
Network Assisted Content Distribution for Adaptive Bitrate
Video Streaming

Divyashri Bhat
University of Massachusetts

Amherst
dbhat@ecs.umass.edu

Amr Rizk
Technische Universität

Darmstadt
amr.rizk@kom.tu-

darmstadt.de

Michael Zink
University of Massachusetts

Amherst
& Technische Universität

Darmstadt
zink@ecs.umass.edu

Ralf Steinmetz
Technische Universität

Darmstadt
ralf.steinmetz@kom.tu-

darmstadt.de

ABSTRACT
State-of-the-art Software-Defined Wide Area Networks (SD-
WANs) provide the foundation for flexible and highly re-
silient networking. In this work we design, implement and
evaluate a novel architecture (denoted SABR) that leverages
the benefits of SDN to provide network assisted Adaptive Bi-
trate Streaming. With clients retaining full control of their
streaming algorithms we clearly show that by this network
assistance, both the clients and the content providers benefit
significantly in terms of QoE and content origin offloading.
SABR utilizes information on available bandwidths per link
and network cache contents to guide video streaming clients
with the goal of improving the viewer’s QoE. In addition,
SABR uses SDN capabilities to dynamically program flows
to optimize the utilization of CDN caches.

Backed by our study of SDN assisted streaming we discuss
the change in the requirements for network-to-player APIs
that enables flexible video streaming. We illustrate the diffi-
culty of the problem and the impact of SDN-assisted stream-
ing on QoE metrics using various well established player al-
gorithms. We evaluate SABR together with state-of-the-art
DASH quality adaptation algorithms through a series of ex-
periments performed on a real-world, SDN-enabled testbed
network with minimal modifications to an existing DASH
client. Our measurements show the substantial improve-
ment in cache hitrates in conjunction with SABR indicat-
ing a rich design space for jointly optimized SDN-assisted
caching architectures for video streaming applications.

1. INTRODUCTION
The Software Defined Networking (SDN) paradigm has

transformed the way networks are controlled and managed
today. For example, the emergence of SD-WAN technology
such as Google’s B4 approach [17], has vastly improved net-
work utilization. The separation of control and data planes
allows a much more fine-grained control of network traf-
fic than in the case of traditional networks. For example,
the B4 deployment takes advantage of features of SDN such
as traffic engineering and prioritization to achieve a utiliza-
tions of over 95% as compared to 40%-50% utilization of

traditional networking approaches [4].
Recent works apply the software defined paradigm to re-

sources that include computation and storage in addition
to networks, which are coined as Software Defined Infras-
tructure (SDI) [31, 33]. In this paper, we present an SDI
architecture that supports Adaptive BitRate (ABR) video
streaming. This work augments the traditional operation of
Content Delivery Networks (CDNs) by harnessing the ca-
pabilities of the SDI infrastructure. Our focus on an SDI
approach for ABR video streaming is driven by the fact that
video-on-demand (VoD) is the killer application in today’s
Internet. According to the latest Sandvine report [3], 71%
of the downstream Internet traffic at peak hours in North
America is real time entertainment like live streaming and
video on demand. It is forecast that this will increase to
80% by 2020. Such high demand for video content requires
approaches not only to efficiently transport the data but also
to manage the delivery network from the content providers
to the customers. Video streaming at today’s scale would
be unthinkable without significant infrastructure and ser-
vices provided by CDNs [8, 23]. In this work, we provide
an architecture that uses SDI to efficiently manage CDN
networks and improve the Quality of Experience (QoE).

One characteristic that distinguishes the widespread adap-
tive bitrate (ABR) video streaming systems from non-ABR
systems is that in case of ABR, CDN caches may not contain
all quality versions of a video. Thus, providing clients with
information such as the presence of qualities of desired seg-
ments in particular caches allows the client to make an edu-
cated decision on segment retrieval. Additionally, providing
bottleneck bandwidth information on the paths between the
client and the caches that currently host the sought seg-
ments not only aids the client’s decision but also eliminates
the client’s need to use less accurate bandwidth estimation
methods such as end-to-end probing or application layer rate
estimation. This approach is denoted as network assisted
adaptive bitrate streaming.

While the above described functionality may be partially
provided in traditional, non-SDN networks, as shown for ex-
ample in [14], our approach denoted (SABR - SDN assisted
ABR) requires only minimal modification at the streaming

rst
Textfeld
Divyashri Bhat, Amr Rizk, Michael Zink, Ralf Steinmetz:
Network Assisted Content Distribution for Adaptive Bitrate Video Streaming - accepted for publication. In: ACM Multimedia Systems Conference MMSys, June 2017

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

client and it reduces the load on the streaming guidance
system by providing necessary information to the clients
but not participating directly in the video retrieval deci-
sion made by the streaming player. This is crucial, since we
require the clients to retain full control of their streaming
algorithms for scaling and stability reasons. Hence, we de-
sign SABR with a graceful interruption property enabling
the clients to ignore the network assistance information at
any time. From a performance perspective, the streaming
assistance system prevents significant video quality drops
described, such as, in [8] by providing alternative video seg-
ment sources for different qualities. In addition to better
QoE, SABR optimizes the caching architecture to improve
server offloading, i.e., the percentage of client requests ser-
viced by the caching network, as well as, the midgress, i.e.,
the intra-cache network traffic. These metrics are key per-
formance indicators for content delivery networks.

In this work, we use Dynamic Adaptive Streaming over
HTTP (DASH) [34] since it is a popular, open standard for
ABR streaming and quite close to other ABR approaches
such as Apple’s HLS [2], Mircrosoft’s Silverlight [5], and
Adobe’s HDS [1]. While we demonstrate the functionality
and benefits of our approach for DASH, we believe that it
can be easily extended to other ABR streaming approaches.
In this paper, we make the following contributions:

• Architecture. We design an SDN assisted control
plane architecture to support and improve ABR video
streaming in CDNs.

• Formalization. We present a formalization of the
ABR streaming problem to show the origin of the ben-
efits of our architecture.

• Implementation. We implement the proposed ar-
chitecture and analyze its performance. This imple-
mentation includes (i) an SDN measurement service
and archive that is used to monitor network paths,
(ii) SABR - a module that aggregates monitoring in-
formation and communicates with the SDN controller
and the CDN caches, (iii) a minimally modified DASH
client implementing various streaming algorithms, which
makes educated decisions on segment retrieval based
on the communication with SABR, (iv) a modified
SDN controller that is used to dynamically install paths
to chosen caches, and (v) three distinct content place-
ment strategies that demonstrate the impact of CDN
caching using SABR.

• Analysis. We show an extensive analysis of the SDN
assisted streaming system through a series of experi-
ments conducted in the CloudLab testbed [32]. Our re-
sults show that SDN monitoring provides better band-
width estimates than a purely client based estimation.
We show that our system not only significantly im-
proves the QoE, e.g., the overall video quality bitrate,
at the client but also reduces the server load ratio and
provides higher network utilization. In addition, we
investigate the impact of various content placement
strategies using SABR and analyze their performance
with different state-of-the-art ABR client algorithms.

Outline. The rest of this paper is structured as follows: In
Sect. 2 we describe the SDI infrastructure as well as the
associated monitoring and control framework. In Sect. 3,

we provide the details of the REST service application and
the aggregation and processing of the network monitoring
information. The SDN assisted streaming client details are
given in Sect. 4. We describe the evaluation environment
and the extensive analysis in Sect. 5 and 6, respectively,
before providing a discussion of related work in Sect. 8.

