[BSRHS07]

Rainer Berbner, Michael Spahn, Nicolas Repp, Oliver Heckmann, Ralf Steinmetz; Dynamic

Replanning of Web Service Workflows; IEEE International Conference on’ Digital
Ecosystems and Technologies 2007 (IEEE DEST 2007) Cairns, February 2007, S.

Dynamic Replanning of Web Service Workflows

Rainer Berbner, Michael Spahn, Nicolas Repp, Oliver Heckmann, Ralf Steinmetz
Dept. of Computer Science, Technische Universitaect Darmstadt, Germany
{berbner,spahn,repp,heckmann,steinmetz}@kom.tu-darmstadt.de

Abstract — The composition of Web Services to workflows
is one of the major challenges in the area of service-oriented
computing, To meet the business and user requirements, it is
crucial to manage the Quality of Service (QoS) of Web Service
workflows. In our approach, we calculate the execution plan
of workflows on the QoS attributes ¢x ante based on predic-
tions, However, due to the volatile nature of the Internet and
the web servers, the runtime behavior of Web Services is
likely to differ from the predictions. Therefore, we propose
replanning as a mechanism to adapt the execution plan to the
actual behavior of already executed services by a dynamic
service selection at runtime, ensuring that the QoS and cost
requirements will still be met. In this paper, we discuss re-
planning strategies, show how replanning leads to cost-savings
in most cases, and evaluate the additional overhead caused by
the adaptation of the execution plan at runtime.

Index Terms — SoA, Web Services, QoS, Replanning.

I. INTRODUCTION

Nowadays, the Service-oriented Architecture (SoA) para-
digm is proposed as an upcoming architectural blueprint for
enabling flexible workflows. Web Services as a technology
adopting the SoA paradigm gain more and more impor-
tance in academic as well as in industrial environments.
However, the dynamic and automated composition of Web
Services to Web Service workflows is one of the major
challenges in the area of service-oriented computing. Con-
sidering non-functional attributes of Web Services during
the planning phase as well as during the execution phase of
composed workflows is a crucial success factor for meeting
the business requirements and preferences defined by the
user. Besides costs the Quality of Service (QoS) attributes
of a Web Service (e.g. availability, response time and
throughput) are subsumed as non-functional attributes.

In our previous work, we have designed and prototypically
implemented WSQoSX (Web Services Quality of Service
Architectural Extension), a proxy architecture based on
Web Service technology, that provides comprehensive QoS
support for Web Service workflows, e.g. monitoring
mechanisms for detecting SLA violations [2, 4]. As an ex-
tension of WSQoSX we have designed fast-performing
heuristics for calculating an optimized execution plan of a
workflow, considering user defined constraints and prefer-
ences regarding the non-functional behavior of a workflow.
Since Web Services often do not behave as described in
their Service Level Agreement (SLA), we identified re-
planning mechanisms to be crucial to ensure that an execu-
tion plan remains feasible, valid, and optimal subject to the

user preferences during execution [3]. Within e-business
scenarios, replanning mechanisms have to perform in real-
time not to create further delay to the workflow execution.
Thus, we propose a fast and efficient heuristic-based re-
planning mechanism. In this paper, we extend our research
on replanning by a detailed evaluation of our algorithm
proposed in [3]. For this, we analyze the trade-off between
potential cost savings and the overhead due to the addi-
tional computation effort for calculating the adaptation of
the execution plan at runtime.

The rest of this paper is structured as folows: In Section 2
Web Service workflows are discussed and replanning is
introduced. The replanning algorithm is described and
evaluated in detail in Section 3. In Section 4 related work in
the area of replanning is discussed. The paper closes with a
conclusion and a short outlook on our future research ac-
tivities.

I1. REPLANNING OF WEB SERVICE WORKFLOWS

In this section we summarize the basic concepts of Web
Service workflows and replanning as proposed in our pre-
vious work [3, 5].

