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Abstract—Advanced driver assistance systems (ADAS) improve
safety, energy efficiency and driver comfort. Such systems are
commonly based on sensor data; however, sensor range is physi-
cally limited. A way to extend the sensing range is to share sensor
reading with others, i.e., vehicles and infrastructure services.
Since direct vehicle communication is not widely deployed and
vehicles are often not driving in direct communication range,
communication has to be realized via cellular networks. Due to
high costs for cellular communication, the transmission of sensed
data has to be efficient and the amount of transmitted data must
be minimized. As possible solution, we introduce a concept of
probabilistic data transmission for vehicular sensed data. The
system divides the map into geographic cells, and a probabilistic
model is managed for each geographic cell individually. We are
able to achieve a reduction in data transmission volume of up to
50 % in comparison to opportunistic approaches.

Index Terms—probabilistic sensing, vehicular data collection

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) support to
increase driving comfort, economy and safety. These systems
are based on local sensor readings, providing information
about vehicle status and vehicle surroundings. An important
factor is the detection coverage, since a larger sensing range
enables more predictive systems. However, due to the physical
limitation, the sensor detection range is limited. A possible
solution could be to share local sensed information because it
is also potentially valuable for other vehicles. This could either
be done by infrastructure based or direct vehicle to vehicle
(V2V) communication.

Direct V2V communication might be the first choice to
share information in the direct environment, especially for
safety critical information with low latency requirements. To
provide a central, holistic, and up-to-date information base and
also to be able to cope with low traffic density, a centralized
information sink is desirable. Here, cellular communication is
the appropriate technology and an according system can benefit
from an already existing high network coverage. However, as
the number of potentially connected vehicles is very large, an
intelligent data collection management is necessary to minimize
data traffic. This is necessary for both preventing network
overload and minimizing transmission costs.

Classic approaches consider optimizations for complete
data transmission like local pre-processing or clustering with
aggregation to reduce data traffic. Another strategy is an
incomplete transmission model. Due to the relatively high
number of potential mobile sensors, i. €., the connected vehicles,

data collection will have a high redundancy. The aim is to
reduce the data traffic and still satisfy certain quality of service
(QoS) parameters, e. g., maximum detection latency. A classic
use case is to detect changes in the road network, including
changes in traffic signs. Changes can be detected several times
within a relatively short period of time.

By introducing a transmission probability, the amount
of transmissions can be reduced. Therefore, we suggest a
probabilistic data collection strategy within this scenario. Since
the vehicular traffic volume is spatio-temporally changing,
transmission probabilities also have to be adapted. Our approach
considers transmission probabilities separately for each property
and conducts the management based on geographic cells. The
developed model uses the data quality indicators detection
latency, i. e., the time an event takes to be stored in the database,
and data density, i. e., the amount of events per hour and square
kilometer in order to reduce the data traffic. To evaluate this
approach, we used the SUMO traffic simulator with an extended
scenario of the TAPAS Colognel data set [1]. We were able
to show a data traffic reduction of about 50 % with a defined
detection latency of 10 minutes. Since this improvement is
dependent on the desired data quality, the result can be further
improved if a lower data quality level is acceptable.

The remainder of this paper is structured as follows: First,
we summarize work related to mobile sensing and sensing
data sharing in Section II, followed by a system overview
and concept description in Section III. In the following, we
provide a formal specification of our approach in Section IV
and give a detailed description of the server side and client side
in Sections V and VI. We present and discuss our evaluation
results in Section VII and finally conclude our work with a
summary and outlook in Section VIII.

II. RELATED WORK

First of all, the considered scenario can be classified into the
general field of mobile sensing. Within this field, smartphones
are typically considered as sensing devices because of their
versatility and large amount of sensors [2]. Another related
field is Mobile Crowd Sourcing (MCS), which utilizes a huge
amount of mobile devices to build large scale sensing applica-
tions [3]. To distinguish between different sensing applications,
we categorize sensing models using three criteria: The amount
of subjects participating, the degree of human participation,
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and the treatment of collected sensor data. The amount
of subjects participating enables to divide the sensing into
three subcategories, namely personal, group, and community
sensing. Within the considered scenario primarily community
sensing, that is investigated by MCS, is of interest. Concerning
the required user interaction, one can distinguish between
participatory sensing and opportunistic sensing. Participatory
sensing is a sensing model that applies user interaction to
collect data and focuses on tools to help users to share, search,
interpret, and verify information [2], [4]. In the considered
scenario a participatory sensing model is not applicable due
to active involvement of the user. If no active participation
is required, the model is named opportunistic sensing. This
is a big advantage in our scenario and commonly used in
traffic monitoring applications, i.e., vehicles transmit data
about their environment themselves [5]. According to Shin
et al. , this sensing model has to cope three basic challenges
[5]: To ensure data quality and integrity, to protect users privacy,
and to consider an efficient data transmission. Depending on
the treatment of information collection, a model can further
be categorized into probabilistic and deterministic sensing.
In the latter one, all sensed data are sent. Thus, complex
maintenance or processing can be neglected, but network traffic
might become a problem.