2. SOUTHBOUND: A MONITORING AND
CONTROL FRAMEWORK

In this section, we describe the design of a software defined
infrastructure that supports network-assisted ABR stream-
ing through monitored network information. In particular,
we present an OpenFlow (OF) [24] Southbound API that is
used to orchestrate an SDN assisted CDN for adaptive bi-
trate streaming. Our implementation is based on the work
by Adrichem et al. [37]. We use OpenFlow since it is cur-
rently the most popular instantiation of SDN, which is also
enabled in the switches of a large set of vendors.

2.1 Software Defined Infrastructure (SDI)
In the following, we use the term SDI to denote a network

of software defined switches that are co-located with stor-
age and compute power. In the specific case of a CDN, this
storage and compute power can be used for caching. SDIs
simplify third-party policy implementation and provide net-
work administrators with the ability to provision, monitor
and efficiently control virtual networks, computation, and
storage. An example of a fully operational network that of-
fers SDI capabilities are the GENI [11] and CloudLab [32]
testbeds. We use the latter for evaluation of SABR and
describe this in detail in Sect. 5.1.

Fig. 1 shows the design of an SDI infrastructure to provide
application services for the most popular ABR streaming in-
stantiation, i.e., DASH. For a detailed description of DASH
we refer the interested reader to [34]. Fig. 1 depicts the un-
derlying SDI of different autonomous systems and a control
plane that is tasked with flow programming and monitoring.
Details on the Northbound interface and the client are given
in Sect. 3 and Sect. 4, respectively.

2.2 Monitoring Infrastructure
As depicted in Fig. 1, the monitoring module is logically

separated within the controller. Its task is to decide on
the statistics to be monitored, as well as, the correspond-
ing sampling times. This provides the flexibility to deploy
tailored monitoring algorithms that extract only the infor-
mation needed for a given application. While there has been
prior work on active monitoring that demonstrates various
advantages [28], we believe the performance gain of our pas-
sive system outweighs the potential benefits of an active one.

Currently, the monitoring system queries only the switches
that belong to a given network path between a client and a
cache or a streaming server. Only the ports that are part
of these paths are monitored, which keeps the monitoring
overhead to a minimum.

Given the link capacity information the system collects
the bytes transferred per port over fixed intervals to deter-
mine the available bandwidth along the path, as well as, the
bottleneck link. This information is used by the Northbound
interface (see Sect. 3) to assist ABR streaming applications.

We logically separate the monitoring infrastructure from
the controller infrastructure such that they can be deployed

6'1�DVVLVWHG�$%5�
VWUHDPLQJ��6$%5�

0HDVXUHPHQW�
$UFKLYH

&RQWURO 0RQLWRULQJ&OLHQW

6HQG�
6WDWV

6WDWV�
5HSO\

6WDWV
5HTXHVW

5HWULHYH�
6WDWV

5HTXHVW�
QHWZRUN�

,QIR

5HTXHVW�
&RQQHFWLRQ

3URJUDP�
)ORZV

4
XH
U\
�&
DF
KH
�6
WD
WX
V

5
HW
XU
Q�
&
DF
KH
�,Q
IR
�

�V
HJ
P
HQ
WV
�T
XD
OLW
LH
V�

*(
7�&
DFK
H�,
QIR
�

�/L
VW�R
I�&
DFK
HV�
�VH
JP
HQW
V��

TX
DOL
WLH
V�

*(7�$%5��

VHJPHQW

6HQG�
QHWZRUN�
,QIR

1257+%281'

6287+%281'

&RQWURO�3ODQH

'DWD�3ODQH

6RIWZDUH�'HILQHG�
,QIUDVWUXFWXUH�

�6',�

6WRUDJH��DQG�
&RPSXWDWLRQ

6ZLWFK

6'�:$1

Figure 1: SDN assisted adaptive bitrate video streaming
(SABR) architecture. Details of the Southbound interface,
Northbound interface, client implementation are given in
Sect. 2, Sect. 3 and Sect. 4, respectively.

on different machines. However, for optimal performance
that avoids unnecessary network latency, we recommend
that the monitoring infrastructure be co-located with the
controller since decisions on video delivery are made based
on real-time traffic. We detail the archival and processing
of the monitoring information in the following section.

3. NORTHBOUND: A REST API SERVICE
AND ARCHIVE

In this section, we present the Northbound interface that
provides a range of information to the client, such as avail-
able caches, the bottleneck bandwidth to each cache and
an indication of cache content, which can all be retrieved
through standard REST APIs. Figure 1 shows the compo-
nents of this system for an ABR video streaming applica-
tion where the above information is sourced at an SDI as
described in Sect. 2.1. In the following, we describe the sys-
tem components, i.e., a REST API and monitoring archive,
that use the Northbound interface.

3.1 Measurement Archive
Next, we describe the measurement archival and process-

ing module depicted in Fig.1. OpenFlow is used to imple-
ment a feedback-based measurement and control system for
an ABR video distribution system. The monitoring module
from Sect. 2.2 is connected to a distributed database system
powered by MongoDB [6], which enables redundancy and
scalability through fast and easy replication. MongoDB also
provides REST APIs for database transactions [7] enabling
information insertion using simple HTTP commands.

3.2 SDN Assisted ABR Streaming - SABR
In the following, we describe the details of the SDN as-

sisted ABR streaming (SABR) module. First, we show how
SABR uses the information collected by the monitoring sys-
tem to select the best cache in the network, i.e., by cal-
culating the available bandwidth from the client to the re-
spective caches. Further, we show how SABR provides the

DASH client with monitoring information through a REST
API. This information includes available bandwidth esti-
mates and cache occupancy. This approach could easily be
extended to include further switch information, e.g., queue
lengths or flow table update statistics, if necessary. Finally,
we use dynamic SDN routing to provide clients with the
ability to connect to a desired cache. Dynamic path com-
putation and selection within an SDN network is a generic
and widely investigated optimization problem [9]. Here, we
consider the specific problem of how to efficiently manage
a CDN with the support of the SDN control plane. The
bottleneck bandwidth is deduced from the monitored traffic
information and the known link capacities. Note that in this
work we do not change the routing between client and the
cache pairs.

Since monitoring only gives us an observation of the past
we require predictions of the future bottleneck bandwidths
to help the clients determine the quality of the segments that
will be retrieved next. For predicting the available band-
width in the short term future at each port along different
paths between clients and caches, we consider the well estab-
lished Auto Regressive Integrated Moving Average
(ARIMA) time series model. In the following, we denote
the monitored value of transferred bytes over one port i at
time slot [t, t+ δi) as instantaneous rate ri(t). The available
bandwidth is estimated based on the known link capacity
and an estimate of the contending traffic.

ARIMA: The archival and processing module takes for
every port i the instantaneous rates ri(t) over a history win-
dow W of time slots and provides a forecast of the utilization
over the duration of N∗ segments using the ARIMA time se-
ries forecasting method, which has three components, i.e., an
autoregressive component of order a (AR(a)), a differencing
component with parameter d and a moving average compo-
nent of order v (MA(v)). In a nutshell, the differencing com-
ponent removes trends by differencing d times, the autore-
gressive component contributes to a linear regression over
the last a observed values, while the moving average com-
ponents may be understood as a linear regression over the
last v noise terms. We decide on the ARIMA(a,d,v) param-
eterization using the Akaike Information Criterion (AIC)
[12], which is affine to parsimonious models that are more
likely1 to have produced the observations. In our implemen-
tation we make use of the ARIMA routines within the R
forecast [30] library.

In the following we consider caches running variations
of content placement strategies using Least Recently Used
(LRU) cache eviction policy with write-through caching.
Details on the parametrization of the cache algorithms and
on the handling of the interaction of caches and SABR are
given in the evaluation environment description in Sect. 5.3.

