detection. Common technologies comprise image-based
sensors, magnetic sensors, and inductive loops.

Image-based sensors offer the possibility to provide still
images or videos in real time for example from highway
parts susceptible to traffic jams or tunnels. However, such data
provided by cameras is influenced by weather conditions and
limited by the camera properties, e.g., with regard to dynamic
range (cf., e.g., [4]).

Employing magnetic sensors for car detection exploit that
cars are usually made of a huge part of ferrous material
and therefore affect magnetic fields. Thus, magnetic field
changes are measured by magnetic sensors to determine
whether a car has passed by or not. In this context, anisotropic
magnetoresistive sensors are for example employed. These
sensors exploit the terrestrial magnetic field and take its strength
as set point. Detecting any changes to it and comparing them
to thresholds, a decision whether a car is present or not is
taken (cf., e.g., [5], [6]).

Inductive loops are a special category of magnetic sensors.
Opposed to the anisotropic magnetoresistive sensors, inductive
loops are not depending on the terrestrial magnetic field,
but create a magnetic field themselves and measure any
disturbances of this magnetic field. Using thresholds for the
measured disturbances, inductive loops decide whether a car has
been sensed or not. Inductive loops constitute by far the most
common technology for car detection, in particular for traffic
lights signal timing. However, installation and maintenance
costs are high and the required wiring is complicated and error
prone, sometimes even not possible. Furthermore, inductive
loops are tailored to decide whether a car is present or not and
thus do not support the exact detection of a car’s position (cf.,
e.g., [7], [8]).

In consequence, possibilities to employ WSN technology as
an alternative to inductive loops for car detection in parking lots
have been researched by several authors already. Most often
anisotropic magnetoresistive sensors are used in the different
approaches.

In [9], acoustic sensors have been additionally used. In order
to detect cars, the authors proposed a threshold-based approach
for the anisotropic magnetoresistence sensor. For the acoustic
sensor, the authors developed two approaches based on the
detection of temporal acoustic energy concentration. However,
the authors found that the acoustic-based approach was rather
computing intensive and still not as accurate as their approach
employing the anisotropic magnetoresistence sensor.

Problems with acoustic sensors have as well been reported
by [10]. Additionally, the authors tested visual light, infrared,
temperature, ultrasonic, and magnetometer sensors. Besides
the magnetometer sensors, the authors found only ultrasonic
sensors usable for car detection. However, the authors experi-
enced as well problems using ultrasonic sensors, as they were

not sufficiently able to distinguish between different objects,
like people or cars. Thus, the authors proposed a checkpoint-
based hybrid approach using both ultrasonic and magnetometer
sensors to detect cars entering and leaving a parking lot.

Temperature, light, and acoustic sensors have been employed
in [11]. The authors deem light and acoustic sensors as suitable
for car detection in a parking lot. However, the authors focus
on the development of an encompassing car park management
system providing auto-tolling, utilization reports, etc. Thus,
they evaluated the mentioned sensor technologies only in a toy
car setting without noise and other environmental influences.

Based on anisotropic magnetoresistive sensors and the
approach provided in [9], the authors in [12], devise a threshold-
based algorithm. With Matlab simulations, the authors could
show that suitable car detection is possible even facing
noisy measurements. Another threshold-based approach using
anisotropic magnetoresistive sensors is proposed in [13].
The authors conducted real-world tests and could detect the
occupancy of a parking lot with an accuracy of over 99%.

Magnetic field-based sensors constitute the technological
basis in most approaches for car detection and is employed
in our approach, as well. However, the described approaches
specifically tailored for parking lot monitoring focus on simple
yes or no decisions, only indicating whether a parking space
is occupied or not. Yet, skewed parking and different car sizes
affect not only the occupied parking space, but adjacent parking
spaces, as well. Thus, our approach is tailored to not only detect
whether a parking space is occupied or not, but in particular
to determine a car’s parking position on the parking space to
identify potential influences of a parked car on the vacancy of
adjoining parking spaces.