A. Web Service workflows

Web Service composition aims at selecting and inter-
connecting Web Services provided by different partners
according to a business process [13]. Thus, Web Service
compositions can be seen as workflows based on Web Ser-
vices. In this paper, we assume sequential Web Service
workflows. A sequential Web Service composition consists
of n tasks. Task i (i=1,...,n) will be executed before task i’
(i=1,...,n) if i<i’. The set of m; different candidate Web
Services that provide the required functionality for task i is
called category /. For each Web Service a binary variable
x;; is introduced. x;;=1 means that Web Service j of cate-
gory i is selected for execution within the execution plan.
Web Services within the same category may differ in their
k non-functional parameters p;;; (e.g. cost or response
time). QoS-aware Web Service composition can be defined
as the assignment of specific Web Services to abstract
workflow tasks in order to create an execution plan that is
optimal subject to the preferences and constraints defined
by the user. Following this definition, QoS-aware Web
Service composition (i.e. calculating an optimal execution
plan) leads to an optimization problem.

We propose a linear model to describe this optimization

problem. Table 1 shows how the overall QoS attributes of a
workflow are calculated based on the QoS attributes of the
involved Web Services by an aggregation function. The
aggregation of QoS parameters to an overall QoS attribute
depends on the type of the QoS parameter £. We distin-
guish three different operators, i.e. additive, multiplicative
and min-operator. Table 2 shows how constraints restrict-
ing the overall QoS attributes are embedded in the model.
For a more detailed explanation of our model we refer to
[5]. To rate a concrete Web Service composition, an objec-
tive function F(X) is used to calculate an overall utility
value with regard to the user’s preferences as a weighted
sum of the composition’s overall QoS attributes:

™0

& IS
F(X)= ZW,*x," + z wyx; + Z w ™M n
{=1 1=1 i=1

Each of the k (k=k'+ k* +£™) QoS attributes is specifically

min

weighted (by w, ,w;, and w,™") to define the importance
of the improvement of one unit of the attribute relative to
one unit of the other attributes.

As described in [6] and [12] the optimization problem
specified above is NP-hard.

Table 1 Formulas for calculating overall QoS attributes

Parameter Overall QoS attributes
Additive L
p. . + _ +
parameters i, J X = PiXi,
=l g-1
Multiplica- . nom n m,
tive pa- P ¢ = . ~]— - M
rﬂme‘:ers p’,.l X = Zpux:._l =1 Z 1 Zpi.le:.l
=l =l il =
Min- min . n [.
operator P J x"" = Min Zpilzmxr.,
R

¢ Posdon 1

- £~ Areudy xuculed postons S

Table 2 Formulas for calculating overall constraints

Parameter Constraints

Additive +

+ + + +
<
parameters | P i, J X =c¢ orx Z.C

Multiplica-

. n_m nom,

rameters pren ENE

iveps |y o [Infe*)<Y S in(p:, hor ()2 D Y m(pr, I,

Min- min e

operator pi, J x™ < ZP,‘I,T"X,JVI' =l..,n
sol

Replanning mechanism

In this section, a replanning mechanism is discussed, which
adapts an execution plan at run-time in a way that it re-
mains feasible, valid and optimal subject to the preferences
and constraints defined by the user [3].

If a Web Service is invoked, which is unavailable (e.g. due
to server downtime), the workflow is not executable any-
more. Thus, the execution plan has to be modified and the
current Web Service has to be replaced by another (avail-
able) one in order to achieve that the execution plan of the
workflow remains feasible.

If the server load of a provider is very high and the re-
sponse time of a Web Service is much higher than ex-
pected, then a constraint, restricting the overall response
time of the workflow, may be violated. In this case, the un-
executed part of the workflow has to be replanned and Web

Services having a lower response time have to be used in
order to ensure that the current execution plan of the work-
flow remains valid with regard to all constraints.

If all providers have a low or average server load, then the
response time of the Web Services is likely to be much
lower than guaranteed by their SLA. Each time a Web Ser-
vice is executed, some response time is saved (compared to
the expected behavior). If minimizing costs is the optimiza-
tion criteria (assuming that Web Services having a higher
response time are cheaper than faster ones), then the execu-
tion plan might not be optimal anymore. This is due to the
fact that the execution plan could be modified in a way that
cheaper Web Services with a higher response time are used,
without violating a constraint restricting the overall re-
sponse time. Thus, the unexecuted part of the workflow has
to be replanned in order to ensure that the current workflow
is optimal subject to the user’s optimization preferences.