4. SDN ASSISTED STREAMING CLIENT
In this section, we describe an SDN assisted ABR stream-

ing application that is based on the architecture described
in Sects. 2 and 3. First, we formalize the quality adaptation
problem before reviewing basic classes of adaptation algo-
rithms which are utilized by the clients. Finally, we describe
our modifications to the ABR quality adaptation algorithms
and the corresponding implementation.

1using a maximum likelihood estimator.

4.1 The Quality Adaptation Problem
In the following, we consider a graph G = (V,E) that

abstracts a given network topology, where V is a set of ver-
tices, i.e., network nodes, and E ⊆ V × V is set of links
between the nodes. Each link is associated with a capacity
C(i, j), where i, j are the indexes of the vertices spanning
the link. The network nodes are divided into three types:
(i) clients, (ii) caches, and (iii) intermediate switches. For
the sake of brevity, we consider a simplistic example of an
ABR streaming scenario of only one video that is divided
into N segments where each segment is available in K qual-
ities, i.e., bitrate levels. Each segment carries l seconds of
video while the nth segment of the kth quality has the size
Xn,k in bits. We will use kn to denote the quality level of
segment n and drop the subscript when obvious. This ex-
ample can straightforwardly be expanded to the arbitrary
set of available videos in the network. We assume estab-
lished routing such that there exists at least one path, i.e.,
a set of links in E, between every client and every cache.
Further, we assume that the network carries other traffic
which consumes some of the bandwidth of the links, hence,
C(i, j) denotes the available bandwidth on the link between
vertices i and j in case cross traffic is present. We assume
that the available bandwidth is slowly varying with respect
to the monitoring frequency of the OF switch.

Given established routing, the available bandwidth along
each path between a client i and cache j is described by

R(i, j) = min
(κ,ι)∈S(i,j)

C(κ, ι) , (1)

where S(i, j) is the set of all links belonging to the path
between the nodes i and j. Given the ABR streaming ap-
plication, the time needed by client i to fetch the nth video
segment of quality level k from cache j is given by

Tn,k =
Xn,k

Rn,k(i, j)
, (2)

where Rn,k(i, j) denotes the available bandwidth during the
download time of segment Xn,k.

4.2 SDN Assisted Quality Adaptation
SABR provides clients with accurate in-network available

bandwidth information, respectively, ARIMA-based predic-
tions for Rn,k(i, j). In addition, providing caching and avail-
able bandwidth information to the ABR streaming applica-
tion through the Northbound interface gives the client the
opportunity to minimize the fetch times Tn,k as

Tn,k = min
j∈G(n,k)

Xn,k
Rn,k(i, j)

, (3)

where G(n, k) is the set of caches, that possess the segment
n in quality k. This corresponds to always choosing the
cache with the highest available bandwidth. Intuitively, our
approach draws its strength from the statistical multiplexing
gain of combining information from independent caches such
that it is less likely that the worst case conditions occur on
all paths to all caches at the same time. Intuitively, the gain
of the approach is stronger the more disjoint links the paths
to the different caches possess.

Next, we illustrate different classes of quality adaptation
algorithms showing the benefits of including SDN assistance
information. Note that the modifications due to SDN assis-
tance are orthogonal to most of the adaptation algorithms

OF controller

& SABR

client 1

n+N*...n+1

segment #

q
u

al
it

y

k1

k
10

..
.

X X

X

X X

C
1

(N*)

n+N*...n+1

segment #

q
u

al
it

y

k1

k10

..
. X

XX

X X

C
2

(N*)

cache1 cache2

available bandwidth

information

X

cache map

n+N*...n+1

segment #

q
u

al
it

y

k
1

k
10

..
.

C(N*)

Tn+x,X

^

T
^

n+1,10

^
Tn+1,1 T

^

n+N*,1T
^

n+x,1

T
^

n+1,X

Tn+x,10

^

cache map

monitoring information
cache occupancy information

Figure 2: SDN assisted quality adaptation by providing the
client with available bandwidth and cache occupancy infor-
mation.

known to us such that we generally expect a performance
gain, in terms of the average quality bitrate, across them.

The basic quality adaptation problem can be formalized
as finding the set of segments in given qualities {k1, . . . , kN}
that maximize the average bitrate 1

N

∑N
i=1 ki subject to

B(n) > 0 for n ∈ {1, . . . , N}, where B(n) is the playout
buffer filling after fetching segment n. Note that we mea-
sure the buffer in seconds. Stricter versions of the quality
adaptation problem aim to also minimize additional QoE
metrics, such as the quality variations. The quality adap-
tation problem is hard since clients have only smeared esti-
mated of the available bandwidth Rn,k(i, j) for a history of
segments {k1, . . . , kn} with little to no information on the
actual in-network dynamics. In the following subsection, we
discuss 3 classes of quality adaptation algorithms that make
use of (1) and (2) to optimize QoE before showing how SDN
assistance can significantly improve their performance.

Rate-based adaptation algorithms:

Rate-based adaptation algorithms utilize estimates
R̂n,k(i, j) of (1) that are obtained at the client side
to determine the quality of the next segment to be fetched.
For illustration consider a very basic algorithm that would
greedily download the next segment at the highest sus-
tainable quality, i.e., the bitrate, that is just lower than
the download rate of the previous segment. If the buffer
is full the client idles until the end of the currently played
segment. This algorithm is presented in a slightly modified
fashion as VLC algorithm in [26]. Rate-based adaptation
algorithms benefit from SABR as they receive available
bandwidth information in the form of much more accurate
ARIMA estimates of Rn,k(i, j) in (1). These estimates
outperform the empirically obtained application layer
estimates at the client.

Buffer-based adaptation algorithms:

Buffer-based adaptation algorithms take only the buffer fill-
ing B(n) into account when deciding on the quality of the
next segment kn+1. Examples for this class of algorithms in-
clude [16, 34], where the buffer space is sliced into zones that
correspond to different quality adaptation behavior. SABR
improves the performance of such algorithms by providing
more accurate estimates for (2), i.e., the fetch time of one
segment as the buffer naturally drains due to playback dur-
ing this time.

Hybrid adaptation algorithms:

Hybrid adaptation algorithms take both rate and buffer in-
formation into account when deciding on the quality of the
next segment (e.g., [38]). Such algorithms do not only bene-
fit from a higher accuracy in (1) and (2), but it also utilizes
(3) to find the cache with highest available bandwidth.

In general, all considered classes of quality adaptation al-
gorithms benefit from SABR by obtaining a so-called cache
map Cj(N∗) for every cache j ∈ G, which indicates the
availability of the next N∗ segments in the different qual-
ity levels at the corresponding caches. This is schemat-
ically depicted in Fig. 2. The client combines the cache
maps of the different caches into a joint cache map C(N∗)
which comprises the minimum estimated fetch times T̂n,k
for the next N∗ segments in different qualities. Required
estimates or lower bounds for the fetch times can be calcu-
lated from the combination of the segment sizes Xn,k and
the provided ARIMA based available bandwidth estimates
for the next segments. Different quality adaptation algo-
rithms may utilize the cache map C(N∗) in various ways,
e.g., to optimize QoE metrics such as the average quality
bitrate or the quality variation while fetching the next N∗

segments. Note that SABR provides the clients with addi-
tional information, namely, Cj(N∗), but it does not control
the clients’ decision on which quality to fetch, which is en-
tirely autonomous. Hence, the QoE perceived at the client
fully depends on how the client makes use of the SABR in-
formation. We will further discuss this argument in Sect. 7.
Throughout the rest of this paper we use the term Baseline
to denote various non-SABR client algorithms that belong
to the above classes of quality adaptation algorithms.

