
[B S R H S ~ ~] Rainer Berbner, Michael Spahn, Nicolas Repp, Oliver Heckmann, Ralf Steinmetz; Dynamic
Replanning of Web Service Workflows; IEEE International Conference o n Digital
Ecosystems and Technologies 2007 (IEEE DEST 2007) Cairns, February 2007, S.

Dynamic Replanning of Web Service Workflows

Rainer Berbner, Michael Spahn, Nicolas Repp, Oliver Heckmann, Ralf Steinmetz
Dept. of Computer Science, Technische Universitaet Darinstadt, Germany

{berbner,spahn,repp,heckniann,steinmetz)@kom.tu-darmstadt.de

Abslrnct - The composition of Web Sewices to workflows
is one of the major challenges in the arer of sewice-oriented
computing. T o meet the hiisiness and User requirements, i t is
crucial to manage the Quality of Sewice (QoS) of Web Service
workiiows. I n nur approacli, we calciilate the execiition plan
of workflows on the QoS attrihutes ex ante based on predic-
tions. I-lowever, due to the volatile nature of the lnternet rncl
the web sewers, the riintime hehavior o f Web Sewices is
likely to differ from the predictions. l 'hcirfore, we propose
replanning as a mechanism to adapt the execution plan to the
actual behavior of already executed sewices by a clynamic
senrice selection at runtime, ensiiring thr t the QoS ancl cost
requirements will still he met. I n this paper, we disciiss re-
planning strategies, sliow how replanning leads to cost-savings
in most cases, and evaliiate the additional overhea(l caused by
the adaptation of the execution plan at runtime.

Index Terns - SoA, Weh Services, QoS, Replanning.

Nowadays, the Service-oriented Architecture (SoA) para-
digm is proposed as an upcomiiig architectural blueprint for
enabling flexible workflows. Web Services as a technology
adopting the SoA paradigm gain more and more impor-
tance in academic as well as in industrial environments.
However, the dynamic and automated composition of Web
Services to Web Service workflows is one of the major
challenges in the area of service-oriented computing. Coii-
sidering non-functional attributes of Web Services during
the planning phase as well as during the execution phase of
composed workflows is a crucial success factor for meeting
the business requirements and preferences defined by the
user. Besides costs the Quality of Service (QoS) attributes
of a Web Service (e.g. availability, response time and
throughput) are subsumed as non-functional attributes.
In our previous work, we have designed and prototypically
implemented WSQoSX (Web Services Quality of Service
Architectural Extension), a proxy architecture based on
Web Service technology, that provides comprehensive QoS
support for Web Service workflows, e.g. nionitoring
mechanisms for detecting SLA violations [2, 41. As an ex-
tension of WSQoSX we have designed fast-performing
heuristics for calculating an optimized execution plan of a
workflow, considering User defined constraints and prefer-
ences regarding the non-functional behavior of a workflow.
Since Web Services often do not beliave as described in
their Service Level Agreement (SLA), we identified re-
planning mechanisms to be crucial to ensure that an execu-
tion plan remains,fensible, valid, and optimal subject to the

User preferences during execution [3]. Within e-business
scenarios, replanning mechanisms have to perform in real-
time not to create further delay to the workflow execution.
Tlius, we propose a fast and efficient heuristic-based re-
planning mechanism. In this paper, we extend our research
on replanning by a detailed evaluation of our algorithm
proposed in [3]. For this, we analyze the trade-off between
potential cost savings and the overhead due to the addi-
tional computation effort for calculating the adaptation of
the execution plan at runtime.
The rest of this paper is structured as follows: In Section 2
Web Service workflows are discussed and replanning is
introduced. The replanning algorithm is described and
evaluated in detail in Section 3. Ii i Section 4 related work in
the area of replanning is discussed. The paper closes with a
conclusion and a short outlook on our future research ac-
tivities.