To ensure that an execution plan remains feasible, valid and
optimal, we apply a replanning mechanism: After having
executed a Web Service at position / of an execution plan,
the execution plan is divided into two parts as depicted in
Fig. 1. The first part consists of all positions i* (i'<i),
which already have been executed. The second part con-
sists of all positions i” (i”>i), which still have to be exe-
cuted. The k overall attributes of the first part are calculated
based on the according parameter values p;;x of the used
Web Services and the appropriate aggregation functions
(x",x",x

min

) as discussed in the previous subsection.

] -« 5]

Positon n

Pagition 2

3 i - Not yei exncuted postions e

Fig. 1 Partitioning of an execution plan {3]

Since all Web Services of the first part have already been
executed, the parameter values originally taken from a Web
Service’s SLA are replaced with the ones actually moni-
tored during execution. The actual overall attributes are
used to adjust the constraints restricting the overall attrib-
utes of the second part to the hitherto existing behavior of
the workflow. Using the adjusted constraints, a new opti-
mization problem for the unexecuted part of the execution
plan is created. This leads to a new execution plan for the
second part, which is valid with regard to all current con-
straints and is optimal with regard to the defined optimiza-
tion preferences. The newly optimized execution plan is
used for the further execution of the workflow and is up-
dated using the replanning mechanism each time a Web
Service has been executed.

1I1. HEURISTIC BASED REPLANNING

As mentioned before the calculation of the execution plan
leads to an optimization problem that is NP-hard. Zeng et
al. [13] propose calculating the execution plan with integer
programming. However, the evaluation of their results re-
veals that this approach is hardly feasible in real-time
e-business scenarios. This is exacerbated in the context of
replanning. Therefore, high-performance heuristics are nec-

essary solving the underlying optimization problem.

In this section, the heuristic HI_RELAX_IP, which we use
for replanning, is discussed. The focus of this chapter is on
a detailed evaluation of the trade-off between cost-
reduction and additional computation time due to replan-
ning. As pointed out in [5], HI_RELAX_IP uses a two step
approach.

First, the LP relaxation of the MIP (mixed integer problem)
formulation of the composition problem introduced in the
previous section is solved. The relaxation allows all deci-
sion variables x;, to be any real number between 0 and 1. A
problem of this kind can be solved very fast using a stan-
dard algorithm like e.g. simplex.

Category 2 [Category 5] [Category 1 | [Category3 |
| il] 7> |

i=5 i=1 i=3
T T

Wab Services Web Services Web Services Web Services
I) i Xy
3 1.00 4 0.90
1 0.00 3 0.10 0.25 1 0.15
2 0.00 1 0.00 0.00 5 0.05
4 0.00 5 0.00 0.00 4 0.00
5 0.00 2 0.00 11 0.00 2 0.00

Fig. 2 Partitioning of an exccution [3]

In the second step, a backtracking algorithm (Fig. 3) is used
to construct a feasible solution based on the result of the
relaxed integer program. The result of the relaxed integer
program gives an indication, which particular Web Service
should be considered in the optimal execution plan. For ex-
ample, if x;,=0,25 and x;,=0,75 the probability of Web Ser-
vice / of category i being part of the optimal execution plan
is much higher than the one of Web Service g. Thus, the
candidate Web Services within a specific category are or-
dered according to their likelihood to be part of the optimal
solution. Furthermore, all Web Services having x;;=0 are
ordered according to their potential benefit to the objective
function. Additionally, the categories are ordered according
to the number of candidate Web Services having x,,>0. The
backtracking algorithm starts with the category having the
fewest Web Services with x;;>>0. The fewer choices of Web
Services having x;;>0 exist in a category, the higher the
probability that an accurate decision is made. In Fig. 2,
Category 2 is selected before Category 3, since it offers
fewer choices that have in addition a higher likelihood of
being part of the optimal solution. This improves the per-
formance of the backtracking algorithm because the earlier
an inaccurate decision is made, the more expensive it is to
revise it. For a further discussion of HI_RELAX_IP we
refer to [S].

i=1;
Exec_Plan={0, 0, ..., 0};
end=false;
while (not end)
repeat {
if (Exec_Plan[i] <m,)
Exec_Plan[i]++;
} until (Exec_Plan is valid or
Exec_Plan([i]=m);
if (Exec_Plan is invalid) {
Exec_Plan[i]=0;
if (i»1) i--; else end=true;
} else
if (i<n) i++; else end=true;}

Fig. 3. Backtracking algorithm [5]

IV. EVALUATION

To analyze the effectiveness of the replanning strategy,
three main sets of test cases have been generated, varying
the length » of the business process (number of task items),
the number m of candidate Web Services available per
category and the strength s of the restriction constraining
the overall response time.