4.3 The Client Implementation
In order to best represent a real-world ABR streaming

application, we implement our SDN assisted adaptation al-
gorithm as part of an existing open source Python-based
DASH client emulator [18]. Since each client uses HTTP
by definition, we decided to let clients use a REST interface
provided by MongoDB in order to minimize the implemen-
tation overhead caused by our approach. Overall, the client
makes the following requests: (i) Initial HTTP GET request
to the server or the nearest cache to retrieve Media Presenta-
tion Description (MPD) file for requested video; (ii) HTTP
GET request to SABR for a list of qualities of next seg-
ment(s) and the available bandwidth information to every
advertised cache (cf. Sect. 3.2); (iii) HTTP GET request to
the selected cache to retrieve the desired segment.

The client parses these responses to obtain segment sizes,
available bandwidth to each cache and cache occupancy in-
formation to feed it as needed to one of the algorithms de-
scribed in Sect. 4.2. In order to evaluate our system we con-
sider a miniature CDN, which is comprised of a majority of

OpenFlow
sw itch Cache

60 cl ients total

Cache1 Cache2

Cache3 Cache4A

B C

D

Client Ser ver

Figure 3: Cloudlab topology used for evaluating SABR.
Each client group {A,B,C,D} includes 15 clients.

caches and a server. Details on the evaluation environment
and experiment results are given in Sects. 5 & 6.

5. EVALUATION ENVIRONMENT
In this section, we present the experimental environ-

ment we use for the evaluation of our SDN assisted ABR
video streaming approach. After introducing the Cloud-
lab testbed, we describe the topology and the caching al-
gorithms used for the experiments. Evaluation results are
given in Sect. 6.

5.1 Cloudlab Testbed
CloudLab [32] is a geographically distributed testbed for

the development, deployment, and validation of cloud-based
services. The CloudLab infrastructure consists of several dif-
ferent racks of varying compute and storage sizes designed
to provide isolated performance and support experiments at-
scale. SDN is supported through the deployment of Open-
Flow switches. This highly virtualizable infrastructure is a
miniature representation of SDI.

5.2 Topology
Next, we describe the topology of the Cloudlab testbed,

which we use to evaluate our CDN architecture. Figure 3
shows the topology which comprises four different node
types and layer-2 links of capacity 100 Mbps that connect
the nodes. All nodes run Ubuntu 14.04 inside Xen virtual
machines. We will identify the nodes involved in the indi-
vidual experiment descriptions in Sect. 6. In the following,
we describe the configuration of each node type.
Cache nodes: Cache nodes in Fig. 3 represent CDN caches
serving client requests. Note that the origin server in Fig. 3
is of the same type but in contrast contains the entire video
library that may be streamed in the scenario. Cache nodes
run a vanilla Apache2 web server along with a HTTP packet
sniffer and a MongoDB database. Together, they emulate a
Web Server Gateway Interface (WSGI) that implements an
LRU cache replacement policy. The Apache2 server allows
persistent HTTP connections.
Client nodes: Client nodes run the different ABR algo-
rithms we implemented in a DASH client [18] that supports
SDN assisted ABR streaming as described in Sect. 4.
OVS nodes: In this topology we use software-based OF

switches that give us more flexibility in the topology gener-
ation within the testbed compared to the use of hardware
OF switches. All OVS nodes run Open vSwitch 2.3.1 and
communicate with a single OF controller.
OpenFlow Controller and SABR: The OF controller
and SABR as depicted in Fig. 2 are installed in the same
VM to minimize the REST API query, search and response
time. Note that the SABR framework is logically separated
from the controller and can be installed at any desired lo-
cation. The associated database as described in Sect. 3.1
supports distributed implementation.

5.3 Caching algorithms with SABR
Since SABR provides a cache map C(N∗), which indicates

the availability of the next N∗ segments in different quality
levels at the different caches, we define a system-wide
cache miss as the event when the client requests a segment
from the server. This event may arise either due to the
absence of that particular segment at all caches or due to
insufficient bandwidth to all caches. In order to analyze the
performance of different caching algorithms with SABR, we
implement the following content placement strategies.
Local Caching: In case of a cache miss, the system inserts
this segment in the cache nearest to the requesting client.
In Fig. 3 this translates to the following: Cache1 and
Cache2 are assigned to clients in GroupA and GroupC,
respectively. Similarly, Cache3 and Cache4 are assigned
to clients in GroupB and GroupD. We use this caching
strategy in all experiments described in Sect. 6.2, unless
stated otherwise, to demonstrate the advantage of SABR
versus a fixed cache allocation for all Baseline algorithms.
This caching strategy is denoted as “Local” in Fig. 7
Global Caching: This approach assumes global knowl-
edge of the entire cache architecture. In the first variation,
denoted as “Globalfullrep”, when a cache miss occurs the
caching system inserts the missing segment at all caches.
In a second variation denoted as “Globalnorep”, the caching
system inserts the missing segment at the nearest cache
only if this segment was missing in the caching system, i.e.,
it does not insert segments that generated cache misses due
to insufficient bandwidth.
Quality-based Caching: This is a special approach as the
cache space that each quality can occupy is now restricted
to a subset of the global cache size. Inspired by [23], this
caching system consistently maps the segments to different
caches, i.e., the three lowest qualities, Q1-Q3, are cached in
Cache1 and Cache2 while the higher qualities, i.e., Q4-Q5,
are cached on Cache3 and Cache4. Consistent mapping is
known to perform equally good as a single contiguous cache
under Zipfian and independence assumptions.

For every caching system described above, we pre-populate
caches by running a set of experiments before we begin the
actual measurements.

6. EVALUATION RESULTS

6.1 Evaluation Metrics and Node Setup
First, we introduce the deployed performance evaluation

metrics which are partially based on metrics from [39].
Average Quality Bitrate (AQB): One of the objectives
of quality adaptation algorithms is to maximize the average
quality bitrate of the streamed video. For a comprehensive

QoE representation, we need to combine this metric with
the Number of Quality Switches which is explained below.
Number of Quality Switches (#QS): This metric is
used together with AQB and the magnitude of quality
switches to draw quantitative conclusions about the per-
ceived quality (QoE). For example, for two streaming ses-
sions having the same AQB, the session with the lower #QS
will be perceived better by the viewer.
Spectrum (H) [39]: The spectrum of a streamed video is
a centralized measure for the variation of the video quality
bitrate around the average bitrate. A lower H indicates a
better QoE.
Rebuffering Ratio (RB): The average rebuffering ratio
is given by the following equation:

RB = E

[
ta − te
te

]
, (4)

where ta is the actual playback time and te is the video
length in seconds, respectively.
Cache Hit Rate (Chr): The cache hit rate is the average
number of video segment requests that are served by the
caching system, i.e., by any cache in the network divided
by the overall number of requests. This ratio is usually in-
terpreted as the probability that a video segment request is
served by the caching system. It is used to assess the effi-
ciency of the caching system.
Network Utilization (Nutil): The average network uti-
lization per link is given by the following formula:

Nutil = E

[
Tp
C

]
, (5)

where Tl represents the measured traffic (in bit/s) on link p
and C represents the homogeneous link capacity. Note that
we only measure the downstream traffic as its magnitude
indicates the amount of video traffic generated in the net-
work.
Server Load Ratio (Sload): The average server load ra-
tio is the amount of video traffic (in Bytes) served from the
server divided by the overall amount of video traffic received
by the clients, i.e.,

Sload = E

[
Ts
Ttot

]
, (6)

where Ts is the amount of traffic served by the server and
Ttot is the total video traffic. The server load ratio is a
measure for the (Byte) efficiency of the caching system.