11. REPLANNING 01; WEB SERVICE WORKFLOWS

In this section we summarize the basic concepts of Web
Service workflows and replanning as proposed in our pre-
vious work [3, 51.

A. IVeb Service ii~orkfloivs

Web Service composition aims at selecting aiid inter-
connecting Web Services provided by different Partners
according to a business process [13]. Thus, Web Service
compositions can be seen as workflows based on Web Ser-
vices. In this paper, we assume sequential Web Service
workflows. A sequential Web Service composition consists
of n tasks. Task i (i=l ,..., n) will be executed before task i '
(i'l, ..., n) if i<i'. The Set of m, different candidate Web
Services that provide the required functionality for task i is
called category i. For each Web Service a binary variable
X,, is introduced. xiti=I means that Web Service,/ of cate-
gory i is selected for execution within the execution plan.
Web Services within the sanie category may differ in their
k non-functional Parameters pl,,.k (e.g. cost or response
time). QoS-aware Web Service composition can be defined
as the assignment of specific Web Services to abstract
workflow tasks in order to create an execution plan that is
optimal subject to the preferences and constraints defined
by the user. Following this definition, QoS-aware Web
Service composition (i.e. calculating an optimal execution
plan) leads to an optimization problem.
We propose a linear model to describe this optimization

problem. Table 1 shows how the overall QoS attributes of a Services having a lower response time Iiave to be used in
workflow are calculated based on the QoS attributes of the order to ensure that the current execution plan of the work-
involved Web Services by an aggregation function. The flow remains valid with regard to all constraints.
aggregation of QoS parameters to an overall QoS attribute If all providers have a low or average server load, then the
depends on the type of the QoS parameter k. We distin- response time of the Web Services is likely to be much
guish three different Operators, i.e. additive, multiplicative lower than guaranteed by their SLA. Each time a Web Ser-
and min-operator. Table 2 shows how constraints restrict- vice is executed, some response time is saved (compared to
ing the overall QoS attributes are embedded in the model. the expected behavior). lf minimizing costs is the optimiza-
For a more detailed explanation of our model we refer to tion criteria (assuming that Web Services having a higher
[SI. To rate a concrete Web Service composition, an objec- response time are cheaper than faster ones), then the execu-
tive function F(?) is used to calculate an overall utility tion plan might not be optimal anymore. This is due to the
value with regard to the User's preferences as a weighted fact that the execution plan C O U ~ ~ be modified in a way that
sum of the composition's overall QoS attributes: cheaper Web Services with a higher response time are used,

k* k' without violating a constraint restricting the overall re-
F(?) = w;x; + w;x; + wf"'"xyn (I) sponse time. Thus, the unexecuted part of the workflow has

I = I 1-1 1-1 to be replanned in order to ensure that the current workflow

Each of the k (k = k ' + k' +F) QoS attributes is specifically is oplimal subject to the user's optimization preferences.

weighted (by W;, > V ; , and irl;"'") to define the importance To ensure that an execution plan remaiiis.feasible, valid and
optimal, we apply a replanning mechanisin: After having

of the improvement of one unit of the attribute relative to executed Web Service at of an execution plan,
one unit of the other attributes. the execution plan is divided into two parts as depicted in
As in [61 arid [I2] the O~timizatiOn problern Fig. 1 . The first part consis& of a l l i' (i l < i),
specified above is NP-hard.

which already have been executed. The second part con-
Table I Formulas for calculating overall QoS attribi~tes

Replanning mechanism

Table 2 Fomulas for calculating ovcrall consrraints Fig. I Pariitioiiing ofaii execution plan [3]