In probabilistic sensing, sensed information will only be
transmitted with a certain probability, which might depend
on several factors, e.g., the distance between the sensor
and the measured event (shadow fading) [6]. Considering
the sensing device, vehicles are in focus of interest within
our context. Vehicles are equipped with a variety of sensors
that produce information that is potentially of interest for
other vehicles in the direct surroundings. This information
sharing enables to extend the size of the perceived environment.
For this information exchange, vehicle to vehicle (V2V)
communication has been introduced [7]. Classical use cases
for V2V communication are safety systems like, e.g., a
collision warning system [8]. To extend the transmission range,
several approaches exists that also extend the sensing model
used to community sensing [2]. However, in general, V2V
communication is limited in transmission range and is poorly
applicable in sparse traffic situations.

An important aspect in information distribution is clustering
of sensing nodes, i.e., grouping nodes in geographical vicinity
according to rules [9]. The basic concept is to reduce the
overall transmission costs by collecting all data at a so called
cluster head and transmitting it conjointly to the sink, e.g.,
a cloud service. Clustering algorithms basically focus on the
selection of the cluster head, which might also summarize and
compress the data before transmission.

A basic algorithm is named lowest ID (LID). Each node is
assigned a unique ID. Nodes broadcast their /D and allocate
themselves to the node with the lowest ID. The node with the
lowest ID is selected to be the cluster head [10]. Within highest
degree clustering (HD), the number of clusters is minimized
by a cluster head selection based on the nodes with the highest
number (degree) of nodes in direct communication range

[11]. Another clustering approach is the weighted clustering
algorithm (WCA) that is based on a performance indicator
of several properties like node degree, transmission power,
mobility, and battery power [12].

Lowest Relative Mobility Clustering Algorithm (MOBIC) is
an approach to use LID in vehicular networks efficiently [13].
MOBIC replaces the id with a performance indicator (relative
speed to neighbors) and takes the node mobility (compared
to neighbors) into account. The MOBIC concept has been the
basis for several further developments. A different approach is
introduced in the CONVERGE project that uses a beacon-based
clustering for performance improvement [14]. It is probability
based to balance network traffic. Each vehicle starts with a
probability p = 1 to become the cluster head. In an adaption
phase, each node communicates with its neighbors if it decides
to become the head of the cluster. Each time a vehicle receives
such a beacon, the own probability to become the cluster head
is lowered.

Another approach to reduce data traffic is local data selection
by discarding unnecessary data and simultaneously ensure
to only harm data quality within a certain threshold. The
send-on-delta reporting strategy only considers sensor values
with a certain measurement difference [15]. This method is
mainly considered in stationary wireless networks and the
performance depends on the size of the delta and the change
rate of the measurements. As improvement, Suh developed an
approach that relies on the prediction of sensor values [16]. A
linear prediction method is used to estimate the sensor values
and these are only transmitted if the difference between the
predicted and real sensor value exceeds a certain delta.

Chu et al. developed the Ken strategy that is based on a
central sink node [17]. The sink answers to external queries by
using a predicted value of a replicated dynamic probabilistic
model. All sensor nodes are maintaining the same probabilistic
model as the sink and transmit updates to the sink if values
differ a certain threshold. The approach guarantees value
accuracy within a certain range and the prediction outperforms
linear progression of the send-on-delta mechanism.

Deshpande et al. introduced an approach for collecting
correlating values using a probabilistic model [18]. Similar to
Ken, a central server collects required information and answers
external queries, but filters false sensor value transmission.
In comparison to Ken, the sensor nodes do not transmit data
independently, but are requested by the server if the uncertainty
for a specific value is high. This releases the sensor nodes from
predicting values themselves as well as receiving the prediction
function.