The strength of restriction s is used to indicate the tightness
of a constraint put on an overall attribute of the business
process. The value of s is calculated as the value restricting
a non-functional overall attribute (i.e. the overall response
time) expressed relatively (as percentage) to the best possi-
ble value of the overall attribute. A strength of 0% is
equivalent to an unconstrained overall attribute. A restric-
tion with a strength of 100% can only be satisfied if the
overall attribute is aggregated of the best values available in
each category. An iteration-based evaluation has been per-
formed, in which 35 different test cases are generated per
iteration for a specific parameter value. The results of these
test cases are aggregated to average values which define the
result of an iteration.

A. Experiment setup

To evaluate the effects of replanning, a data generator has
been developed, which generates two values for every non-
functional parameter of a Web Service. The first value
(plan value p) defines how a parameter has been set by the
provider of a Web Service in its SLA. The second value
(actual value p") defines how the Web Service would really
perform when being executed. The actual value p” is calcu-
lated as the realization of a normally distributed random
variable X, which has the plan value p as a border of a
confidence interval to a certain confidence level ¢ (e.g.
95%). To optionally restrict p” to a certain value range, an
interval for the allowed value range can be defined
([d.d]). If p” is not in the allowed range, the generation
process is repeated until p” fits the range. To evaluate the
effects of replanning, several test cases have been gener-
ated in which Web Services are described by the two non-
functional properties response time and costs per call. The
higher the response time, the lower are the costs per call
(correlation coefficient ~ -0.958). The actual value of the
costs per call is identical to the plan value. In all test cases
the only optimization criteria is the minimization of the
overall execution costs of the business process. The overall
response time of the business process is restricted to a cer-
tain value by a constraint.

The experiments were run on a Pentium IV CPU with 3
GHz and 1 GB of RAM using a special business process
simulation engine (BPSE) implemented in Java 1.5.

B. Varying the length of business processes

In this set of test cases the length » of a business process is
varied from 5 to 35 task items. The number of candidate
Web Services available in each category is set to 40 and the
strength of the restriction limiting the overall response time
of the business process is set to 40%.

In the fist step of the business process execution an initial.

105%

 100% ‘\‘\n———‘—-———-———‘

95% |
‘ \

20% | \

g5 | —,—
-m- withoul replanning

—&— with replanning
75% I

80%

Real response time relative to
planned response time %]

B AR s Sl
5 10 15 20 25 30 35
Length of business process

(a) Response time

500
450 | OStep2-n
400 | B Step |
350 |
300
250
200 ‘
150 |
100 |
50 |
0

Computation time [ms]

5 10 15 20 25 30 38
| Length of business process

(c) Computation time

£ 9%
=)
Ty 8%
S
£ = 80%
2%
S E 75% | -\._——I———."/'\'\.
23 |
- e 0,
£ 5 70%
65% |
|
60% |
5 10 15 20 25 30 35
Length of business process
(b) Costs
016
v
e E 0.14
2 =
£ 3 012
-E 010
= &
2 E 0.08
-
S = 006
ge
- 2 004
2 £
o3 00