In this section, a replanning mechanism is discussed, which
adapts an execution plan at run-time in a way that it re-
mains feasible, valid and optimal subject to the preferences
and constraints defined by the User [3].
If a Web Service is invoked, which is unavailable (e.g. due
to server downtime), the workflow is not executable any-
more. Thus, the execution plan has to be modified and the
current Web Service has to be replaced by another (avail-
able) one in order to achieve that the execution plan of the
workflow remains feasible.
If the server load of a provider is very high and the re-
sponse time of a Web Service is much higher than ex-
pected, then a constraint, restricting the overall response
tinie of the workflow, may be violated. In this case, the un-
executed part of the workflow has to be replanned and Web

sists of all positions i" (i " > i), which still have to be exe-
cuted. The k overall attributes of the first part are calculated
based on the according parameter values pi,i,k of the used
Web Services and the appropriate aggregation functions

(X', X * , xlnin) as discussed in the previous subsection.
,.G.i.;: , +. + W 4 , + + 1 WS,,, 1 -;* * s ; : 4 -+ 1;~s:~ ;

. i 21
. 1.05iIrn 1 I'O*l.ar 2 i>w.bm 8 : iO',it.J" ,.I t'C3.i.o" n :

3 .. I' - i . Ac6.d~ oxr<*lld~ P S) ~ (M ~ 3 . : : M:uf;r.iocuid WI;!AWS -.)

Additive
Parameters

Multiplica-
tivepa-
me t e r s

Miii-
Operator

Additive
Parameters

Multiplica-
tive pa-
rameters

Min-
Operator

plan is created. This leads to a new execution plan for the
second part, which is valid with regard to all current con-
straints and is optimal with regard to the defined optimiza-
tion preferences. The newly optimized execution plan is
used for the further execution of the workflow and is up-
dated using the replaniiing mechanism each time a Web
Service has been executed.

As mentioned before the calculation of the execution plan
leads to an optimization probleni that is NP-hard. Zeng et
al. [I 31 propose calculating the execution plan with integer
programming. However, the evaluation of their results re-
veals that this approach is hardly feasible in real-time
e-business scenarios. This is exacerbeted in the context of
replanning. Therefore, high-performance heuristics are nec-

Parameter

+
j

.
pi, ,

min
' i , j

Parameter

+

P,, j .
P,, ,
' i , j

Overall QoS amibutcs

n I!:,

X+ = C =T, p:IxI,,
,-I J I

m,

-Y* =f i~P:. lxt, . l ,=I 14 z]-T(] '-1 -EL?~X, .~) 1-1

X"'i" = Min ~ p ~ ~ " x , , ,
"] 1 =I

Constraints

X+ i C+ or X+ > C+

l n (c a) i 2 2 1 n (~ : / l o r lii(c.)a 2 2 l n (p : ,) r , ,
,=I ,=I , ~ I ,=I

m,
'

.in 2 ,t;. p x1.,'di = l....,n
J : I

Since all Web Services of the first part have already been
executed, the Parameter values originally taken from a Web
Service's SLA are replaced with the ones actually nioni-
tored during execution. The actual overall attributes are
used to adjust the constraints restricting the overall attrib-
utes of the second part to the hitherto existing behavior of
the workflow. Using the adjusted constraints, a new opti-
mizatioii probleni for the unexecuted ~ a r t of the execution

essary solving the underlying optimization probleni.
In tliis section, the heuristic H I-RELAX-IP, which we use
for replanning, is discussed. The focus of this chapter is on
a detailed evaluation of the trade-off between cost-
reduction and additional coinputation time due to replan-
ning. As pointed out in [SI, HI-RELAX-IP uses a two step
approach.
First, the LP relaxation of the MIP (mixed integer probleni)
formulation of the composition problem introduced in the
previous section is solved. The relaxation allows all deci-
sion variables X,,, to be any real nuniber between 0 and 1 . A
problem of this kind can be solved very fast using a stan-
dard algorithm like e.g. simplex.