Hull et al. developed CarTel, where nodes are not allowed to
transmit data independently, but only if they are requested by
the server — named portal — itself [19]. They use opportunistic
wireless connectivity, e. g., Wi-Fi, to communicate either with
the portal or with other available devices delivering the data.
Nodes do not transmit a continuous data stream; data is
only transmitted once they were externally requested. Mobile
applications can query data from the portal, then the mobile



nodes are requested to stream the required data to the portal
server.

The CafNet data delivery mechanism [20] enhances data on
vehicle side instead of transmitting raw sensor data. At the
portal data is stored in a relational database. Thus, the request
latency for already stored information is quite low.

In general, an approach to reduce the amount of data to
be transmitted to the server is to do a local pre-processing
that exercises the possibility to reduce the data traffic by
compressing. As example, Li et al. utilize the data sparsity
of the collected information [21]. This is done using an
nonlinear algorithm to reconstruct the compressed data and an
algorithm to perform random sampling on a sparse basis. The
CS framework they propose can be utilized to compress the
information sent in the Internet of Things (IoT) context.

In summary, the range of sensor data collection approaches
is very large. Most data collection approaches in the vehicular
environment are using clustering to optimize data transmission
to a central server. This assumes the considered vehicles to be
equipped with vehicular ad-hoc communication technology —
which is not the case today. However, vehicles are increasingly
getting connected via cellular networks. Approaches that
discard sensed data mostly focus on continuous sensed data or
the predictability of prospective sensed values. Other available
strategies for incomplete data transmission are based on static
network topologies and thus not suitable for the mobile scenario.
To the best of our knowledge, our work is the first that
considers a dynamic probabilistic model based on geographic
cells to reduce the overall data traffic in a central vehicular
data collection scenario.

III. SYSTEM OVERVIEW & CONCEPT

Our aim within this work is a system that provides the
means for a central up-to-date map database based on cel-
lular communication technology. Communication has to be
minimized, since it is potentially costly. A general system
overview is depicted in Figure 1. Vehicles serve as mobile
sensors and are connected via a cellular link to the server
side. For realization of a scalable connection management, we
make use of a MQTT based publish subscribe system for the
interconnection of the mobile clients and the server side. This
brings the further advantage of asynchronous communication
that decouples bidirectional information flow between client
and server side which can be beneficial in case of varying
connectivity. A basic assumption in our model is that a certain
detection latency can be tolerated at the server side. Thus,
we consider an incomplete transmission model, that transmits
the collected data with a certain probability. The transmission
probability is centrally managed, not only for each property
individually, but also separately for each geographic region,
organized as geo cells. This allows to adapt to different traffic
densities. Within each geo cell, an according probability matrix
is distributed. This describes which sensor data to be considered
and the according probability to transmit.

In general, information might be sensed very often in dense
traffic situations. To reduce this redundancy the transmission is

Figure 1: System overview.

controlled by a certain probability. Based on the traffic density a
probability for information transmission can be calculated at the
server side to ensure a maximum tolerable detection latency.
This detection latency describes the time from information
occurrence, e. g., a speed limit change, to the registration in the
map database, including a predefined redundancy for reliability.

We differentiate between singular events, e. g., a traffic sign
change, and continuous events, e. g., temperature sensing. By
lowering the probability of a sensed event to be sent, it is
possible to control the time till the event is stored at the
server. This time shall approach a self defined latency, which
is assumed to be sufficient for the certain event type. Thus,
the probability is based on the quotient of tolerated detection
latency and necessary redundancy. In case of continuous events
data density, which defines the amount of events transmitted
per square kilometer and hour, is used as parameter to control
the transmission probability.

IV. FORMAL SPECIFICATION

The whole map is divided into virtual geo cells. Each geo cell
m € M can be considered independent from other cells and
thus optimization is processed independently. It is processed for
every adjustment period ¢ independently, while T denotes the
set of all periods since system start. The set of all event types
is E. The number of changes of the probability for an event e
is defined as n. and 7 as the required redundancy. The size of
an information message, containing the event information, is
given with z., while the size of a control message is b.. The
probability p. ; # 0 determines if an information e is sent in
the considered geo cell. The number of events e recognized
by the vehicles is c.+ and is not influenced by the probability.
The total amount of data traffic produced for event e in period
t in a geo cell is F¢ ;. Singular events are a subset F's C I.

