

Heuristics for QoS-aware Web Service Composition

Rainer Berbner, Michael Spahn, Nicolas Repp, Oliver Heckmann, Ralf Steinmetz
Dept. of Computer Science, Technische Universitaet Darmstadt, Germany

{berbner,spahn,repp,heckmann,steinmetz}@kom.tu-darmstadt.de

Abstract

This paper discusses the Quality of Service (QoS)-

aware composition of Web Services. The work is based on
the assumption that for each task in a workflow a set of
alternative Web Services with similar functionality is
available and that these Web Services have different QoS
parameters and costs. This leads to the general
optimization problem of how to select Web Services for
each task so that the overall QoS and cost requirements
of the composition are satisfied.

Current proposals use exact algorithms or complex
heuristics (e.g. genetic algorithms) to solve this problem.
An actual implementation of a workflow engine (like our
WSQoSX architecture), however, has to be able to solve
these optimization problems in real-time and under heavy
load. Therefore, we present a heuristic that performs
extremely well while providing excellent (almost optimal)
solutions. Using simulations, we show that in most cases
our heuristic is able to calculate solutions that come as
close as 99% to the optimal solution while taking less
than 2% of the time of a standard exact algorithm.
Further, we also investigate how much and under which
circumstances the solution obtained by our heuristic can
be further improved by other heuristics.

1. Introduction

Web Services as technology based on open XML

standards like SOAP, WSDL, and UDDI are widely used
for integration purposes within enterprises. Beyond this,
Web Services have the potential to be composed to cross-
organizational workflows. Due to their loosely-coupled
nature Web Services hosted by external providers can be
integrated at runtime. This vision aims at dynamic ad-hoc
collaborations between different business partners.

With the increasing number of Web Services with
similar or identical functionality, the non-functional
properties of a Web Service will become more and more
important. Besides the costs for using Web Services, the
Quality of Service (QoS) attributes (e.g. availability,

response time, and throughput) are subsumed as non-
functional attributes. Considering those non-functional
properties is crucial for companies to meet the
requirements of customers.

As a consequence, the QoS has to be explicitly
managed at the designing phase of a Web Service
composition as well as during its execution at runtime.

Focusing on the QoS-aware Web Service execution we
have designed and implemented the proxy architecture
WSQoSX (Web Services Quality of Service Architectural
Extension) [2, 3] that supports late binding of Web
Services at runtime as well as dedicated accounting and
monitoring mechanisms (e.g. SLA violation detection).

In this paper, the focus is on QoS-aware Web service
composition. We define QoS-aware Web Service
composition as the selection of Web Services maximizing
the QoS of the overall Web Service composition, taking
into account preferences and constraints defined by the
user. For this, a utility function maximizing the overall
QoS subject to QoS constraints is introduced. This leads
to an optimization problem that is NP-hard [5, 9]. Zeng et
al. propose computing the optimal composition by linear
integer programming (IP) [20]. However, their results
reveal that this approach is hardly feasible in dynamic
real-time scenarios with a large number of potential Web
Services involved. This is exacerbated in a situation
where the QoS-aware composition has to be replanned at
runtime. In this case, the computation time of the
composition becomes crucial. Replanning at runtime
becomes necessary if Web Services selected at design
time are not available anymore or SLA violations are
detected. Obviously, customers are not willing to wait a
few minutes when e.g. performing a financial transaction
due to the replanning of the composition.

In this paper, we propose heuristics for solving the
QoS-aware Web Service composition problem
considering these timing constraints. We have designed,
implemented and evaluated three heuristics: Heuristic
H1_RELAX_IP consists of two steps: First, a MIP
(Mixed Integer Programming) formulation of the
composition problem is generated and its LP relaxation is
solved. Second, we use a backtracking algorithm to create

rst
Textfeld
Rainer Berbner, Michael Spahn, Nicolas Repp, Oliver Heckmann, Ralf Steinmetz: Heuristics for QoS-aware Web Service Composition. In: 4th IEEE International Conference on Web Services (ICWS 2006), September 2006.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

a valid solution to the original, non-relaxed problem.
Additionally, we study two further heuristics H2_SWAP
and H3_SIM_ANNEAL, which are meta-strategies to
improve the results of H1_RELAX_IP. We evaluate the
performance of our heuristics compared with linear
integer programming.