For an extensive analysis of the SABR approach we com-
pare the performance of three quality adaptation algorithms.
We decided to compare three algorithms that map to the dif-
ferent categories outlined in Sect. 4.2 to better analyze the
interplay between each algorithm and our network assisted
approach. The algorithms are described below.
VLC [27]: This is one of the earliest DASH players which
uses the following, straight-forward rate-based quality adap-
tation algorithm: (i) the current playout buffer filling and
(ii) the average download rate of previous segments. If the
buffer filling is below 25%, the client downloads the lowest
quality. Otherwise, it downloads the highest quality that
is sustainable based on the average download rate. If the
buffer is full, the client waits for the playback duration of
one segment before requesting the next one.
SQUAD [38]: This hybrid adaptation algorithm is based

0.5 1 1.5 2 2.5 3 3.5 4 4.5
Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

BOLA(O)
SABR-BOLA(O)
SQUAD
SABR-SQUAD
VLC
SABR-VLC
BOLA(U)
SABR-BOLA(U)

(a)

0 20 40 60 80 100 120
Nr of quality switches

0

0.2

0.4

0.6

0.8

1

C
C

D
F

BOLA(O)
SABR-BOLA(O)
SQUAD
SABR-SQUAD
VLC
SABR-VLC
BOLA(U)
SABR-BOLA(U)

(b)

0 100 200 300 400 500 600
Spectrum

0

0.2

0.4

0.6

0.8

1

C
C
D
F

BOLA(O)
SABR-BOLA(O)
SQUAD
SABR-SQUAD
VLC
SABR-VLC
BOLA(U)
SABR-BOLA(U)

(c)

0 5 10 15 20 25 30 35 40
Rebuffering Ratio [%]

10-3

10-2

10-1

100

C
C

D
F

BOLA(O)
SABR-BOLA(O)
SQUAD
SABR-SQUAD
BOLA(U)
SABR-BOLA(U)

(d)

Figure 4: Main experiment: Fixed cache assignment with Baseline algorithm vs. flexible cache allocation with SABR. CCDF
are given together with 0.95 confidence intervals. (i) SABR increases the playback rate (in (a)). (ii) Giving the client multiple
segment sources could strongly impact the quality oscillations depending on the deployed adaptation algorithm (in (b) and
(c)). Note that for (c) a lower spectrum implies less quality variations, i.e., a better QoE. (iii) SABR also significantly reduces
re-buffering (in (d)).

on the spectrum metric for QoE [39]. It uses a combination
of buffer and rate-based quality adaptation that accounts
for the dynamics of TCP on different time scales. SQUAD
possesses three states of operation: decreasing, increasing
and steady states, that are defined in relation to a sustain-
able quality bitrate. SQUAD avoids sudden quality changes
under fast varying available bandwidth by sacrificing buffer
filling if the requested quality bitrate is sustainable.
BOLA [35]: BOLA is a buffer-based quality adaptation
algorithm. It uses a Lyapunov technique for renewal pro-
cesses to decide on the quality of the next segment to be
fetched. While BOLA(U) aims to maximize a playback util-
ity metric which is a weighted combination of quality bitrate
and smoothness (average rebuffering time), BOLA(O) tries
to minimize the oscillation in the average quality bitrate by
sacrificing buffer filling without the risk of rebuffering to
maintain the previously downloaded quality.

Node setup: In the following we report the results from
experiments of partial caching, where a video might only be
partially cached (in terms of segments of certain qualities
at the different caches in Fig. 3). Partial caching of videos
occurs when so-called “write-through” caching is performed,
i.e., only the segments that are requested by the client in a
specific quality are cached. In this scenario, the client may
have to switch between caches not only because of bottleneck
bandwidth fluctuations but also because of the unavailabil-
ity of requested segments in a specific quality. Decisions for

the latter case can be made because the SABR architecture
provides the client with a cache map (cf. Sect. 4.2) that in-
forms the client which cache possesses the desired segments
at which quality levels. In the following, we report results
from a series of experiments where a Least Recently Used
(LRU) policy is implemented in all the caches.

6.2 QoE performance with SABR
In this experiment, we run 60 clients in four groups as

depicted in Fig. 3. We start the clients with a time off-
set wc = 1 sec and a client group offset of wg = 3 sec.
Each client streams 10 consecutive movies chosen from a
set of 50 movies each of length 300 seconds where the
movies are independently and identically distributed sam-
pled from a Zipf popularity distribution with parameter
α = 1. The video qualities included in this data set
are {89k, 0.26M, 0.79M, 2.4M, 4.2M}bps and each video seg-
ment is 2 seconds long. We number the qualities Q1 to Q5

according to their bitrates with Q1 being the lowest quality.
We use this configuration throughout the evaluation if not
stated otherwise.

In the first experiment we compare the streaming perfor-
mance and the QoE metrics from Sect. 6.1 for SABR against
the Baseline system of fixed client-to-cache assignments. In
the Baseline system, we assign each client to the nearest
cache (in number of hops) and forward cache misses to the
origin server. In case of SABR we consider the caching sys-

VLC SABR-
VLC

SQUAD
SABR-
SQUAD

BOLA(U)
SABR-
BOLA(U)

BOLA(O)
SABR-
BOLA(O)

Nutil (%) 42.5 71.2 44.9 74.6 42.5 68.2 46.4 65.7
Sload (%) 28.2 21.3 34.5 19.5 28.7 22.5 33.8 23.6

Table 1: System Performance - Network Utilization and Server Load

tem as one distributed cache as clients may request segments
from different caches or the server. Note that in this exper-
iment we only consider the local caching variant explained
in Sect. 5.3. We specify the global cache size to be 70% of
the overall dataset.

Figure 4 shows the QoE evaluation metrics for a series of
30 experiments. In Fig. 4a we clearly show that the SABR
performance dominates the performance over the Baseline
approach with respect to the average quality bitrate AQB
for all evaluated quality adaptation algorithms. We observe
that SABR provides a systematic gain in the streamed av-
erage quality bitrate. This gain is about 50%-100% for the
clients which suffer from the lowest bitrates in the Baseline
cases. We attribute this performance gain to two main fac-
tors, i.e., the flexibility in choosing the segment source and
the accurate bottleneck bandwidth information that is pro-
vided to the client through network assistance. Providing
bottleneck bandwidth information to the client allows it to
better utilize the network as is evident from the results pre-
sented in Table 1. As shown in Table 1, using SABR reduces
server load, thus, improves server offloading and potentially
reduces the operational expenses of a CDN. While SABR
ensures a significant gain in AQB, the improvements in the
number of quality switches #QS, spectrum H and the re-
buffering ratio RB depend on how the algorithms utilize the
information provided by SABR.

While the quality adaptation algorithm SQUAD aims to
minimize the spectrum H, BOLA(O) focusses on reducing
the oscillation in playback bitrate. Fig. 4b shows a strong
reduction in quality switches #QS with the use of SABR
for SQUAD, BOLA(O) and BOLA(U). Fig. 4c shows that
the spectrum H of SABR variants is consistently lower than
that of the Baseline algorithms. As shown in Fig. 4d, the
rebuffering ratio RB is significantly lower with the use of
SABR. We attribute this to the fact that SQUAD, unlike the
other algorithms, uses a sliding window of segment download
rate history to estimate the available bandwidth. SABR
provides ARIMA-based available bandwidth predictions us-
ing a sliding window of previous available bandwidths, thus,
giving a more accurate estimate of the network utilization
during playback. Note that the basic VLC algorithm, which
is not designed to minimize quality switches #QS or the
spectrum H, shows a perceptible improvement in the over-
all magnitude and variance of AQB with the use of SABR,
however, at the cost of increased quality oscillations. From
the AQB results for VLC in Fig. 4a, we see that nearly 10%
of the clients experience a low QoE and 40% of the clients
are served high quality videos but with the use of SABR, the
overall fairness of VLC, in terms of the spread of playback
rates, is improved.