For each singular event a maximum latency l,,,q,(€) is set,
after which the event should be stored in the database in p %
of all cases. L; defines the latency of all events measured in
the adjustment period t. The p % quantile is denoted by I; ,.
Continuous events are also a subset F~ C E. For continuous
events the density . is given. The density measured in the
period ¢ for an event e is defined as . ;.

In order to prevent the infinite sum over all timeslots to go
up to infinity, an exponential function may not be considered.



The chosen solution for singular events is based on a quadratic
punishment, which converges definitely. But compared to
continuous events, in which a lower density is viable for a
short amount, an exceeding of the maximum latency requires
additional punishment. Therefore, the balancing function starts
hops over 100 units in the top once the 99% quantile exceeds
the maximum latency.
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In a certain geo cell m, there might be both a street with very
heavy and very light traffic. Surely, the balancing function
will be at very high values due to the exponential part of the
function. Anyway, then the balancing function will stay at
very high values and needs to be optimized around these high
values.

V. SERVER SIDE

The server side is responsible for balancing the amount of
data sent by the vehicles and storing the received information
in a database. This is done by setting the probabilistic decision
model for each geo cell. Thus, the amount of transmitted data
is managed by the according probabilities, which also effect
the latency of the received data.

Balancing: Statistically, the amount of data can be cut in half
by setting the sending probability to half. The opposite holds
when increasing the sending probability with a maximum of
De,+ = 1. If the resulting data rate of p.; = 1 is still not high
enough, then the vehicle density is too low. The main task of
the server side is to balance the probabilities, such that the
latency of singular events and the density of continuous events
are fulfilled. For continuous events, the received density J. can
be easily measured. However, latency [(e) of singular events
cannot be directly be measured. Here, we use the redundancy
to approximate the latency. If a(s € e,t) is the amount of
measurements of the same event s in a period ¢, and I is
the set of transmission times for the event, the latency can
be approximated. It is the average time between the the first
and the last event transmission, multiplied by the required
redundancy 7. Assuming relatively homogenous traffic, the
latency [ is approximated using Equation 2.

o Ia(sEe,t) -1 %

a(s€e,t)—1
This approximation is more exact the higher a; is. However,
the average latency measured by the server is not necessarily

T 2

the theoretic average latency for the specific probability. This
is unproblematic if the average latency measured is higher
than the theoretical average latency; the probability would be
chosen too high, and the requirements would still be fulfilled.
If the measured latency is lower, however, the latencies for
an upcoming event cannot be assured to be lower than the
maximum latency. To address this issue, we set a limit of how
many events need to be transmitted and measured in a geo cell
before the probability is adjusted. Furthermore, we divide each
geo cell into four sub cells, determine the latency separately, and
only use the highest value. A problem in using a probabilistic
model is variation in results, which should be mitigated. Several
models are available to decrease the variation, most of them
being based on past values. Examples are averaging, the moving
average, or the method of least squares that is used in our
implementation. Because changes on the probability only affect
the latency and traffic in future periods, a way to predict the
latency and traffic of the next region needs to be considered. A
bottom-Up approach is used, since the predictions are calculated
for each of the sub cells separately and joined in the geo cell
afterwards. The method of least squares is ascribed to Gauss
and is — among others — described by Stigler [22]. The idea is
to create a prediction graph such that the sum of the squared
distance between the measured value and the function value is
minimal (cf. Equation 3, in which S needs to be minimized).

n
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Dependent on the scenario, different functions can to be used for
f(z). Choosing a linear function for f(x) leads to Equation 4
[23]. To use this formula, the amount of considered values
needs to be chosen accordingly to detect the trends.
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Where T is the current period of time, g the values used
to calculate the average, x; the value of period t and zj
the predicted value for period t. According to Krucker, an
exponential function can be used in the least squares method
easily by transforming the exponential function to a linear
function [23]. If a standard exponential function like y = bxe**
is used, this is done the following way:

with )
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with B=Inb and A=a

After calculating A and B for the linear function, those can be
converted to the exponential function using ¢ = A and b = e”.
In order to use the method of least squares, the unchanged
values for the latency and the data traffic need to be used. To
approximate these raw values, the measured data traffic can
be divided by the respective probability to get the raw data
traffic and the measured latency can be multiplied with the

respective probability to get the raw latency. Our preliminary



results have shown that this method only works if the amount
of connected vehicles is increasing not too fast. This is due to
the probability propagation strategy, described below, which
leads to wrongly calculated estimations. A small change needs
to be applied to use the exponential function conveniently. As
there is no y-offset defined in Equation 5, the values used
to calculate this function f(0) = 1 should hold as for every
exponential function. Therefore, the first value is set to one
and the difference between the actual first value and one is
subtracted from the remaining values.