The rest of this paper is structured as follows: In
Section 2 WSQoSX as foundation of our further research
is introduced. The heuristics we have designed for
computing QoS-aware Web Service compositions are
discussed in Section 3. In Section 4 the focus is on the
evaluation of our heuristics compared with linear integer
programming. Related research is discussed in Section 5.
This paper closes with a conclusion and a short outlook.

2. WSQoSX – A proxy architecture
managing Web Service workflows

The execution of Web Service compositions needs

mechanisms and architectural components that are beyond
the traditional SoA approach (e.g. [8]). Thus, we have
designed and implemented WSQoSX (Web Services
Quality of Service Architectural Extension), a proxy-
based architecture (Figure 1) that is able to

− manage Service Level Agreements (SLAs)
− detect SLA violations
− select a particular Web Service at runtime according

to decision maker’s preferences
− dynamically replace Web Services at runtime (e.g.

due to a performance decrease of a specific Web
Service)

For this, SLAs are modeled using IBM’s WSLA (Web
Service Level Agreement) [11]. Within a SLA the non-
functional behavior of a Web Service (viz. costs and QoS
attributes) is specified.

WS4

Pr
ov

id
er

 A
 In

te
rn

et
 WS5

Pr
ov

id
er

 B

Proxy A
ccounting

Registry

Q
oS

-
M

onitoring

Application
Server

P
ortal

R
ating

SLA-M
anagem

ent

Selection

Web Service Architecture (Enterprise A)

WS1

Workflow A

WS2 WS3

DB

Figure 1. WSQoSX– architectural framework [3]

External Web Service providers have to register their
Web Services and the corresponding SLAs at the
WSQoSX Web Portal according to pre-defined categories
(e.g. shipping, credit rating, and payment).

If a workflow managed by WSQoSX is started, the
workflow engine does not invoke a Web Service directly.
Web Service invocation is managed by a Proxy
Component instead. This Proxy Component can
determine which category (e.g. shipping) has been
triggered for invocation and hands this information over
to the Selection Component. The Rating Component
calculates a score for each Web Services according to
specific user preferences. Based on these calculations the
Selection Component chooses and invokes the best
suitable Web Service. The Accounting Component tracks
detailed information about which Web Services have
been invoked and their runtime behavior. This data is
used by the QoS Monitoring Component to detect SLA
violations during the execution of Web Services.

The management components of WSQoSX described
above are implemented in Java. For further details about
our work related to WSQoSX we refer to [2, 3].

3. Heuristics for QoS-aware composition

In this section, Web Service compositions are

discussed and it is described how a QoS-aware Web
Service composition can be modeled as an optimization
problem. Furthermore, the heuristics we have designed
for solving this optimization problem are described.

3.1. Web Service composition

Web Service composition aims at selecting and inter-

connecting Web Services provided by different partners
according to a business process [20]. Thus, Web Service
compositions can be seen as workflows based on Web
Services.

As depicted in Figure 2, there is a workflow model that
consists of abstract tasks describing the required
functionality (e.g. invoking a credit rating) of a specific
workflow step. One of the main issues hereby is the
selection of appropriate Web Services that form the
execution plan for a Web Service composition. The
functionality of each task can be provided by different
candidate Web Services. Web Services that provide
similar or identical functionality are grouped in the same
category. Web Services within the same category may
have different non-functional attributes.

Definition: A sequential Web Service composition
consists of n tasks. Task i (i=1,...,n) will be executed
before task i’ (i’=1,...,n) if i<i’. The set of mi different
candidate Web Services that provide the required
functionality for task i is called category i. A binary
variable xi,j is introduced. xi,j=1 means that Web Service j
of category i is selected for being executed within the
execution plan. To ensure that only one Web Service per
task is selected, it is necessary that

.,,11
1

, nix
im

j
ji K=∀=∑

=

In this paper we assume sequential Web Service
compositions.

Task 1 Task 2 Task n

WS1,1

WS1,2

WS1, m1

Workflow
Model

…

…

WS2,1

WS2,2

WS2, m2

…

WS2,3

WS2,4

WSn,1

WSn,2

WSn, mn

…

Candidate
Web

Services

Category 1

Category 2

Category n

WS1,2 WS2,1 WSn,6…
Execution

Plan

p2,4,1= 98 %
p2,4,2= 14 ms
…

Figure 2. Web Service composition

3.2. QoS model

In the area of QoS-enabled Web Services a lot of QoS

attributes (e.g. response time, availability, error rate,
throughput, scalability, and reputation) have been
addressed and evaluated (e.g. [6, 10, 13]).