After observing significant QoE benefits with SABR for
local caching, we select two distinct algorithms, BOLA(O)
and SQUAD and proceed to investigate the interplay with
different caching strategies as described in Sect. 5.3.

6.3 Caching performance with SABR

In the following, we evaluate the performance of different
caching strategies as outlined in Sect. 5.3 when combined
with the network assistance provided by SABR. Here, we
will concentrate on two quality adaptation algorithms, i.e.,
BOLA and SQUAD. For the evaluation, we will resort to
Fig. 5 and 6 to describe the QoE metrics in combination
with different caching strategies for a series of 30 experi-
ments. In addition, we present the system performance met-
rics for different caching strategies in Fig. 7 and Table 2.
Global Caching: QoE metrics in Fig. 5 indicate that
BOLA(O) obtains maximum advantage from adopting
a global caching strategy with no replication denoted
Globalnorep. The number of requests for global caching in
Fig. 7a show that BOLA(O) has the highest total requests
for the highest quality Q5. The hit rates Chr for other qual-
ities are distributed almost equally. The network utilization
Nutil given in Table 2 combined with the Chr in Fig. 7c
demonstrates that cache hit rates increase while increasing
the utilization of the cache network. Note that the utiliza-
tion increases naturally as the average quality bitrate is sig-
nificantly increased as can be seen from Fig. 5a.

SQUAD, on the other hand, has a high tendency to
request certain qualities more than others, which is evident
from the total number of requests in Fig. 7b and the cache
hit rate Chr in Fig. 7d, which demonstrates a higher hit
rate for Q5 than any other quality. This argument is further
reinforced in Table 2 where Nutil is the highest during full
replication implying that SQUAD requests a majority of
high quality segments from the caches during playback.
We also observe that Fig. 6c, shows the lowest average
spectrum, H, for a high replication factor, i.e., Globalfullrep
caching strategy. Note that other caching strategies such as
Globalnorep and local caching achieve comparable average
quality bitrate of 3.6Mbps which is reflected in the close
CDFs in Fig. 6a. Combining both results we confirm that
both QoE and caching efficiency are highest in SQUAD
with the use of the Globalfullrep strategy.

Quality-based Caching
The quality-based caching strategy studies more closely the
segment quality request pattern of SQUAD and BOLA(O)
clients. From Figs. 7c and 7d , we see that quality-based
caching provides a consistently uniform and relatively
high average hit rate Chr for all qualities. However, it is
important to note that while QoE for BOLA(O) is not
significantly worse in this case (as seen in Fig. 5), SQUAD
suffers a major loss in QoE performance, particularly noted
in Fig. 6c, where this caching strategy shows the highest
values for Spectrum H. Additionally, results in Table 2 for
SQUAD show a comparatively low network utilization for
the quality-based caching case. This information combined
with the hit rate values from Fig. 7d indicate that the
hit rates Chr for lower qualities Q1-Q3 are the highest.
The large number of requests for the highest quality, Q5

in Fig. 7b and the high server load Sload in Table 2 leads
us to infer that a majority of these high quality requests

0.5 1 1.5 2 2.5 3 3.5 4 4.5
Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F
BOLA(O)
BOLA(O)-Local
BOLA(O)-Globalfullrep
BOLA(O)-Globalnorep
BOLA(O)-Quality

(a)

0 20 40 60 80 100 120
Nr of quality switches

0

0.2

0.4

0.6

0.8

1

C
C

D
F

BOLA(O)
BOLA(O)-Local
BOLA(O)-Globalfullrep
BOLA(O)-Globalnorep
BOLA(O)-Quality

(b)

0 100 200 300 400 500 600
Spectrum

0

0.2

0.4

0.6

0.8

1

C
C
D
F

BOLA(O)
BOLA(O)-Local
BOLA(O)-Globalfullrep
BOLA(O)-Globalnorep
BOLA(O)-Quality

(c)

Figure 5: Caching Strategies with BOLA(O) quality adaptation: QoE metrics for content placement strategies using SABR.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

SQUAD
SQUAD-Local
SQUAD-Globalfullrep
SQUAD-Globalnorep
SQUAD-Quality

(a)

0 20 40 60 80 100 120
Nr of quality switches

0

0.2

0.4

0.6

0.8

1
C

C
D

F
SQUAD
SQUAD-Local
SQUAD-Globalfullrep
SQUAD-Globalnorep
SQUAD-Quality

(b)

0 100 200 300 400 500 600
Spectrum

0

0.2

0.4

0.6

0.8

1

C
C
D
F

SQUAD
SQUAD-Local
SQUAD-Globalfullrep
SQUAD-Globalnorep
SQUAD-Quality

(c)

Figure 6: Caching Strategies with SQUAD quality adaptation: QoE metrics for content placement strategies using SABR.

BOLA(O) SQUAD
Local Globalfullrep Globalnorep Quality Local Globalfullrep Globalnorep Quality

Nutil (%) 65.7 83.3 82.9 77.1 74.6 82.3 66.9 48.2
Sload (%) 23.6 20.5 20.4 22.4 19.5 20.3 22.5 28.4

Table 2: Caching System Performance: Network Utilization and Server Load

are streamed from the server. We conclude that although
quality-based caching improves the hit rate of low qualities
in the caching system, it provides only a tolerable QoE
and system performance for BOLA(O) and incurs heavy
degradation in QoE metrics for SQUAD.

The evaluation we presented in this section investigates an
essential trade-off between optimizing the caching architec-
ture, specifically, the hit rates, and providing optimal QoE
for the end-user. While it is evident from the results that
SABR provides a vast improvement in the client streaming
quality bitrate and the sever load, i.e., increasing the over-
all cache system hit rate, we note that a carefully selected
caching strategy adopted by the CDN can also contribute
significantly to the improvement of all QoE metrics.

7. DISCUSSION

7.1 Requirements of assisted streaming
Following our discussion of the results in Sect. 6 we clearly

see that exploiting the information provided to the client
video player by SABR or generally any network assisted

streaming architecture is a non-trivial optimization prob-
lem. ABR streaming clients have been crafted in the past
years to be thin and most importantly to run autonomously
for scaling reasons. Network assisted streaming requires,
(i) a well-defined API between the network and the video
player, (ii) modifications to client algorithms to exploit this
additional information, and (iii) an appropriate selection of
caching algorithms. For example, quality adaptation algo-
rithms such as [35, 38] depend on end-to-end bandwidth
estimation methods to decide on the appropriate stream-
ing quality. This estimate which is known to be very hard
to obtain cleanly [20] can be significantly improved using
network assistance. Buffer-based algorithms [16] make un-
derlying statistical assumptions on the fetched video stream
that stem from the notion of point-to-point communication
which does not hold anymore if it is possible to find the best
source for a video segment using network assistance.