III. APPLICATION SCENARIO

Already today some parking garages are equipped with
sensors to detect if a single parking space is occupied or
free. However, the overall goal of our work was to elaborate
if it is possible to detect vehicles on parking sites in a
higher granularity with respect to the vehicle position. With
such a knowledge one can derive more information than just
the occupancy of a parking space. Also the interference of
neighboring parking spaces with respect to an overlap or
additional free space can be detected.

The motivation of our objective was initiated by a characteris-
tic situation every motorist has already witnessed several times.
On the search for a parking space one notices a potentially free
parking space, but on a closer distance one has to recognize
that the parking space does not provide sufficient space for
the own car. Such situations can be caused by askew parked
cars that occupy two parking spaces, big cars on neighboring
parking spaces or simply by cars on neighboring parking spaces
that park very close to the boundary of the parking space.

Modern parking sites are able to count and display the free
parking spaces by the use of an entrance control. However, in
situations like the previously described scenario, it is possible
that some free parking spaces are displayed, but in reality no
single parking space is free or provides sufficient space. Smart
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Figure 1: Overview of the three considered parking spaces
with two different sensor position configurations.

parking spaces equipped with sensors have the potential to
provide the necessary information to prevent such situations.
Based on this information a car driver can be guided directly
to a suitable parking space.

To reduce the complexity of external influences, we consider
all parking spaces oriented vertically to the driving lane. Our
special focus is on a single parking space and both direct
neighboring parking spaces. The arrangement of these three
parking spaces is depicted in Figure 1. The three rectangles
depict single parking spaces with a wall on the top side and the
driving lane on the bottom side. The numbered circles thereby
depict two different sensor arrangements. The specific sensor
deployment is described in more detail in Section VI.

We deployed sensor nodes in our department underground
parking to create a testbed. The used sensors are explained in
detail in the following Section IV. During our tests we moved
different cars into and out of the intermediate parking space
and recorded continuously the sensor values of our deployed
sensor nodes. All test runs were recorded by video to have
an evaluation base for later data analyses. For this purpose a
timestamp in the video recording was necessary to have the
possibility to match the gathered sensor data with the recorded
video. Finally, we implemented a live monitoring functionality
that was necessary to verify if everything in the testbed is
working correctly.

IV. SENSOR DEVELOPMENT AND SETUP

In a first step, we define requirements for our real-world
deployment, including hardware components and used sensors.
As already mentioned in Section III, we used an underground
parking for our deployment. Since it was a public parking, no
long term impairments or changes were allowed. This results
in the requirement of flexibility in terms of installation and
deinstallation.

A basic requirement regarding the sensor platform was to
restrict the used sensor to one single sensor type. We decided
to use a magnetic field sensor since this sensor type seemed to
be the most promising for our application scenario. The used
sensor had to be energy-efficient and small to be suitable for a
WSN deployment. For the sensor node platform we decided to
use TelosB motes. We wanted to have the possibility to gather
sensor data from several positions simultaneously. The gathered
data was immediately stored in a non-volatile database. Every

data record was annotated with a timestamp and an identifier
of the respective sensor. The data transfer from the sensor to
the recording database had to be reliable for the initial data
gathering. Thus, we used a wired connection for data collection
within our testbed.

Due to the small overall size and availability we decided
to use the HMC5883L 3-axis magnetic field sensor from
Honeywell [14]. We used a version directly installed on an
extension board as depicted on the left side on Figure 2. This
sensor can directly be connected to an I2C bus. However, it
has a fixed predefined I2C slave address that excludes the use
of multiple sensors on one bus. This results in the use of one
sensor per TelosB mote, but this would also be the preferred
setup for a real deployment.