To compute QoS attributes for the overall composition
we need aggregation functions for each QoS parameter.
Furthermore, the introduction of constraints is considered,
e.g. restricting the overall response time to be less than
50s. An execution plan is only valid if it satisfies all
constraints defined by the user. We define QoS-aware
Web Service composition as the construction of an
execution plan for a Web Service workflow so that the
utility provided by the QoS attributes of the composition
is maximized subject to constraints defined by the user.

Pi,j,k stores the value of the QoS parameter with index k
of Web Service j in category i. The aggregation of QoS
parameters to an overall QoS attribute depends on the
type of the QoS parameter k. An overall QoS attribute,
like e.g. the overall response time aggregates additive
whereas the overall availability aggregates multiplicative
and the overall throughput is determined by the Min-
operator.

In our model, three different kinds of parameters are
considered:

− Additive parameters:
The overall QoS attribute x+ of an additive non-

functional parameter +
jip , (e.g. response time) is

calculated as .
1 1

,,∑∑
= =

++ =
n

i

m

j
jiji

i

xpx

Constraints are defined as x+ ≤ c+ or x+ ≥ c+.
− Multiplicative parameters:

The overall QoS attribute •x of a multiplicative
non-functional parameter •

jip ,
 (e.g. availability) is

calculated as ∏∑
= =

•• =
n

i

m

j
jiji

i

xpx
1 1

,,
. To be able to

integrate constraints on •x into our linear model, we
linearize the term by applying the logarithm:

() ()∑∑∑∑

∑ ∏∏∏

= =

•

= =

•

= =

•

= =

••

==

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

n

i

m

j
jiji

n

i

m

j

x
ji

n

i

m

j

x
ji

n

i

m

j

x
ji

ii
ji

i
ji

i
ji

pxp

ppx

1 1
,,

1 1
,

1 1
,

1 1
,

lnln

lnln)ln(

,

,,

Using this, constraints can be defined as follows:

() ()∑∑
= =

•• ≤
n

i

m

j
jiji

i

xpc
1 1

,,lnln or () ()∑∑
= =

•• ≥
n

i

m

j
jiji

i

xpc
1 1

,,lnln

However, with regard to the fact that the utility
function cannot be expressed using ln(•x), we use
an approximation to integrate •x in the linear
model: ∏ ∑ ∑∑

= = =

•

=

••
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−≈=

n

i

n

i

m

j
jiji

m

j
jiji

ii

xpxpx
1 1 1

,,
1

,, 11

The approximation is very accurate with
parameter values •

jip ,
 close to 1, which is likely to

happen in most real world scenarios (e.g. expressing
availability).

− Attributes aggregated by the Min-operator:
The overall QoS attribute xmin of a non-functional

parameter that is aggregated by the Min-operator
(e.g. throughput) is calculated as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

==

im

j
jiji

n

i
xpMinx

1
,

min
,1

min

To integrate xmin in a linear model a constraint has
to be introduced for each task i:

nixpx
im

j
jiji ,...,1

1
,

min
,

min =∀≤∑
=

Due to the maximization of xmin during the
optimization process, these constraints limit xmin to
the smallest value pmin of any used Web Service,
which is the desired minimum. Constraints are
defined as xmin ≥ cmin.

The objective function F(xr) expresses the overall
utility of the Web Service composition with regard to the
user’s preferences as a weighted sum of the overall QoS

attributes: ∑∑∑
==

••

=

++ ++=
•+ min

1

minmin

11

)(
k

l
ll

k

l
ll

k

l
ll xwxwxwxF r

Each of the k (k=k++ •k +kmin) QoS attributes is
specifically weighted (by +

lw , •
lw , and min

lw) to define

the importance of the improvement of one unit of the
attribute relative to one unit of the other attributes.

3.3. A heuristic for a first feasible solution

The work presented in this paper aims at calculating an

execution plan that maximizes the overall QoS taking into
account the preferences and constraints defined by the
user. This leads to an optimization problem based on the
objective function and constraints discussed in the
previous sub section. As the results of Zeng et al. [20]
show, an approach based on linear integer programming
is too time consuming for real time scenarios in e-
business. This is also confirmed by the work of Canfora
et al. [4] and Yu and Lin [19].