Singular Events: We have chosen to use the average latency
to perform probability adjustments, since a direct adjustment
has led to unfavorable results due to the high variance in the
received latency values. Assuming that 99 % of the data shall be
transmitted within the given latency, it is possible to calculate
the average latency and the latency which is undercut by 99 %
of the incoming events. However, the chosen measurement
period needs to be long enough to ensure that most of the
events have arrived at the server at least two times. In the
following, the time between two vehicles passing a specific
event type on average is named passing time.

The process on the server side works as follows: After the
measurement period, the server calculates the average latency
of all incoming events. Then, the theoretic average for the
latency is calculated to determine the passing time. Equation 6
is used to determine the ratio between theoretic average latency
and the passing time. Each summand consists of the probability
that the event has been transmitted at a latency ! and the latency
[ itself.
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The measured average latency is now divided by this ratio
to determine the passing time. Using the adjusted passing
time, the server determines a probability at which 99 % of all
events are below the maximum latency. The latency behavior
dependent on the transmission probability is given in Table I.
Figure 2 shows the behavior of the probability dependent on
the latency. In this example, one unit is the time between
two vehicles detecting the event. As expected, the probability
to receive the event after a short delay is much higher for
high transmission probabilities. Moreover, Figure 2 shows the
cumulative probability for a certain latency. Of course, the
probability curve hits the 99 % threshold sooner the higher the
transmission probability is.

Table I: Latency behavior at different probabilities.

Transmission Percentage 10% 25% 50% 75% 90%

Ratio between average 50 20 10 6.7 5.6
latency and passing time

Ratio between maximum latency
(99% below) and passing time

113 43 19 11 8
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Figure 2: Overview of probabilities depending on latency.

Convergence proof: It is not obvious that Equation 6
converges, so we provide a proof. First we put all constant
parts out of the sum. With that, Equation 6 changes to:
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Therefore we divide the sum into two parts, one sum from 7
to ly and one part from [y + 1 to co. Obviously, the first sum
has a fixed value. With Equation 7 the remaining part of the
sum can be displayed the following:
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Per definition (1 —e.) x C' < 1 holds, the given equation is a
geometric series with a basis smaller than 1, which converges.

Continuous Events: Continuous events do not have a defined
appearance date. Therefore, there is no way to calculate the
probability based on the latency. Instead, the probability is
solely dependent on the amount of incoming events. Because
some norm to measure the amount of events required for a
region needs to be found, a new variable is introduced, the
data density, which equals the amount of events divided by
the region size and time. The unit used for the density is



the amount of events per square kilometer and hour. Here,
the transmission probability is calculated by comparing the
requested density to the actual density and executing a linear
transformation.

Realization: Due to the costs of the probability adjustment
itself, a probability update should not always be propagated.
An adjustment is only performed if the expected data traffic
savings are higher than the expected produced traffic for the
probability update. The calculation considers the data traffic
within one measurement period and the change rate, which
is an indicator for the frequency of probability adjustments.
In contrast, a probability adjustment is always performed if
the newly calculated probability is higher than the current
transmission probability, because not performing that update
would harm data quality. Algorithm 1 shows the decision

Algorithm 1 Probability adjustment algorithm

new Prob <—calcProb(actual, expected);
if newProb > oldProb then adjustProb();
else
if newProb < oldProb then
savedTraf fic <calcSavedTraffic(traffic, oldProb,
newProb) xchangeRate;
if savedTraffic > adjustmentTraffic then adjustProb();

algorithm of a probability adjustment. Our results have shown
that this still causes relatively frequent probability adjustments
and thus too much control traffic. To compensate this, we add
a fixed overhead to the calculated probability. The probability
adjustment is performed periodically. For continuous events,
this time may be chosen freely taking the desired accuracy and
the traffic into account. For singular events, it must be ensured
that the latencies of all events can be measured, i. e., each event
must be transmitted at least twice. Hence, we calculate a value
using the maximum supported data traffic inhomogeneity, the
redundancy, and the desired latency of the event type. This
ensures enough information to adjust the probability correctly.