To store the sensed data, we decided to use an Android
smartphone since this is a very small mobile device, provides
USB host mode support, an SQLite database can be used,
and sufficient storage is available. For the data transfer from
the mote to the storage unit the TelosB supports a wireless
connection or the use of USB. Since a reliable connection is
of high importance for our setup, we preferred a wired USB
connection. The USB connector of the TelosB is provided
by a chip from FTDI that also provides an Android driver
that allows to directly connect TelosB motes to an Android
device [15]. This FTDI driver is basically a wrapper around
the Android USB Host SDK that supports a serial port to
USB conversion as well as defined control and configuration
messages, e.g., baud rate setup. Furthermore, by the use of a
USB-hub multiple motes can be connected simultaneously to
the Android device. In our test deployment we have connected
up to six TelosB motes to one Android device.

The HMC5883L sensor has a fixed 7-bit I2C address and
acts as slave. The I2C packet shift register of the HMC5883L is
multiplexed to 13 different registers that contain configuration
and measurement data [14]. The digital waveform of the
I2C bus signal for setting up the configuration register A of
the HMC5883L is depicted in Figure 3. This multiplexer is
controlled by an internal address pointer (AP). The internal
sampling rate of the HMC5883L is configurable. We set it to
the maximum of 75 Hz and configured the sensor to output
the average value of the last eight measurements to get more

HMC5883L( TelosB( Galaxy(S3(
I²C( USB(

AMR$Sensor$Unit$ Processing$and$
Communica6on$Unit$

Storing,$Recording$
and$Monitoring$Unit$

Figure 2: Hardware Overview: The HMC5883L magnetic field
sensor is connected to the TelosB mote via the I2C bus. The
TelosB mote is connected to the Samsung Galaxy S3 Android
phone via a USB cable.
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robust values, cleaned from noise. The HMC5883L can be
configured to a continuous measurement mode or to measure
only on request. The latter one is more energy efficient, but we
used the continuous sensing mode, because our focus was
to gather as much data as possible for later analysis and
we had no strict energy limitations within our testbed. For
a later deployment the measure on request mode would be
sufficient. Furthermore, it is important to adjust the output
level of the HMC5883L according to the sensed environment.
For this purpose the HMC5883L provides a configurable
internal measurement amplifier that provides an output range
of [−2048; 2047]. As a result this output value describes a
relative value of the terrestrial magnetic field. To prevent
understeering or oversteering, it was essential to find a balanced
gain value that also provides a sufficient quantization resolution.
For this purpose we empirically determined during several tests
a gain value of 390LSb/G (gain configuration bits: GN2 = 1,
GN1 = 0, and GN0 = 1) as good choice for our environment.

We connected the HMC5883L sensor to the TelosB mote
with wires via the I2C bus. Following the HMC5883L datasheet,
a standard request over the I2C bus initiated by the TelosB mote
contains a minimum of two bytes. The first byte is the address
of the HMC5883L sensor and a flag if it is a send or receive
request. In case of a send request the second byte contains
the address location the AP should point to. In case of a
receive request the second byte contains the amount of address
locations that should be read out, starting from the current
AP position. This should work since the AP is incremented
automatically after every readout to reduce the traffic on the
data bus. However, this configuration is not compatible with the
official I2C bus specification since there the master is listening
after sending a read request and therefore is not capable of
sending an additional byte for the AP. Due to this distinction
it seemed to be not possible to use the hardware implemented
I2C interface of the TelosB mote. We further investigated the
behavior of the HMC5883L and figured out that it also works
to read out the next bytes without previously sending the
amount of expected bytes. As mentioned above, then the AP is
incremented automatically, because the TelosB does not stop
the communication and the HMC5883L sends the content of
the next register. Consequently, we identified that the behavior
is compliant to the I2C specification and thus the datasheet of
the HMC5883L [14] is misleading.

In order to write to different registers on the HMC5883L,
the TelosB has to start the communication over the I2C bus by
addressing the HMC5883L with a write request followed by
the address of the selected register and the payload. However,
before a measurement can be started, the sensor has to be
calibrated to zero due to production tolerance and temperature
changes. Empirically, we determined the necessary offset as
the mean value of the first 40 samples. This offset is subtracted
from all following measurements.