Thus, we concentrate on solving the optimization
problem by the use of heuristics. We have designed a
heuristic H1_RELAX_IP using a two step approach.

First, the LP relaxation of the MIP formulation of the
composition problem is solved using a standard algorithm
(e.g. simplex). This means that xi,j can take any real
number between 0 and 1.

In the second step, a backtracking algorithm is used to
construct a feasible solution based on the result of the
relaxed integer program. The result of the relaxed integer
program gives an indication, which particular Web
Service should be considered in the optimal execution
plan. For example, if xi,g=0,25 and xi,l=0,75 the
probability of Web Service l of category i being part of
the optimal execution plan is much higher than the one of
Web Service g. Thus, the candidate Web Services within
a specific category are ordered according to their
likelihood to be part of the optimal solution (Figure 3).
Furthermore, all Web Services having xi,j=0 are ordered
according to their potential benefit to the objective
function1. Additionally, the categories are ordered
according to the number of candidate Web Services
having xi,j>0. The backtracking algorithm starts with the
category having the fewest Web Services with xi,j>0. The
fewer choices of Web Services having xi,j>0 exist in a
category, the higher the probability that an accurate
decision is made. In Figure 3, for instance, Category 2 is
selected before e.g. Category 3, since it offers fewer
choices that have in addition a higher likelihood of being
part of the optimal solution. Making decisions in that
order causes potentially inaccurate decisions to be made
at the end of the backtracking algorithm. This improves
the performance of the backtracking algorithm because
the earlier an inaccurate decision is made, the more
expensive it is, to revise it.

1 A comprehensive discussion of this issue can be found in [14].

j xi,j

1.00
0.00
0.00

0.00
0.00

3
1
2
4
5

Web Services

Category 2
i=2

j xi,j

0.90
0.10
0.00

0.00
0.00

4
3
1
5
2

Web Services

Category 5
i=5

j xi,j

0.75
0.25
0.00

0.00
0.00

3
2
4
5
1

Web Services

Category 1
i=1

j xi,j

0.80
0.15
0.05

0.00
0.00

3
1
5
4
2

Web Services

Category 3
i=3

Figure 3. Sorting Web Services

The pseudo code of the backtracking algorithm is
depicted in Figure 4. Initially, the execution plan is
empty. At the beginning, the first Web Service of the first
category (according to the sort order) is placed in the
appropriate position of the execution plan. In the example
(given in Figure 3), this is the Web Service having index
j=3 in Category 2. If no constraint is breached, the
algorithm continues with the next category and its first
Web Service in the same manner. If a violation occurs the
current Web Service will be repeatedly replaced by the
next Web Service in the category until no constraint is
violated any more. If no such Web Service is available in
the current category, the algorithm moves back one
category and starts to replace the formerly selected Web
Service of this category with the next candidate. If no
constraint is breached, the algorithm again proceeds to the
next category, or, if a constraint is still breached, it keeps
on replacing the selected Web Service of the current
category. After having selected a Web Service for all
positions of the execution plan from the appropriate
categories without violating any constraints, the algorithm
terminates with a valid execution plan.

i=1;
Exec_Plan={0, 0, ..., 0};
end=false;
while (not end) {
 repeat {
 if (Exec_Plan[i]<mi) Exec_Plan[i]++;
 } until (Exec_Plan is valid or Exec_Plan[i]=mi);
 if (Exec_Plan is invalid) {
 Exec_Plan[i]=0;
 if (i>1) i--; else end=true;
 } else
 if (i<n) i++; else end=true;
}

Figure 4. Backtracking algorithm

3.4. Meta-heuristics for the improvement of
feasible solutions

To analyze how far the results of H1_IP_RELAX can

be improved with standard techniques, we have designed
two meta-heuristics. H2_SWAP tries to find a solution
with a higher QoS by randomly replacing Web Services
of the execution plan calculated by H1_RELAX_IP.
Thereby it only accepts valid execution plans raising the

value of the objective function. H3_SIM_ANNEAL is
based on Simulated Annealing, which temporarily accepts
worse solutions during the optimization process to be able
to leave local optima and possibly find the global
optimum.

4. Evaluation

In this section our heuristics are evaluated and

compared to integer programming with regard to the
computation time and the excellence in approximating the
optimal solution. The experiments were run on a Pentium
IV (3 GHz) system having 1024 MB of RAM. For
performing the simulations a simulation engine and
further simulation tools (e.g. a data generator) have been
implemented.