Vehicle handling: For the propagation of the data collection
probabilities, we use a publish-subscribe based geocast mecha-
nism. Vehicles register to a topic that corresponds to a certain
geo cell. Probability changes are propagated by publishing to
the respective topic of the geo cell. This approach ensures
that all vehicles are informed about the current collection
probabilities.

VI. CLIENT SIDE

Each event type that can be transmitted is assigned its own
probability, i. e., the probabilities of event type may be different
and individual for each geo cell. Using this approach, the server
side does not need to know how many vehicles are actually
driving in a certain geographic region, i.e., geo cell. The
server side automatically adapts the probability considering
the amount of transmissions for a certain event. The client
side then transmits sensed event data according to the provided
model.

The system is used to collect location based data by the
use of mobile clients, i.e., vehicles serve as sensors. Collected
information consists of singular events, e. g., the detection of
traffic signs, as well as continuous events, e. g., the collection
of temperature or rain drop rate. However, at the server side
this information is used for a certain purpose. Participating
clients should benefit from the gathered information and thus,
this information has to be provided back to the vehicles. One
possibility is to provide a service about information related
to road segments in driving direction, a so called eHorizon.
Based on this notion, we have introduced the concept of a
remote eHoriozon in our previous work [24]. Such a remote
eHorizon is a connected service that provides data about the
current driving path. This data can consist of relatively static
information about the road network serving as local map update
or complement, transient static information like traffic signs,
or even more dynamic information like the status of traffic
lights, traffic status, accidents, or weather information. Such
a technology provides the means for more predictive driver
assistance systems, but is also able to optimize the data upload
process of a system as described in the work at hand. By
comparing sensed information with data provided within the
eHorizon, the client can decide if information is relevant for
transmission.

Figure 3 illustrates the decision process at the vehicle side. If
sensed information is available, the first step is to decide with
probability p(e) if the data should be transmitted or discarded.
In case of continuous events, i.e., a measurement task like
temperature sensing, the data is then directly send. In case
of singular events, it is checked if an according eHorizon
information is available. If eHorizon information is available,
data is only sent if this information is new or has changed,
otherwise the data is sent directly. As extension an event can
be triggered if an information that is available in the eHorizon
data was not sensed. This will enable the system to unlearn
existing knowledge, i.e., that a location based information does
not exist anymore. An extension for sending continuous events
would be a send on delta strategy that transmits the data only
if a certain delta is exceeded. In any case, the server side
requires a predefined redundancy to compensate false sensed
information before accepting an information change in the
database. However, the unlearning process and the eHorizon
knowledge is out of scope for the following experimental
evaluation.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate ProbSense. KOM, the described model has been
implemented in Java. The implementation consists of an
implementation of the server side and an implementation for the
vehicles. Since gaining experimental results using real vehicles
was not possible due to the huge amount of required vehicles,
we decided to run a simulation using SUMO [1].

To simulate realistic traffic, the TAPAS Cologne scenario
was used, as mentioned before. This scenario is one of the
largest available traffic scenarios for SUMO traffic simulator
and consists of two hours of traffic in the metropolitan area
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Figure 3: Overview of the client decision process.

of Cologne. We skipped the first 30 minutes where the traffic
is slowly increasing and used the following 90 minutes for
our simulations. However, even this large scenario caps at
a maximum of about 8,000 vehicles driving on the streets
simultaneously on a road network of about 40 x 40 km?. Since
ProbSense.KOM is only capable of reducing the data traffic if
information is sent redundantly, the vehicle density was not
satisfying. Therefore, we cloned each vehicle multiple times
in the configuration file, which lead to more than 100,000
vehicles on the streets simultaneously and about two million
vehicles in total during the simulation time of two hours.
For both event types, one event each has been introduced:
Traffic sign events are used for singular events, while tem-
perature sensing events are used for continuous ones. Since
the performance of this model is highly dependent on the
desired data quality, the quality measures surely influence the
simulation result. To be able to show the performance of our
model in a realistic context, those quality measurements have
been chosen as realistic as possible. We placed 2, 000 locations
randomly to the considered road network that triggered a
singular event on passing vehicles. The desired event reception
redundancy was set to 5 and the latency was set to 10 minutes.
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The desired event reception rate for continuous events was set
to 30 events per square kilometer and hour.