In order to be able to place and adjust the HMC5883L
sensor along with the TelosB mote, we have mounted it on a
wooden block of 20 cm length as depicted in Figure 4. We
have mounted the TelosB on the opposite side of the wooden

block to minimize errors on the measurement of the magnetic
field. The attachment on the wooden block is done by double
faced adhesive tape and elastic bands.

So far, we established the connection between the TelosB
mote and the HMC5883L magnetic field sensor. The next
step was to implement a connection between the TelosB mote
and the Android device. The used Android device was a
Samsung Galaxy S3. For this connection, we have developed
a software component that acts as bridge and correspondingly
implements the message protocol to handle the communication.
Our protocol basically consists of a header with a fixed length
of four bytes and a payload of variable length. The header
defines the type and the length of the payload. A sensor value
received by the TelosB mote is converted and forwarded to
the USB host. A control message querying the ID of the mote
that is send from the USB host to the TelosB is handled and
answered directly by the TelosB. Furthermore, the protocol
has a generic structure which allows to easily include other
sensors in the future without changing existing application
components.

For the implementation on the TelosB motes, we have
used TinyOS and built it onto the available I2C and UART
components. It is responsible for the transformation and the
processing of messages between the HMC5883L sensor and
the Galaxy S3 Android device. A buffering mechanism was
necessary to get the application non-blocking and to ensure that
received data is not discarded since the used communication
units have a strict timing. We ensured that time consuming or
dependent invocations are executed asynchronous.

On the Android side, we have split our application into
three decoupled parts: USB communication, storage into the
database, and the GUI. As software platform we have used the
newest custom ROM Android Cyanogen Mod [16], based on
Android 4.4 to fully utilize the functionalities of the smartphone
hardware. To store the sensor data on the Android device,
we use an SQLite3 database that is natively provided by the
Android SDK. Thus, our application can use its own database
or even generate new databases if necessary. The values of all
connected HMC5883L sensors are stored in the database and
are linked with the respective unique mote id of the intermediate
TelosB. The GUI of our Android application allows to activate
or deactivate the previously mentioned zero offset. If a new
data recording is started, a new database file is created that
can be freely named. The application provides a start button to
initialize the USB connection to all connected TelosB motes.
After pressing this button, the application is ready to receive,

Figure 4: TelosB mote setup with the HMC5883L sensor
mounted on a wooden block.
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Figure 3: Digital waveform of the I2C bus signal for setting up the configuration register A of the HMC5883L. Blue denotes
the signal of the TelosB and red the acknowledgment of the HMC5883L sensor.

allocate, show, and record sensor data. Received sensor data
is displayed twice, in a string formatted manner as well as in
graphical manner as a time curve. This allows live observation
of the current test run. An overview of the used hardware
components is given in Figure 2.

V. MACHINE LEARNING BASED DATA ANALYSIS

So far, existing car detection systems only provide in-
formation if a parking space is occupied or not, although
many systems are based on magnetic field measurements
that potentially allow to provide information with a higher
granularity. As already mentioned, our goal is to achieve such
a higher granularity with respect to the car’s position on the
respective parking space, e.g., if a car is parked more to the left
or right boundary of the parking space. Such a more detailed
level of information allows to detect unusable neighboring
parking spaces and a more precise information of the effectively
available parking spaces of a parking lot.

To achieve this goal we had to decide between a regression
based approach or an approach based on classifications. A
regressive approach would handle the output attribute as
numeric value, e.g., the distance between a parking space
margin and the car. Such an approach has several drawbacks:
As the width of a car differs between different models, the
distance must be measured on several positions to predict
an accurate position of a parked car. Furthermore, multiple
distances cannot be mapped to one single output attribute that
makes this concept even more complex. Therefore, we have
decided to develop a classification-based approach. The output
value of a classification approach is not a numeric value, but
a result mapped to a set of possible outcomes. Our approach
is therefore to split a parking space into different sections.
Each possible combination of occupied sections constitutes
one possible output value.