It is crucial to critically assess the impact of network
assistance on different streaming algorithms. On the one
hand, SABR results presented in Sect. 6 show that a better
streaming quality can be achieved by providing clients with

Total Requests by Quality (BOLA(O))

Baseline Local GlobalfullrepGlobalnorep Quality
0

0.5

1

1.5

2

2.5

#R
eq
ue
st
s

105

Q1
Q2
Q3
Q4
Q5

(a)

Total Requests by Quality (SQUAD)

Baseline Local GlobalfullrepGlobalnorep Quality
0

0.5

1

1.5

2

2.5

#R
eq
ue
st
s

105

Q1
Q2
Q3
Q4
Q5

(b)

Baseline Local GlobalfullrepGlobalnorep Quality
0

0.2

0.4

0.6

0.8

1

H
it

R
at

e
(C

hr
)

Cache Hit Rate (BOLA(O))

Q1
Q2
Q3
Q4
Q5

SABR

no SABR

(c)

Baseline Local GlobalfullrepGlobalnorep Quality
0

0.2

0.4

0.6

0.8

1

H
it

R
at

e
(C

hr
)

Cache Hit Rate (SQUAD)

Q1
Q2
Q3
Q4
Q5

SABR

no SABR

(d)

Figure 7: Absolute number of requests per quality (a-b) and cache hit rates (c-d) : Comparison of fixed content placement
(Baseline) with various content placement strategies for SABR.

network information on the available bandwidth to different
potential caches. On the other hand, the quality adapta-
tion algorithm at the client may have a negative impact on
QoE if it is not appropriately adapted to network assistance.
For example, in case of algorithms that do not actively min-
imize bitrate switchings, such as VLC, network assistance
introduces a higher number of quality switches which im-
pairs QoE. For many other algorithms such as SQUAD or
BOLA this information helps avoiding rebuffering events by
providing alternative video segment sources. We also argue
that SABR has the tendency to benefit some algorithms
more than others. If we consider the examples of SQUAD
and BOLA, both of which use a combination of rate and
buffer-based approaches, BOLA shows higher QoE improve-
ment with SABR. This difference can be attributed to the
SQUAD algorithm, which uses a moving window of segment
download rate history whereas BOLA uses the previous seg-
ment download rate to decide on the next segment quality.
This implies that BOLA benefits more from the temporal
information provided by the ARIMA model.

7.2 Scalability
Obviously, one concern for a system like SABR is scalabil-

ity. While it is the main goal of this paper to demonstrate
the applicability and benefits of SABR through evaluation
in a real-world testbed, we will further investigate its per-
formance in much larger scenarios in future work. For large-
scale distributed systems such as CDNs scalability is always
a concern. Therefore, we briefly discuss some of the potential
scalability issues and how their impact can be diminished.
Regional Approach: Although many CDNs operate on a

global scale, our approach is designed to enable operating
on a regional level. Thus, several SABR systems can be
used in a regional CDN instead of a global one. This will
reduce the load on the system and prevent single-point of
failure. In addition, our decision to use REST APIs allows a
straightforward extension to a hierarchy of SABR systems,
i.e., regional systems coordinated by higher-level systems.
Information on Cached Videos: As described in
Sect. 4.2, SABR uses segment size and cache occupancy in-
formation, which may seem to be a huge amount of data.
Luckily, only information about currently requested videos
has to be retrieved. This information can be retrieved from
caches using the Bloom-filter method from [23] in case of co-
locating the distributed database with caches. Additionally,
this information set is a much smaller subset than the set
of all contents that are stored on all caches. Furthermore,
with MongoDB, we have chosen a database for our system
that is highly scalable and in use in large-scale systems.
Monitoring of Ports: The monitoring load of the system
can be reduced by only monitoring ports that are on the
paths between clients and caches. In addition, the available
bandwidth predictions are centrally calculated once for all
clients in a given prediction window.

If a SABR reply is not delivered within a certain time
interval, for example, the client can always retreat to unas-
sisted bitrate selection. Thus, our approach allows for a
natural fallback into standard DASH operation at the client
should SABR calls fail.

8. RELATED WORK

QoE of ABR streaming
The work by Zinner et al. [40] on application aware SDN
routing looks at resource management by dynamically allo-
cating network resources based on the status of the client
buffer. The experiments in [40] look at queuing strate-
gies for flows in the sense of the OpenFlow protocol and
show that prioritization enables better traffic management,
though, TCP traffic could thus suffer from short-time perfor-
mance degradation. A similar approach has been explored
by the authors of [19] where they provide network assistance
to an ABR client for improved QoE with evaluations in a
small scale wireless testbed. Cofano et al. [13] implement
a Network Control Plane (NCP) to allocate and monitor a
channel per video stream. In contrast, SABR shows vast im-
provement in QoE which we demonstrate through measure-
ments in a large, real-world testbed without incurring the
overhead of per-client QoS management. Bentaleb et. al.
[10] use SDN capabilities to dynamically allocate network
resources based on QoS policies to improve QoE of adap-
tive bitrate streaming. Their work uses a client-side probe
[21] along with a DPI component to estimate the available
bandwidth in a network, which leads to an overhead both for
the network and control plane, respectively. The authors of
[36] provide an architecture for server and network-assisted
DASH denoted SAND. This work introduces a messaging
protocol which allows QoS signalling from server to client.
Similarly, in [29], Nam et al. use Network Function Virtu-
alization (NFV) to perform MPLS traffic engineering to im-
prove ABR streaming QoE. Our work is related in the con-
text of computing the bottleneck bandwidth on each path.
In addition, we expand on the method using time series fore-
casting mechanisms and by providing cache information to
assist ABR quality adaptation algorithms to maximize QoE.

CDN for ABR delivery
Works that investigate the use of an OpenFlow control plane
for improving video delivery in a CDN include the one by
Mukerjee et al. [25], which considers the use of the control
plane for load-balancing to improve QoE of live video de-
livery. Here, the authors design, implement and evaluate a
DNS load balancing system with a hybrid (distributed and
centralized) control system for live video streaming. Our
work is different from this approach, firstly, in the realiza-
tion through OpenAPIs via a REST interface and an Open-
Flow controller, which simplifies client integration as seen
in Sect. 4.3. Secondly, we consider the interplay of quality
adaptation mechanisms, network bandwidth information, as
well as, caching strategies.

The authors of [14] and [22] propose a coordinated con-
trol plane for routing video in the Internet. This work de-
scribes a client based monitoring and control system where
the client makes intelligent decisions based on the informa-
tion gathered by the monitoring system. Unlike our system,
this architecture is based on a multi-CDN deployment where
decisions have to be made on a client state basis using global
CDN models that do not take cache occupancy into account
thus contributing to considerable overhead for the control
plane. In SABR, we dispense with this centralized deci-
sion model and provide assistance to ABR clients that make
intelligent decisions based on the network status. In [15],
Georgopoulos et al. use OpenFlow to assist a caching sys-
tem, denoted OpenCache, to facilitate a client redirection to
a cache based on network conditions while implementing a
caching strategy of minimal hop count. Although SABR is

generally able to redirect clients to caches, we additionally
provide network and cache status information to the clients
allowing them to make a well informed decision on content
requests. We further analyze the interplay of the client-side
quality adaptation and the deployed caching strategies with
respect to standard QoE metrics and various performance
metrics for caching systems.

9. CONCLUSIONS AND FUTURE WORK
This work leverages the potential of software defined

infrastructure to provide an SDN control plane architec-
ture that assists ABR video streaming applications in con-
tent delivery networks. This architecture, which we de-
note SABR, essentially, provides streaming clients with re-
fined information on network conditions and available video
sources, which is made queryable through an SDN architec-
ture. Nonetheless, clients retain full control of the streaming
decisions, including quality selection algorithms and video
source switching. Our evaluation in a real-world, geograph-
ically distributed testbed shows significant improvement in
quantitative metrics of QoE, which we mainly attribute to
improved estimation accuracy of network characteristics,
and statistical multiplexing gains. Further, we show that
carefully selected caching strategies can significantly im-
prove streaming QoE and the overall system performance.

10. REFERENCES
[1] Adobe HTTP Dynamic Streaming. http://www.

adobe.com/products/hds-dynamic-streaming.html.
Accessed: 2016-12-03.

[2] Apple HTTP Live Streaming. https:
//developer.apple.com/resources/http-streaming/.
Accessed: 2016-12-03.