Since most of the events shall arrive in time, it is set that
99 % of all events shall be at the server in time. To evaluate
the influence of the geo cell size, we simulated different geo
cell patterns. First, we considered the the whole scenario as
one single geo cell. Additionally, we divided the scenario into
222, 4x4, 8x8, 16216 and 32232 geo cells, which results in
geo cell edge lengths of about 40 km down to about 1 km.
For data serialization we have used the protobuf based sensor
ingestion structure published by HERE [25]. The resulting data
packet size was 123 Bytes for transmitted events and 15 Bytes
for control data. All simulation runs, i.e., all geo cell pattern
configurations, have been performed seven times. The results
are the averaged results of the respective seven repetitions.

Evaluation results: The total data traffic of the different
simulation settings is given in Figure 4. The non-optimized
approach assumes that all events detected by the vehicles
are directly sent. It can be seen that our approach is able
to reduce the data traffic about 50 % compared to the non-
optimized transmission approach. The amount of data traffic to
propagate the calculated data collection probabilities consists
of about 20 % of the total data traffic. The best result, i.e.,
the lowest total data traffic, was achieved using a 16216 grid.
In this case, the map of the simulation scenario has been
divided into 16x16 squares that defined the geo cells. For
each of these geo cells, the data transmission probabilities are
calculated independently. The data reception latency stayed
almost within the desired range of 600 s. Figure 5 shows the
distribution of events arriving at a certain simulation time with
a certain latency in one simulation execution of the 16216 geo
cell configuration run. Most events with very long latencies
above 600 s are measured in the optimized and non-optimized
approach synchronously. Therefore, in this situations, there
are generally not enough vehicles traversing these events in
order to store it at the server. For lower latencies, the resulting
latencies are mostly above the reference values but still within
the tolerated range of 600 s. Outlier above the 600 s threshold
that do not occur in the non-optimized approach are due to the



probabilistic behaviour of ProbSense.KOM, that only tries to
get 99 % of all events in time. This results in a reduced amount
of data traffic as depicted in Figure 4. Around 600 s, most event
latencies differentiate between the two approaches, because
the optimized approach lowers the transmission probability in
order to lower the traffic. Therefore, cells with fewer vehicles
had a higher transmission probability, while cells with plenty of
vehicles had low transmission probabilities in order to decrease
redundancy.

VIII. SUMMARY & CONCLUSION

Within this work, we introduced our approach of a proba-
bilistic data collection system. The purpose is to use vehicles
as mobiles sensors to collect location based, or map based, data.
Considered data of interest is divided into singular events, e. g.,
the detection of traffic signs, and continuous events, e. g., the
collection of temperature sensing. Collected data is transmitted
via a cellular link to a central server that is also responsible
to manage the collection process. A probabilistic transmission
model is used to reduce the amount of data traffic.

The server side calculates a transmission probability for each
considered event type based on the incoming data rate. The
scenario map is divided into geo cells, for which the calculation
of the probabilities is conducted individually. The calculated
transmission probabilities are propagated to the vehicle side,
where these probabilities are used to decide if collected data
should be transmitted. Thus, this transmission probability is
used to manage the amount of transmitted data. The purpose
is to reduce the amount of transmitted data while ensuring a
defined quality gate with a probability of 99 %. The quality of
singular events is determined by the latency it takes to transmit
a certain event to the server side with a defined redundancy.

In our evaluation, we set this redundancy to 5 and the
tolerated latency to 10 minutes. For continuous events, the
quality was set to 30 events per square kilometer and hour. If
the incoming data rate is higher, then the server side reduces the
transmission probability. If the incoming data rate is lower, then
the transmission probability is increased respectively. With our
approach, we were able to achieve a reduction of the total data
traffic by about 50 % compared to a non-optimized approach,
without harming data quality.

A further reduction of the total data traffic will be possible
by a reduction of the defined redundancy or by increasing the
tolerated latency. In our future work, we aim to combine our
previously mentioned eHorizon service with the probabilistic
data collection model. Using this model, we are confident to
further improve the performance.
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