This also allows an easier aggregation of test data since
one single output value per test run is ensured. The complete
set of input parameters of our classification system consists
of 3× n numeric input values from the 3-axis magnetic field
sensors, where n is equal to the amount of used motes. For the
classification, we combined the measurements from multiple
sensors on different positions and used all three values from
the 3-axis magnetic field sensors. This leads to a large amount
of correlated input data, with which a simple threshold based
approach cannot cope. The gathered data was then investigated
with the use of machine learning (ML) algorithms. In order
to reduce complexity, we assumed only passenger cars to be

detected. In the next step, we segmented the parking space
in order to be able to pursue our classification approach. The
parking space is segmented into several segments parallel
lengthways to the parking space, whereas on classification
level each segment can be detected to be occupied or free.
Additionally, we restricted the possible width of the cars since
according to [3] the width of nearly 300 popular cars only
ranges from approximately 1.47m to 2.0m.

A segmentation into m segments leads to a set of 2m possible
output values. Thus, we used the information of the range of
the typical width of a car and simplified the segmentation into
five segments per parking space. We also decided to select a
smaller size for the outer segments since we are especially
interested in the influence of a parked car on the neighboring
parking spaces. An overview of this segmentation is depicted
in Figure 5.

To test our concept with different ML algorithms, we
have used the Waikato Environment for Knowledge Analysis
(WEKA) [17] open-source machine learning tool-suite. In a
first step, we only concentrated our investigations on one
single parking space. We have used a supervised learning
approach where the gathered data is manually annotated with
the respective output class. To collect the necessary training
data we extended our previously mentioned Android application
with the functionality to easily annotate the currently measured
data as shown in Figure 7. Our approach also allows to

1 2 3 4 5 
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Figure 5: Sensor position configuration and segmentation of a
parking space for the second deployment.
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Table I: Considered cars.

Car Peugeot 206 BMW 420d BMW i3 Audi A2 Saab 9-3 Cabrio Mercedes C220 CDI

Build Year 1998 2013 2013 2002 2007 2003
Body Material Steel Steel Carbon Aluminum Steel Steel

Width [mm] 1669 1825 1775 1673 1753 1770

take magnetic field measurements from sensors placed on
neighboring parking spaces. To prevent a cyclic dependency
among instances, our concept does not need any occupancy
information of neighboring parking spaces.

Overall, our ML-based concept provides thus a more fine
granular detection level with respect to the vehicle position on
the parking space than existing parking space sensor solutions.
We split a parking space into several segments and determine
the combination of occupied segments. For the classification,
we combine multiple measurements from different positions.
To extract the information, we use all three axis measurements
of all sensors combined with machine learning algorithms, in
contrast to a simple threshold-based algorithm used in other
solutions.

VI. EVALUATION

A. Prototypical Deployment

For the deployment of our sensors we have used our
department underground garage, as mentioned before. All tests
were performed on weekends to exclude external influences,
e.g., from other moving cars or pedestrians. However, two basic
questions had to be answered in our first tests to build a suitable
machine learning model: How many sensors per parking space
are required and what are the best sensor positions? Therefore
we recorded different sensor position configurations in our
first test runs to experimentally find a good combination.
Additionally to the gathered data we have recorded a video
of our test set for later analysis. By a later comparison of
the sensor values and the corresponding test set on the video
we were able to decide on the necessary number of sensors
and corresponding positions. But previously we had to decide
about the orientation of our sensors. Since the HMC5883L
measures the magnetic field in orthogonal 3-axis, only two
different concepts had to be distinguished: Adjust each sensor
to a specific cardinal direction or to a specific direction relative
to the parking space. We have tested both concepts and figured
out that only the latter one, i.e., positioning relative to the
parking space, is suitable to create a general model that is
independent of a specific cardinal direction of a parking space.