0.00
S 10 15 20 25 30 35

Length of business process

(d) Costs rclative to computation time

Fig 4. Varying the length of the business process

execution plan is built based on the (predicted) plan values.
Without using replanning the total response time after exe-
cution is about 85% of the originally planned response time
(Fig. 4a) because most Web Services took less time to exe
cute than predicted in their SLAs. With replanning the
overall response time can be raised to about 97% of the
originally planned response time by using slower and
cheaper Web Services in the yet unexecuted part of the
business process without violating the constraint on the
overall response time. Due to the replanning, i.e. the use of
slower and cheaper Web Services, the costs of the business
process execution can be reduced to about 75% of the
originally planned executions costs (Fig. 4b). The draw-
back of using replanning is that the heuristic has to be exe-
cuted after each single Web Service execution to create a
newly optimized execution plan, which results in an addi-
tional overhead of computation time (Step 2 until », Fig.
4c) consumed by the BPSE. Fig. 4d shows the achieved
cost reduction in percent per additional percent invested
computation time in replanning. This value can be seen as a
coarse measure of how effective an additional percent of
computation time is used in average to reduce the execution
costs. As the cost reduction is nearly constant for every
length of business processes, but the additional computa-
tion time spent on replanning rises with an increasing
fength of business processes (Fig. 4c), the effectiveness of
cost reduction decreases with an increasing length of the
business process.

C. Varying the number of candidate Web Services

Analogous to the previous experiment a set of test cases is
generated with a varying number of candidate Web Ser-
vices per task item (10 to 70 candidate Web Services). The
fength of the business process is set to 20 task items and the
strength of the restriction limiting the overall response time
to 40%.

Independently of the number of candidate Web Services,
the execution of the initially created execution plan results

in an overall response time of about 85% of the originally
planned overall response time. Using replanning the overall
response time can be raised to about 97% of the originally
planned overall response time (Fig. 5a) and the execution
costs can be reduced to about 76% to 71% of the originally
planned execution costs (Fig. 5b). As a coarse trend it can
be recognized that the higher the number of candidate Web
Services per category, the higher the achieved cost savings.
With an increasing number of candidate Web Services, the
more choices exist from which the heuristic can choose
from when creating a newly optimized execution plan for
the unexecuted part of the business process. So the prob-
ability increases that saved time can be used for the place-
ment of Web Service as cheap as possible resulting in a
higher cost reduction. An increasing number of candidate
Web Services per task item results in a higher computation
time needed for replanning. But as the cost reduction rises,
the achieved cost reduction in percent per additional per-
cent computation time needed for replanning does only de-
crease slightly.

D. Varying the strength of a restriction

In the last set of test cases we vary the strength of restric-
tion (10% to 70%) to analyze the effect of different con-
straints limiting the overall response time of the business
process. The length of the business process (20 task items)
and the number of candidate Web Services (40 Web Ser-
vices) remains unchanged.

Independently of the strength of restriction, the execution
of the initially created execution plan results in an overall
response time of about 86% of the originally planned over-
all response time, which is comparable to the previously
analyzed sets of test cases. But in contrast to the previous
sets, replanning is able to approximate the initially planned
total response time better with an increasing strength of re-
striction and is even able to exceed it (Fig. 6a). However,
assuming a high strength of restriction replanning can only
use a few fast Web Services to create a valid execution

plan. Thus, cost reductions due to replanning decrease with
an increasing strength of restriction (Fig. 6b). As depicted
in Fig. 6¢c varying the strength of restriction has nearly no
impact on the computation time needed for replanning,
which is mainly determined by the number of candidate
Web Services and the length of the business process, which
are constant in this set of test cases. Because of the addi-
tional computation time being nearly constant and the cost
reduction decreases with an increasing sirength of restric-
tion, the cost reductions relative to the additional computa-
tion time decreases (Fig. 6d).

E. Summary

When using replanning, the sirength of restriction is the
main parameter influencing the possible increase in the real
overall response time and the possible cost reduction. Hav-
ing a strength of restriction of 40%, a real overall response
time of about 97% of the initially planned overall response
time and a cost reduction of about 25% can be achieved.
Parameters concerning the problem size, like the length of
the business process or the number of candidate Web Ser-
vices per task item do not influence these achievable values
significantly — only an increase of the number of candidate
Web Services is able to improve the achievable cost reduc-
tion slightly. Parameters concerning the problem size are
the main parameters influencing the additional computation
time needed for replanning. With regard to the achievable
cost reduction the most important analysis results are: The
lower the strength of restriction, the higher the achievable
cost reduction. A further slight increase of the achievable
cost reduction can be realized by increasing the number of
available Web Services.