4.1. Comparison of H1_RELAX_IP with integer
programming

To study the performance of H1_RELAX_IP, we

create sets of randomly generated test cases, each varying
a parameter influencing the performance. We analyze the
impact of i.) varying the process length (number of task
items), ii.) varying the number of candidate Web Services
and iii.) varying the strength of constraints. Each set of
test cases is solved with H1_RELAX_IP and the MIP
solver lp_solve2. The solver uses a Simplex algorithm and
Branch&Bound to calculate the optimal solution. We
compare the computation time and the value of the
objective function of H1_RELAX_IP to the ones of the
solver.

i.) Analysis of the numbers of tasks. To analyze the
influence of the number of task items, we increase the
number in seven steps from three to 21 and generate a
sample of 35 test cases per number of task items. In each
test case, there are 40 candidate Web services available
per task item, with each Web Service having four non-
functional parameters. Every overall QoS attribute is
constrained.

As depicted in Table 1 and Figure 5, our heuristic
significantly outperforms the integer programming with

Table 1. Results of varying the number of tasks
Task
items

Solver
Avg: ts [ms]

H1_RELAX_IP
Avg: th [ms]

Avg:

s

h

t
t Avg:

)(
)(

sxF
xF h

r

r

3 4.2864 5.2734 136.08% 99.96%
6 16.3458 8.4682 69.17% 99.89%
9 194.9850 13.9468 22.63% 99.72%

12 1,062.7156 20.3617 8.86% 99.44%
15 5,976.9378 26.2847 3.43% 99.38%
18 60,772.1917 35.5667 0.92% 99.23%
21 264,177.5668 43.3683 0.19% 98.83%

2 http://lpsolve.sourceforge.net/5.5/

increasing numbers of tasks. Only with a very small
number of task items the solver performs marginally
better.

1

10

100

1,000

10,000

100,000

1,000,000

3 5 7 9 11 13 15 17 19 21

Number of task items

Co
m

pu
ta

tio
n

tim
e

[m
s]

H1_RELAX_IP (avg) Solver (avg)
Figure 5. Comparison of the computation time
Increasing the number of task items, H1_RELAX_IP

scales very well and shows a much better performance
than the solver. In spite of the very good performance
there is almost no loss with regard to the optimal solution
calculated by the solver (Figure 6). In the case of a
process composed of 21 tasks, H1_RELAX_IP reaches
98.83% of the objective function value of the optimal
solution (approximation ratio), but only needs 0.19% of
the computation time of the solver.

Since we primarily consider Web Services offering
comprehensive business functionality that can be easily
outsourced, the number of such coarse-grained Web
Services forming a workflow can be assumed to be in the
order of the magnitude of 5-20. Of course, such coarse-
grained services might consist of a large number of small
services.

98,00%

98,25%

98,50%

98,75%

99,00%

99,25%

99,50%

99,75%

100,00%

3 5 7 9 11 13 15 17 19 21

Number of task items

A
pp

ro
xi

m
at

io
n

ra
tio

 [%
]

Figure 6. H1_RELAX_IP: Approximation ratio

ii.) Analysis of the numbers of candidate Web

Services. In analogy to the previous analysis another set
of test cases is generated, varying the number of
candidate Web Services from 10 to 70. The length of the
process is fixed to 15 task items. As depicted in Table 2
and Figure 7, H1_RELAX_IP outperforms the solver for
every of the tested number of candidate Web Services.

Table 2. Results of varying the number of
candidate Web Services

Web
Service

Solver
Avg: ts [ms]

H1_RELAX_IP
Avg: th [ms]

Avg:

s

h

t
t Avg:

)(
)(

sxF
xF h

r

r

10 617.4211 6.5910 8.48% 98.31%
20 4,528.6759 12.6866 2.04% 99.09%
30 5,122.3285 19.2043 2.69% 99.19%
40 5,723.9903 26.3751 2.71% 99.49%
50 12,302.9522 34.8580 3.51% 99.43%
60 13,789.3714 43.2929 1.84% 99.39%
70 25,840.1226 51.0882 1.32% 99.27%

As the percentage of computation time needed by
H1_RELAX_IP compared to the solver even tends to
decrease for large numbers of candidate Web Services,
there is no decrease of the percentage of the reached
objective function value.