In our first deployment we have used two different sensor
position layouts to gather data as depicted in Figure 1. In
configuration 1a all six sensors were deployed on the ground.
This configuration is not intended to be a favorite in a real
deployment as such a configuration would need four sensors
per parking space which is most probably not suitable in
terms of costs. However, it gave a detailed first distribution
of the terrestrial magnetic field distortion caused by a vehicle.
Therefore it helped to identify general relations between

measurements and vehicle positions. In configuration 1b sensors
1− 3 were mounted on the wall in a height of 1m on the top
side of the parking space. Sensors 4 − 6 were deployed on
the ground. This configuration was intended to give an insight
if measurements taken from an upper position are suitable or
even better than measurements taken from the ground. It has to
be considered, that sensors 1−3 were mounted at the wall with
an orientation of the x-axis to the top. After analyzing our first
measurements we had decided to test a third deployment with a
further sensor position layout. All sensors were again deployed
on the ground. The sensor position layout is depicted in Figure
5. Our intention was to get information about the difference
between overlaid and adjoining sensors. Such a sensor position
configuration is also preferred by already existing solutions
that are only able to detect if a parking space is occupied or
not like the Libelium Waspmote [18].

Indeed a lot of more other sensor configurations could be
suitable, but it is possible to derive many of them as subset of
the selected ones. The configuration shown in Figure 5 also
covers several other configurations, e.g., only one sensor in the
middle of each parking space or only one sensor between two
parking spaces. In our first test series we were able to do our
tests with two different cars: a Peugeot 206 and a BMW 420d.
An overview of all used cars to get test data is given in Table
I. Each wood block containing a TelosB and a magnetic field
sensor was connected via USB cables to a USB hub that was
again connected to the Galaxy S3 Android device. We started
to construct various different parking situations with each of the
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Figure 6: Behavior of the magnetic field strength with an
increasing distance for the different considered cars.
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Figure 7: Screenshot of the developed Android application that
was used to record the sensor readings.

available cars as well as with both combined. We have repeated
these steps analogously for all three mentioned sensor position
configuration. The result of our first test series is a database
with more than 100,000 magnetic sensor data tuples in addition
to about 75 min. of corresponding video recordings. In order
to be able to analyze this huge amount of data, we copied it
to a PC and accessed the data with Matlab by the use of Kota
Yamaguchi’s Matlab SQLite3 Driver [19]. In the following we
developed a Matlab script that has mainly three tasks: to access
the SQLite Database and readout the data, data preprocessing
as well as visualization in a time dependent animation. In
the first step all database entries of one selected mote are
extracted and saved into a matrix in order to achieve processing
capabilities of the sensor data in Matlab. The timestamp of
the first and last magnetic sensor data entry are defining the
interval. The values in between are arranged with a 100ms step
width. Each sensor data tuple is a function value for a specific
timestamp. In addition to that, the magnitude of each sensor
data tuple is also calculated. A resulting continuous graph is
created by interpolating the sensor data tuples. In the third step,
we visualized and animated the time curve of the measured

Table II: Occupancy detection accuracy using different machine
learning algorithms.

Algorithm Type Algorithm Accuracy

Tree RandomForest 97.18%
Tree RandomTree 95.23%
Rules Ridor 80.57%
Rules JRip 89.29%
Meta + Tree RotationForest + RandomForest 98.07%
Meta + Tree RotationForest + RandomTree 98.20%

sensor tuples. The animation consists of a Matlab marker which
passes through the resulting functions. Each value results in
a step for the marker and therefore a video frame recording
animation with a pass through of 10 frames per second results
in a time synchronous movie of the occurred sensor values.
We repeated these steps 36 times since we had 12 test runs
per different sensor position configuration. Finally, we created
a movie for each sensor position configuration. To do this
we have used the open-source video editor OpenShot [20]. A
screenshot of the resulting video for the first sensor position
configuration, depicted in Figure 1a, is given in Figure 9. The
recorded video can be seen on the upper left. The animation is
synchronized with all six sensor data movies that are placed on
the lower half. An overview of the sensor position configuration
is given in the upper right. This results in movies that give
an intuitive overview of the changes in the magnetic field
caused by a moving car on a parking space by the animated
visualization of several thousands of sensor data tuples. By
analyzing the videos we detected significant differences of
the magnetic field direction depending on whether a sensor is
overlaid or just adjoined by a car. Additionally, we recognized
that measurements in the z-direction, from ground to ceiling,
can be neglected since these tend to a huge amplitude if a car
is nearby. The second setting, depicted in Figure 1b, has shown
to be not useful since the amplitudes of sensors mounted to the
wall were too small. Based on this knowledge we have chosen
the third sensor position configuration, depicted in Figure 5,
as the most preferable with respect to information content and