Web Services

0 00

0 00

Web Services

0.25
0 00
0 00

1 000

Fig. 2 Partitioning ol'an esccution [3]

Web Cervices

0.15
0 05

4 000
000

In the second step, a backtracking algorithm (Fig. 3) is used
to construct a feasible solution based on the result of the
relaxed integer program. Tlie result of the relaxed integer

-~~

program gives an indication, which particular Web Service
should be considered in the optimal execution plan. For ex-
ample, if x,,~-=0,25 and xi,,=0,75 the probability of Web Ser-
vice I of category i being part of the optimal execution plan
is much higher than the one of Web Service g. Thus, the
candidate Web Services within a specific category are or-
dered according to their likelihood to be Part of the optimal
solution. Furthermore, all Web Services having xj,,=O are
ordered according to their potential benefit to the objective
function. ~dd i t iona l l~ , the categories are ordered according
to the number of candidate Web Services having x„:.O. The
backtracking algorithm Starts with the category having the
fewest ~ e b ~ e k i c e s with x,,,'O. The fewer choices of Web
Services having xi,,>O exist in a category, the higher the
probability that an accurate decision is made. In Fig. 2,
Category 2 is selected before Category 3, since it offers
fewer choices that have in addition a higher likelihood of
being part of the optimal solution. This improves the per-
formance of the backtracking algorithm because the earlier

~ -

an inaccurate decision is made, the more expensive it is to
revise it. For a further discussion of HI-RELAX-IP we
refer to [SI.

while (not end)
repeat (

if (Exec-Plan [il cm,)
Exec-Plan Li]++;

} until (Exec-Plan is valid or
Exec-Plan [il =m,) ;

if (Exec-Plan is invalid) {
Exec-Plan [i] =O;
if (i>l) i--; else end=true;

) else
if (i<n) i i + ; else end=true;)

Fig. 3. Backtracking algorithin [SI

IV. EVALUATION

To analyze the effectiveness of the replanning strategy,
three main Sets of test cases have been generated, varying
the length n of the business process (number of task items),
the number m of candidate Web Services available per
category and the strength s of the restriction constraining
the overall response time.
The strengih of resiriciion s is used to indicate the tightness
of a constraint put on an overall attribute of the business
process. The value of s is calculated as the value restricting
a non-functional overall attribute (i.e. the overall response
time) expressed relatively (as percentage) to the best possi-
ble value of the overall attribute. A strength of 0% is
equivalent to an unconstrained overall attribute. A restric-
tion with a strength of 100% can only be satisfied if the
overall attribute is aggregated of the best values available in
eacli category. An iteration-based evaluation has been per-
formed, in which 35 different test cases are generated per
iteration for a specific parameter value. The results of these
test cases are aggregated to average values which define the
result of an iteration.

To evaluate the effects of replanning, a data generator has
been developed, which generates two values for every non-
functional parameter of a Web Service. The first value
(plan value p) defines how a parameter has been set by the
provider of a Web Service in its SLA. The second value
(actual value p 3 defines how the Web Service would really
perform when being executed. The actual value p ' is calcu-
lated as the realization of a normally distributed random
variable X,,., which has the plan value p as a border of a
confidence interval to a certain confidence level C (e.g.
95%). To optionally restrict p' to a certain value range, an
interval for the allowed value range can be defined

([d,d]). If p ' is not in the allowed range, the generation

process is repeated until p' fits the range. To evaluate the
effects of replanning, several test cases have been gener-
ated in which Web Services are described by the two non-
functional properties response time and costs per call. The
higher the response time, the lower are the costs per call
(correlation coefficient - -0.958). The actual value of the
costs per call is identical to the plan value. In all test cases
the only optimization criteria is the minimization of the
overall execution costs of the business process. The overall
response time of the business process is restricted to a cer-
tain value by a constraint.
The experiments were run on a Pentium IV CPU with 3
GHz and 1 GB of RAM using a special business process
simulation engine (BPSE) implemented in Java 1.5.

ß. I'atying ihe lengih ofhzrsiness processes

In this set of test cases the length n of a business process is
varied from 5 to 35 task items. The number of candidate
Web Services available in each category is Set to 40 and the
sirengih of ihe reslriclion liiniting the overall response time
of the business process is set to 40%.
In the fist step of the business process execution an initial.