1

10

100

1,000

10,000

100,000

10 20 30 40 50 60 70

Number of candidate We Services

C
om

pu
ta

tio
n

tim
e

[m
s]

H1_RELAX_IP (avg) Solver (avg)
Figure 7. Comparison of the computation time
As shown in Figure 8, H1_RELAX_IP reaches about

99% of the objective function value of the optimal
solution.

98,2%

98,4%

98,6%

98,8%

99,0%

99,2%

99,4%

99,6%

99,8%

100,0%

10 20 30 40 50 60 70

Number of candidate Web Services

A
pp

ro
xi

m
at

io
n

ra
tio

 [%
]

Figure 8. H1_RELAX_IP: Approximation ratio

iii.) Analysis of the strength of restrictions. The
strength of a restriction is the value restricting a QoS
attribute expressed relatively (as percentage) to the best
possible value of the QoS attribute. A strength of 0% is
equivalent to an unconstrained QoS attribute. A
restriction with a strength of 100% can only be satisfied if
the QoS attribute is aggregated of the best QoS values
available in every category. A restriction with a strength

of 50% is satisfied if the QoS attribute is aggregated of
the average QoS value available in every category.

To analyze the influence of the strength of restrictions,
samples of test cases with an increasing tightness of
constraints on the overall QoS attributes are generated.

1

10

100

1,000

10,000

100,000

1,000,000

20 25 30 35 40 45 50 55 60 65

Strength of restrictions [%]

C
om

pu
ta

tio
n

tim
e

[m
s]

H1_RELAX_IP (avg) Solver (avg)
Figure 9. Comparison of computation time

We generate test cases with a process length of 15 task
items, 40 candidate Web Services and each Web Service
being described by four QoS parameters. The overall QoS
attributes are being constrained by restrictions of a
strength rising from 20% to 68%, which is near the border
of insolubility for some test cases.

Table 3. Results of varying the strength of
restrictions

Strength of
restrictions

Solver
Avg: ts [ms]

H1_RELAX_IP
Avg: th [ms]

Avg:

s

h

t
t Avg:

)(
)(

sxF
xF h

r

r

20% 7,585.1553 28.4762 1.84% 99.29%
30% 7,674.9336 29.2273 1.77% 99.29%
40% 7,888.8139 29.9284 1.74% 99.29%
50% 9,632.8835 30.1708 1.65% 99.16%
60% 22,996.1480 30.5376 0.76% 98.96%
65% 43,145.0710 59.1515 0.32% 98.92%
68% 108,692.6069 2,128.9318 1.05% 98.96%

As depicted in Table 3 and Figure 9, H1_RELAX_IP
outperforms the solver for every strength of restrictions
tested. In all cases H1_RELAX_IP needed less then 2%
of the solver’s computation time, but created a solution
having about 99% of the objective function value of the
optimal solution (Figure 10).

98,8%

99,0%

99,2%

99,4%

99,6%

99,8%

100,0%

20 30 40 50 60

Strength of restrictions [%]

A
pp

ro
xi

m
at

io
n

ra
tio

 [%
]

Figure 10. H1_RELAX_IP: Approximation ratio

Approaching the border of insolubility, the compu-
tation time dramatically increases (Figure 9), but
nevertheless the generated solution of H1_RELAX_IP
keeps its excellence on a high level (Figure 10).

4.2. Analysis of H2_SWAP and
H3_SIM_ANNEAL

We apply H2_SWAP and H3_SIM_ANNEAL to study

how far we can improve the solutions of H1_IP_RELAX
with meta-heuristics. H2_SWAP and H3_SIM_ANNEAL
are only applied if there might be a chance for further
improvement. As a coarse estimate for the potential
improvement, we use the deviation of the solution
generated by H1_IP_RELAX to the solution of the
relaxed integer program, which represents an upper
bound for the optimal solution. If the solution of
H1_IP_RELAX deviates more then 1% from the upper
bound, H2_SWAP is applied. If the new solution still
deviates more than 1% from the upper bound,
H3_SIM_ANNEAL will be applied.

Analyzing the test cases discussed in Section 4.1., the
revealed potential of improvement has to be seen as very
marginal. The additional heuristics have been applied in
70.2% of the test cases, caused an increment of 287.48%
to the computation time, but only improved the objective
function value by 0.28%. As an example, Table 4 shows
the increment of the computation time and the percentage
of the objective function value generated by the heuristics
for a varying strength of restrictions.