[3] Global Internet Phenomena Report 2016: Latin
America & North America.
https://www.sandvine.com/downloads/general/
global-internet-phenomena/2016/
global-internet-phenomena-report-latin-america\
\-and-north-america.pdf. Accessed:2016-12-03.

[4] Google SDN Stack. http://opennetsummit.org/
archives/apr12/vahdat-wed-sdnstack.pdf.
Accessed:2016-12-03.

[5] Microsoft Smooth Streaming. http://www.iis.net/
downloads/microsoft/smooth-streaming. Accessed:
2016-12-03.

[6] MongoDB. https://www.mongodb.org/. Accessed:
2016-12-03.

[7] Sleepy Mongoose (MongoDB).
http://www.kchodorow.com/blog/2010/02/22/
sleepy-mongoose-a-mongodb-rest-interface/. Accessed:
2016-12-03.

[8] V. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt,
M. Steiner, and Z.-L. Zhang. Unreeling Netflix:
Understanding and improving multi-CDN movie
delivery. In IEEE INFOCOM, pages 1620–1628, 2012.

[9] S. Agarwal, M. Kodialam, and T. V. Lakshman.
Traffic engineering in software defined networks. In
INFOCOM, 2013 Proceedings IEEE, pages 2211–2219,
April 2013.

[10] A. Bentaleb, A. C. Begen, and R. Zimmermann.
Sdndash: Improving qoe of http adaptive streaming

using software defined networking. In Proceedings of
the 2016 ACM on Multimedia Conference, MM ’16,
pages 1296–1305, New York, NY, USA, 2016. ACM.

[11] M. Berman, J. S. Chase, L. Landweber, A. Nakao,
M. Ott, D. Raychaudhuri, R. Ricci, and I. Seskar.
GENI: A federated testbed for innovative network
experiments. Computer Networks, 61(0):5 – 23, 2014.
Special issue on Future Internet Testbeds – Part I.

[12] K. Burnham and D. Anderson. Model Selection and
Multimodel Inference: A Practical
Information-Theoretic Approach. Springer, 2003.

[13] G. Cofano, L. De Cicco, and S. Mascolo. A control
architecture for massive adaptive video streaming
delivery. In ACM Workshop on Design, Quality and
Deployment of Adaptive Video Streaming, pages 7–12,
2014.

[14] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica,
J. Jiang, V. Sekar, and H. Zhang. C3: Internet-Scale
Control Plane for Video Quality Optimization. In
USENIX NSDI, pages 131–144, 2015.

[15] P. Georgopoulos, M. Broadbent, A. Farshad,
B. Plattner, and N. Race. Using software defined
networking to enhance the delivery of
video-on-demand. Computer Communications,
69:79–87, 2015.

[16] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell,
and M. Watson. A buffer-based approach to rate
adaptation: Evidence from a large video streaming
service. In ACM SIGCOMM Comput. Commun. Rev.,
pages 187–198, 2014.

[17] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4:
Experience with a Globally-deployed Software Defined
WAN. ACM SIGCOMM Comput. Commun. Rev.,
43(4):3–14, 2013.

[18] P. Juluri, V. Tamarapalli, and D. Medhi. SARA:
Segment-aware Rate Adaptation Algorithm for
Dynamic Adaptive Streaming over HTTP. In IEEE
ICC QoE-FI Workshop, 2015.

[19] J. W. Kleinrouweler, S. Cabrero, and P. Cesar.
Delivering stable high-quality video: an sdn
architecture with dash assisting network elements. In
Proceedings of the 7th International Conference on
Multimedia Systems, page 4. ACM, 2016.

[20] R. Lübben, M. Fidler, and J. Liebeherr. Stochastic
bandwidth estimation in networks with random
service. IEEE/ACM Transactions on Networking,
22(2):484–497, April 2014.

[21] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen,
and D. Oran. Probe and adapt: Rate adaptation for
http video streaming at scale. IEEE Journal on
Selected Areas in Communications, 32(4):719–733,
2014.

[22] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar,
I. Stoica, and H. Zhang. A case for a coordinated
internet video control plane. In Proceedings of the
ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer
communication, pages 359–370. ACM, 2012.

[23] B. M. Maggs and R. K. Sitaraman. Algorithmic
nuggets in content delivery. ACM SIGCOMM

Comput. Commun. Rev., 45(3):52–66, 2015.

[24] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: Enabling Innovation in Campus
Networks. ACM SIGCOMM Comput. Commun. Rev.,
38(2), Mar. 2008.

[25] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han,
S. Seshan, and H. Zhang. Practical, Real-time
Centralized Control for CDN-based Live Video
Delivery. In ACM SIGCOMM Comput. Commun.
Rev., pages 311–324, 2015.

[26] C. Müller and C. Timmerer. A VLC media player
plugin enabling dynamic adaptive streaming over
HTTP. In ACM Multimedia, pages 723–726, 2011.

[27] C. Müller and C. Timmerer. A VLC media player
plugin enabling dynamic adaptive streaming over
HTTP. In Proc. of the ACM Conference on
Multimedia, pages 723–726. ACM, 2011.

[28] M. Mushtaq, T. Ahmed, and D.-E. Meddour.
Adaptive Packet Video Streaming over P2P Networks.
In ACM International Conference on Scalable
Information Systems, InfoScale, 2006.

[29] H. Nam, K.-H. Kim, J. Y. Kim, and H. Schulzrinne.
Towards QoE-aware video streaming using SDN. In
IEEE Global Communications Conference
(GLOBECOM), pages 1317–1322, 2014.

[30] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, 2014.

[31] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy,
A. Ghodsi, and S. Shenker. Software-defined Internet
Architecture: Decoupling Architecture from
Infrastructure. In ACM HotNets-XI, pages 43–48,
2012.

[32] R. Ricci, E. Eide, and The CloudLab Team.
Introducing CloudLab: Scientific infrastructure for
advancing cloud architectures and applications.
USENIX ;login:, 39(6), Dec. 2014.

[33] D. Simeonidou, R. Nejabati, and M. Channegowda.
Software defined optical networks technology and
infrastructure: Enabling software-defined optical
network operations. In Optical Fiber Communication
Conference and Exposition and the National Fiber
Optic Engineers Conference (OFC/NFOEC), pages
1–3, 2013.

[34] I. Sodagar. The MPEG-DASH Standard for
Multimedia Streaming Over the Internet. IEEE
MultiMedia, 18(4):62–67, April 2011.

[35] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. Bola:
Near-optimal bitrate adaptation for online videos. In
Proc. of IEEE INFOCOM, pages 1–9, April 2016.

[36] E. Thomas, M. van Deventer, T. Stockhammer, A. C.
Begen, and J. Famaey. Enhancing MPEG dash
performance via server and network assistance.
Stevenhage: IET, 2015.

[37] N. L. Van Adrichem, C. Doerr, F. Kuipers, et al.
Opennetmon: Network monitoring in openflow
software-defined networks. In IEEE Network
Operations and Management Symposium (NOMS),
pages 1–8, 2014.

[38] C. Wang, A. Rizk, and M. Zink. SQUAD: A
Spectrum-based Quality Adaptation for Dynamic

Adaptive Streaming over HTTP. In Proc. of MMSys,
pages 1:1–1:12. ACM, 2016.

[39] M. Zink, J. Schmitt, and R. Steinmetz. Layer-encoded
video in scalable adaptive streaming. IEEE
Transactions on Multimedia, 7(1):75–84, Feb 2005.

[40] T. Zinner, M. Jarschel, A. Blenk, F. Wamser, and

W. Kellerer. Dynamic application-aware resource
management using Software-Defined Networking:
Implementation prospects and challenges. In IEEE
Network Operations and Management Symposium
(NOMS), pages 1–6, 2014.