I
1 '

+- sitliout replanning
I +\riih replanning 1

75% 1 , -- - T. T.---- 1

(a) Respoiise time

5 10 15 20 25 30 3 5 '

1 Lengih o l business proress i
I

(C) Co~npulalion lime
Fig4. Varying the lengih

execution plan is built based on the (predicted) plan values.
Without using replanning the total response time after exe-
cution is about 85% of the originally planned response time
(Fig. 4a) because most Web Services took less time to exe
cute than predicted in their SLAs. With replanning tlie
overall response time can be raised to about 97% of the
originally planned response time by using slower and
cheaper Web Services in the yet unexecuted part of the
business process without violating the constraint on the
overall response time. Due to the replanning, i.e. the use of
slower and cheaper Web Services, the costs of the business
process execution can be reduced to about 75% of the
originally planned executions costs (Fig. 4b). The draw-
back of using replanning is that the heuristic has to be exe-
cuted after each Single Web Service execution to create a
newly optimized execution plan, which results in an addi-
tional overhead of computation time (Step 2 until n, Fig.
4c) consumed by the BPSE. Fig. 4d shows the achieved
cost reduction in percent per additional percent invested
computation time in replanning. This value can be Seen as a
coarse measure of how effective an additional percent of
computation time is used in average to reduce the execution
costs. As the cost reduction is nearly constant for every
length of business processes, but the additional computa-
tion time spent on replanning rises with an increasing
length of business processes (Fig. 4c), the effectiveness of
cost reduction decreases with an increasing length of the
business process.

C. Varying the number of candidafe Weh Seri~ices

Analogous to the previous experiment a Set of test cases is
generated with a varying number of candidate Web Ser-
vices per task item (I0 to 70 candidate Web Services). The
length of the business process is Set to 20 task items and the
strength of the restriction limiting the overall response time
to 40%.
Independently of the number of candidate Web Services,
the execution of the initially created execution plan results

(b) Costs

(d) Costs relative 10 cotnputatioi~ time
ofihe busincss proccss

in an overall response time of about 85% of the originally
planned overall response time. Using replanning the overall
response time can be raised to about 97% of the originally
planned overall response time (Fig. 5a) and the execution
costs can be reduced to about 76% to 71% of the originally
planned execution costs (Fig. 5b). As a coarse trend it can
be recognized that the higher the number of candidate Web
Services per categoty, the higher the achieved cost savings.
With an increasing number of candidate Web Services, the
more choices exist from which the heuristic can choose
from when creating a newly optimized execution plan for
the unexecuted part of the business process. So the prob-
abiliiy increases that saved time can be used for the place-
ment of Web Service as cheap as possible resulting in a
higher cost reduction. An increasing number of candidate
Web Services per task item results in a higher computation
time needed for replanning. But as the cost reduction rises,
the achieved cost reduction in percent per additional Per-
Cent computation time needed for replanning does only de-
crease slightly.

D. Varying the strengfh of a resfr-iction

In the last Set of test cases we vary the strength of restric-
tion (10% to 70%) to analyze the effect of different con-
straints limiting the overall response time of the business
process. The lengtli of the business process (20 task items)
and the number of candidate Web Services (40 Web Ser-
vices) remains unchanged.
lndependently of the strcrigth o f resfricfion, the execution
of the initially created execution plan results in an overall
response time of about 86% of the originally planned over-
all response time, which is comparable to the previously
analyzed Sets of test cases. But in contrast to the previous
sets, replanning is able to approximate the initially planned
total response time better with an increasing strength of re-
slriction and is even able to exceed it (Fig. 6a). However,
assuming a high srt.engih ofresiriction replanning can only
use a few fast Web Services to create a valid execution

plan. Thus, cost reductions due to replanning decrease with
an increasing strength of restriction (Fig. Gb). As depicted
in Fig. 6c varying tlie strength of restriction has nearly no
impact on the computation tinie needed for replanning,
which is mainly determined by the number of candidate
Web Services and the length of the business process, which
are constant iii this Set of test cases. Because of the addi-
tional computation tiiiie being nearly constant and the cost
reduction decreases with an increasing strength of restric-
liort, the cost reductions relative to the additional computa-
tion time decreases (Fig. Gd).