Table 4. Contribution of meta-heuristics
Contribution to objective function value Strength of

restrictions

Increase of
computation

time H1 H2 H3
20% 196.85% 99.83% 0.17% 0.00%
30% 197.47% 99.90% 0.10% 0.00%
40% 208.94% 99.86% 0.14% 0.00%
50% 235.69% 99.81% 0.12% 0.06%
60% 404.28% 99.59% 0.35% 0.06%
65% 500.84% 99.61% 0.24% 0.15%
68% 627.97% 99.47% 0.39% 0.14%

5. Related Work

Zeng et al. [20] present comprehensive research about

QoS modeling and QoS-aware composition. They
propose a linear integer programming approach for
calculating the optimal composition. However, as already
mentioned above this approach is too time consuming in
real-time e-business scenarios.

In the context of the METEOR-S project a lot of
research related with QoS enabled Web Services has been
done: Aggarwal et al. [1] present a Constraint Driven
Web Service Composition Tool that enables the
composition of Web Services considering their QoS
attributes. Like Zeng et al. [20] a linear integer

programming approach is proposed for solving the
optimization problem. However, Aggarwal et al. do not
present an evaluation of their approach. Cardoso et al. [7]
present the Stochastic Workflow Reduction (SWR)
algorithm to calculate QoS of complex Web Service
workflows by decomposition into atomic tasks.
Furthermore, the authors discuss different QoS attributes.
In [6] Cardoso proposes a comprehensive ontology-based
approach for modeling the functional and non-functional
behavior of Web Service workflows.

Canfora et al. [4] discuss genetic algorithms as an
approach for solving the Web Service composition
problem. The results reveal that genetic algorithms show
a better performance and scalability than linear integer
programming with increasing numbers of candidate Web
Services and tasks. In a further paper, the authors
consider replanning at runtime as well [5].

Tosic et al. present the Web Service Offerings
Language (WSOL) [16] and the Web Service Offerings
Infrastructure (WSOI) [15] that support specification,
monitoring, and manipulation of classes of service for
Web Services.

Yu und Lin propose the QoS-capable Web Service
Architecture (QCWS) [18], that is quite similar to our
WSQoSX. In [17] they study algorithms and heuristics
for a QoS-aware Web Service selection with only one
QoS constraint. In [19] they extend their work to multiple
QoS constraints. The composition problem is modeled as
a multi-dimension multi-choice 0-1 knapsack problem
(MMKP) as well as a multi-constraint optimal path
(MCOP) algorithm. For both, heuristics are presented.
However, the aggregation of parameters using the Min-
operator is neglected. Furthermore, the evaluation lacks a
metric describing the tightness of used constraints like our
strength of restrictions.

In [12] Maximilien and Singh describe the Web
Service Agent Framework (WSAF) to achieve service
selection taking into account the preferences of service
consumers as well as the trustworthiness of providers.
However, this approach does not support the composition
of an execution plan that complies with constraints
defined by the user.

6. Conclusion and outlook

Web Services are becoming increasingly more

important in realizing cross-organizational e-business
scenarios. With a growing number of Web Services
offering equal or similar functionality the non-functional
attributes of a Web Service (e.g. costs and QoS attributes)
are important selection criteria and crucial for enterprises
to meet the requirements of sophisticated customers.
Thus, the QoS-aware composition of Web Service
workflows is an important issue.

In this paper, our work on WSQoSX is extended by
proposing a heuristic based approach to solve the QoS-
aware Web Service composition problem. For this, we
present a heuristic H1_RELAX_IP that uses a
backtracking algorithm on the results computed by a
relaxed integer program. The evaluation of
H1_RELAX_IP reveals that this heuristic is extremely
fast and leads to results that are very close to the optimal
solution. H1_IP_RELAX outperforms a linear integer
programming based solution by a solver with regard to
the computation time, especially with increasing number
of candidate Web Services and process tasks.

Our further research aims at investigating effective
replanning strategies during Web Service execution.
Especially, the trade-off between the overhead due to the
replanning and meeting a SLA despite of runtime failures
will be studied.

7. Acknowledgements

The work on this paper is partly sponsored by the

E-Finance Lab (http://www.efinancelab.de). A special
thanks goes to Andreas U. Mauthe (InfoLab 21, Lancaster
University) for the constructive discussions.