The length of a business process has nearly no impact on
the achievable cost reduction, but as all parameters con-
cerning the problem size, an increase of the length tremen-
dously increases the additionally needed computation time
for replanning. How effective a cost reduction can be

100%

e
2 A, A, —
> &
e 9%
®E
2 0%
S
9
¥ 85% | V"\-r/'\l-—H]
b4 {
£ 209 - h eple
s 80% without replanning
=
= —— with replanning

75% |
10 20 30 40 50 60 70 !
Candidate web services per fask item

(a) Response time

350

OStep2-n
Step |

300 |
250
200
150

100 |

Computation time [ms)

Candidate web services per task item ‘

(c) Computation time

achieved by the use of replanning (e.g. what average cost
reduction in percent can be realized per percentage of addi-
tionally invested computation time) depends on the con-
crete combination of problem size and strength of restric-
tion. The lower the strength of restriction and the smaller
the problem size, the more effective replanning is with re-
gard to the achieved cost reduction compared to the addi-
tionally invested computation time for replanning.

V. RELATED WORK

Within the METEOR-S project, Cardoso et al. [8, 9] pre-
sent the Stochastic Workflow Reduction (SWR) algorithm
to calculate the QoS of complex Web Service workflows
by decomposition into atomic tasks. As further research in
the context of the METEOR-S project Aggarwal et al. [1]
present a Constraint Driven Web Service Composition Tool
that enables the composition of Web Services considering
their QoS attributes. As in Zeng et al. [13], a linear integer
programming approach is proposed for solving the optimi-
zation problem. However, the authors do not present an
evaluation of their approach.

Yu und Lin present the QoS-capable Web Service Archi-
tecture (QCWS) [11] that is quite similar to our WSQoSX.
In [10], Yu und Lin study algorithms and heuristics for a
QoS-aware Web Service selection with only one QoS con-
straint. In [12], the work is extended to multiple QoS con-
straints. The composition problem is modeled as a multi-
dimension multi-choice 0-1 knapsack problem (MMKP) as
well as a multi-constraint optimal path (MCOP) algorithm.
For both, heuristics are presented. However, the aggrega-
tion of parameters using the min-operator is neglected and
the evaluation lacks a metric describing the tightness of
used constraints like our strength of restriction. Further-
more, using the proposed heuristics for replanning is not
addressed.

100%
95%

90%

80%
75% - -
70%

65%

Final costs relative
to planned costs [%]

10 20 30 40 50 60 70
Candidate web services per task item

(b) Costs
0.07

0.06 | ’/\’\,__‘*
0.05 |
004 |

0.03 |

0.02

|
0.01 |

Cost reduction relative to
additional computation time

000 h-—--
1020 30 40 50 6 70|

i
Candidate web services per task item j

(d) Costs relative to computation time

Fig 5. Varying the number of candidate Web Services

105%

100%

95%

90%

W

-#- without replanning

85%

80%

—4— with replanning |

Real response time relative to
planned response time [%]

75%

10 20 30 40 S0 60
| Strength of restrictions (%]

70 !

(a) Responsc time

160 |
140 |
120 }:
100
80
60

BStep2-n
BlStep | |

Computation time [ms]

20 k

20 pEEERERERE
RS

0 RO

10 20 30 40 50 60 70
Strength of restrictions [%]

(c) Computation time

100%

90%
£ 80% |
BT 7% |
28 00% |
k8
= g 50%
o 2 ,
o8 40% |
® & 19,
£E 30% 1
=2 20% |

) 10%

— st i S

10 20 30 40 50 60 70 |

‘ 0%

| Strength of restrictions {%]
(b) Costs

009

008

0.07 |
0.06

0.05

0.04

0.03 |

0.02 |

0.01

0.00

Cost reduction relative to
additional computation time

10 20 30 40 50 60 70
Strength of vestrictions [% |

(d) Costs relative to computation time

Fig 6. Modifying the strength of restriction

Canfora et al. [6] apply genetic algorithms for solving the
Web Service composition problem. The results reveal that
genetic algorithms show a better performance and scalabil-
ity than linear integer programming with increasing num-
bers of candidate Web Services and tasks. In a further pa-
per, the authors consider replanning at runtime as well [7].
Their understanding of replanning is very similar to ours.