Figure 8: Measurement setup for distance measurements.
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costs. An overview of the relation of the magnetic field strength
to the increasing distance to a car is given in Figure 6 for
all considered cars. The x-axis shows the distance between
the car and the sensor and the y-axis shows the magnitude
sensor value that is formed by the magnitude of the single
sensor values of all three axes. The figure clearly shows the
effect of different vehicle body materials. Figure 8 depicts the
measurement setup that was used to get the results shown in
the diagram of Figure 6.

B. Machine Learning

We decided to segment a parking space into five sections.
Thus, the set of possible outcomes that are our classification
classes comprise 32 elements. To simplify our data recordings
we have marked these sections with chalk on the ground of
the parking space. We have used the information on possible
vehicle width values to create an intelligent segmentation
scheme. The selected segmentation is shown in Figure 5. The
width of segments 1 and 5 is 25cm, of segments 2 and 4 is
40cm and of segment 3 is 130cm. This leads to a decrease of
the possible outcomes as a middle segment (2, 3 and 4) can
never be occupied on its own without a neighboring segment
as well. Furthermore, the information resolution nearby the
outer sections is much better than in the middle of the parking
space. Due to these simplifications we were able to reduce the
possible results to a set of 21 possible classifications.

We generated more than 50 different car parking situations
with up to three cars simultaneously. We recorded each
situation three times in order to get more robust results against
measurement tolerances. Our developed smartphone application
recorded the sensor data and directly formatted the recordings
into a WEKA suitable ARFF file. Each sensor shown in Figure
5 provides three values for each measurement, consisting of the
magnetic field strength in all cardinal-directions. Each value
creates a single feature, which results in 15 different input
attributes. Additionally, we modeled the possible outcomes as
output attribute that was manually entered via the application
GUI and added to the ARFF file. In a next step, we used
the GUI-based WEKA Software Experimenter to evaluate the
detection accuracy of the parking space occupancy by a set
of well known machine learning algorithms. The accuracy of
each algorithm by using WEKA standard settings and a 10
fold cross-validation is given in Table II. It can be seen that
tree-based algorithms are more accurate than rule-based ones.
The RandomForest algorithm reaches a quite high accuracy
(97.18%) that can be even be increased to 98.20% by the
combination with the RandomTree algorithm. These results
were above our expectations. In particular, because our test
data set also includes an aluminum and a carbon car that have
significantly lower influences on the magnetic field.

VII. CONCLUSIONS AND OUTLOOK

The information about available parking spaces, especially in
cities, gets an increasing attention. The amount of cars and also
the size of cars has grown, while at the same time the amount
of parking space in cities is stagnating. This causes the need

for real-time information of available parking spaces. Several
big cities have already deployed sensors that are able to detect
if single parking spaces are occupied. However, until now none
of these systems is able to detect if a parked car also affects a
neighboring parking space. To achieve this, the detection of
the position of a parked car on a parking space is necessary.
The combination of magnetic field sensors, WSN technology,
and machine learning exposed as promising technology to
determine the position of parked cars on a parking space with
a high accuracy. In our work, we have introduced our sensing
approach and the used hardware setup in detail. We have
conducted an extensive real-world evaluation of our solution,
in particular considering different materials of today available
car bodies. In our tests we achieved an accuracy of more than
98%.

In our future work, we aim to extend our analysis and try
to reduce the amount of necessary sensors. First tests have
shown that a reduction should be possible while preserving
the detection accuracy. We additionally strive to analyze the
effects of deploying the sensors embedded in the pavement. To
evaluate in more depth, we will further evaluate our approach
with more car categories and in other environments.
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