8. References

[1] R. Aggarwal, K. Verma, J. Miller, and W. Milnor,

"Constraint Driven Web Service Composition in
METEOR-S", IEEE International Conference on Services
Computing (SCC 2004), Shanghai, China, 2004.

[2] R. Berbner, T. Grollius, N. Repp, O. Heckmann, E. Ortner,
and R. Steinmetz, "An approach for the Management of
Service-oriented Architecture (SoA) based Application
Systems", Enterprise Modelling and Information Systems
Architectures (EMISA 2005), Klagenfurt, Austria, 2005.

[3] R. Berbner, O. Heckmann, and R. Steinmetz, "An
Architecture for a QoS driven composition of Web Service
based Workflows", Networking and Electronic Commerce
Research Conference (NAEC 2005), Riva Del Garda, Italy,
2005.

[4] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani,
"An approach for QoS-aware service composition based on
genetic algorithms", Genetic and Evolutionary
Computation Conference (GECCO 2005), Washington DC,
USA, 2005.

[5] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani,
"QoS-Aware Replanning of Composite Web Services",
IEEE International Conference on Web Services (ICWS
2005), Orlando, FL, USA, 2005.

[6] J. Cardoso, "Quality of Service and Semantic Composition
of Workflows", Ph.D. Dissertation, Department of
Computer Science, University of Georgia, Athens, GA,
USA, 2002.

[7] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut,
"Quality of service for workflows and web service
processes", Web Semantics: Science, Services and Agents

on the World Wide Web, volume 1, issue 3, 2004, pages
281-308.

[8] B. Esfandiari and V. Tosic, "Requirements for Web Service
Composition Management", 11th HP OpenView University
Association Workshop (HP-OVUA 2004), Paris, France,
2004.

[9] M. R. Garey and D. S. Johnson, "Computers and
Intractability: a Guide to the Theory of NP-Completeness",
W.H. Freeman & Co., New York, NY, USA, 1979.

[10] D. Gouscos, M. Kalikakis, and P. Georgiadis, "An
Approach to Modeling Web Service QoS and Provision
Price", 4th International Conference on Web Information
Systems Engineering Workshops (WISEW 2003), Rome,
Italy, 2003.

[11] H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck,
"Web Service Level Agreement (WSLA) Language
Specification", IBM Corporation, 2003,
http://www.research.ibm.com/wsla/WSLASpecV1-
20030128.pdf.

[12] E. M. Maximilien and M. P. Singh, "Toward autonomic
web services trust and selection", 2nd international
conference on Service oriented computing, New York, NY,
USA, 2004.

[13] S. Ran, "A model for Web Services discovery with QoS",
ACM SIGecom Exchanges, volume 4, issue 1, 2003, pages
1-10.

[14] M. Spahn, R. Berbner, O. Heckmann, and R. Steinmetz,
"Ein heuristisches Optimierungsverfahren zur
dienstgütebasierten Komposition von Web-Service-
Workflows", Technical Report (in German) KOM 02-2006,
Technische Universitaet Darmstadt, Darmstadt, Germany,
2006.

[15] V. Tosic, W. Ma, B. Pagurek, and B. Esfandiari, "Web
Services Offerings Infrastructure (WSOI) - A Management
Infrastructure for XML Web Services", IEEE/IFIP Network
Operations and Management Symposium (NOMS 2004),
Seoul, South Korea, 2004.

[16] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and W. Ma,
"Management Applications of the Web Service Offerings
Language (WSOL)", 15th International Conference on
Advanced Information Systems Engineering Velden,
Austria, 2003.

[17] T. Yu and K.-J. Lin, "The Design of QoS Broker
Algorithms for QoS-Capable Web Services ", International
Conference on e-Technology, e-Commerce and e-Service
(EEE 2004) Taipei, Taiwan, 2004.

[18] T. Yu and K.-J. Lin, "A Broker-Based Framework for QoS-
Aware Web Service Composition", International
Conference on e-Technology, e-Commerce, and e-Services
(EEE 2005), Hong Kong, China, 2005.

[19] T. Yu and K.-J. Lin, "Service Selection Algorithms for
Composing Complex Services with Multiple QoS
Constraints", 3rd International Conference on Service-
Oriented Computing (ICSOC 2005), Amsterdam, The
Netherlands, 2005.

[20] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, "QoS-aware Middleware for Web Service
composition", IEEE Transactions on Software Engineering,
volume 30, issue 5, 2004, pages 311-328.