VI. CONCLUSION AND OUTLOOK

In this paper we extend our previous work on QoS-aware
selection and execution of Web Service workflows. Due to
the volatile nature of the Internet the runtime behavior of
Web Services often differs from the one predicted during
the planning phase. As a consequence, preferences and con-
straints defined by the user cannot be met anymore and
SLAs concerning the whole business process may be vio-
lated. Thus, we have designed a replanning mechanism to
adapt the unexecuted part of a workflow in a way that de-
spite the deviation of the runtime behavior the user re-
quirements will still be met. For this, we model replanning
as an optimization problem, which can be efficiently solved
by our heuristic HI_RELAX_IP. The focus of this paper is
on the detailed evaluation of our replanning heuristic. As a
result, we can show that our approach can achieve signifi-
cant cost savings with reasonable computation effort.

As future work we will investigate different replanning
strategies. For this, we will have a look at related work in
the area of production planning as well as performance pre-
diction.

REFERENCES

[1] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, Constraint Driven
Web Service Composition in METEOR-S, in Proceedings of the
IEEE International Conference on Services Computing (SCC 2004),
2004, IEEE Computer Society Press, Shanghai, China, pp. 23-30.

R. Berbner, T. Grollius, N. Repp, O. Heckmann, E. Ortner and R.
Steinmetz, An approach for the Management of Service-oriented Ar-
chitecture (SoA) based Application Systems, in Proceedings of the

(21

[3]

(4]

(5]

(6]

[7]

8]

9]

(10

[

[z

[131

Enterprise Modelling and Information Systems Architectures (EMISA
2005), 2005, Klagenfurt, Austria, pp. 208-221.

R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz, An
Approach for Replanning of Web Service Workflows, Americas Con-
ference on Information Systems (AMCIS 2006), 2006, Acapulco,
Mexico.

R. Berbner, O. Heckmann, and R, Steinmetz, An Architecture for a
QoS driven composition of Web Service based Workflows, Nenvork-
ing and Electronic Commerce Research Conference (NAEC 2005),
2005, Riva Del Garda, dtaly.

R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz,
Heuristics for QoS-aware Web Service Composition, in Proceedings
of the 4th IEEL International Conference Web Services (ICWS 2006),
2006, Chicago, USA, pp. 72-82.

G. Canfora, M.D, Penta, R. Esposito, and M.L. Villani, An approach
for QoS-aware service composition based on genetic algorithms, in
Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO 2005), 2005, Washington DC, USA, pp. 1069-1075.
G. Canfora, M.D. Penta, R. Esposito. and M.L. Villani, QoS-Aware
Replanning of Composite Web Services, in Proceedings of the 3rd
IEEE International Conference on Web Services (ICWS 2005), 2005,
IEEL Computer Society, Orlando, USA, pp. 121-129.

J. Cardoso, Quality of Service and Semantic Composition of Work-
Sows, 2002, Department of Computer Science, Ph.D Thesis, Univer-
sity of Georgia, Athens, GA, USA.

J. Cardoso, A. Sheth, J. Miller,). Arnold, and K. Kochut, Quality of
service for workflows and web service processes. Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 1, no. 3,
2004, 281-308.

T. Yu and K.-J. Lin, The Design of QoS Broker Algorithms for QoS-
Capable Web Services, in Proceedings of the International Confer-
ence on e-Technology, e-Commerce and e-Service (EEE 2004), 2004,
IEEE Computer Socicty, Taipei, Taiwan, pp. 17-24.

T. Yu and K.-J. Lin, A Broker-Based Framework for QoS-Aware
Web Service Composition, in Proceedings of the International Con-
Jference on e-Technology, e-Commerce, and e-Services (EEE 2005),
2005, [EEE Computer Society, Hong Kong, China, pp. 22-29.

T. Yu and K.-). Lin, Servicc Sclection Algorithms for Composing
Complex Services with Multiple QoS Constraints, in Proceedings of
the 3rd International Conference on Service-Oriented Computing
(ICSOC 2005), 2005, Amsterdam, The Netherlands, pp. 130-143.

L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and H.
Chang, QoS-aware Middleware for Web Service composition. /EEE
Transactions on Software Engineering, 2004, vol. 30, no. 5, pp.311-
328.