When using replanning, the strength of res~riction is the
main parameter influencing the possible increase in the real
overall response time and the possible cost reduction. Hav-
ing a strength of restriction of 40%, a real overall response
time of about 97% of the initially planned overall response
time and a cost reduction of about 25% can be achieved.
Parameters concerning the problem size, like the length of
the business process or the number of candidate Web Ser-
vices per task item do not influence these achievable values
significantly - only an increase of the number of candidate
Web Services is able to improve the achievable cost reduc-
tion slightly. Parameters concerning the problem size are
the main parameters influencing ttie additional computation
time needed for replanning. With regard to the achievable
cost reduction the inost important analysis results are: The
lower the strength of restriction, tlie higher the achievable
cost reduction. A further slight increase of the achievable
cost reduction can be realized by increasing the number of
available Web Services.
The length of a business process has nearly no impact on
the achievable cost reduction, but as all parameters con-
cerniiig the problem size, an increase of the length tremen-
dously increases the additionally needed computation time
for replanning. How effective a cost reduction can be

10 20 30 40 50 M) 7 0 !
Cnndidate web senicm per lnrk iteni

(a) Respoiisc tiiiic

10 20 30 40 50 60 7 0 ~

Cnndidatc wrli srriiccs prr tnsk itcni 1
(C) Co~nputatioii iiiiie

Fig 5 . Varying the numbcr

achieved by the use of replanning (e.g. what average cost
reduction in percent can be realized per percentage of addi-
tionally invested computation time) depends on the con-
crete combination of problem size and slrength of restric-
tion. The lower the strength of restriction and the smaller
the problem size, the more effective replanning is with re-
gard to the achieved cost reduction compared to the addi-
tionally invested computation time for replanning.

Within the METEOR-S project, Cardoso et al. [8, 91 pre-
sent the Stochastic Workflow Reduction (SWR) algorithm
to calciilate the QoS of complex Web Service workflows
by decomposition into atomic tasks. As further research in
the context of the METEOR-S project Agganval et al. [I]
present a Constraint Driven Web Service Composition Tool
that enables the composition of Web Services considering
their QoS attributes. As in Zeng et al. [13], a linear integer
programming approach is proposed for solving the optimi-
zation problem. However, the authors do not present an
evaluation of their approach.
Yu und Lin present the QoS-capable Web Service Archi-
tecture (QCWS) [I I] that is quite similar to our WSQoSX.
In [IO], Yu und Lin study algorithms and heuristics for a
QoS-aware Web Service selection with only one QoS con-
straint. In [12], the work is extended to multiple QoS con-
straints. The composition problem is modeled as a multi-
dimension multi-choice 0-1 knapsack problem (MMKP) as
well as a multi-constraint optimal path (MCOP) algorithm.
For botti, heuristics are presented. However, the aggrega-
tion of parameters using the min-operator is neglected and
the evaluation lacks a metric describing the tightness of
used constraints like our strength of restriction. Further-
more, using the proposed heuristics for replanning is not
addressed.

I
I WOh

95%

I
'

1 6 0 0 , 0 1 ! , t

I

I Cnndidate wcb scMccr ptr task item

(b) Costs

- 0.00 1 -- .

10 20 30 40 50 M) 7 0 !
Cnndidate web scrviccs per Irak itcm 1

(d) Costs relative to coinputation time

of candidate Web Services

I 10 20 30 40 50 60 7 0 '

I Sirtnglli of nsliiclions 1% I

(a) Responsc time

(C) Computation time

Fig 6. Modifying the

Canfora et al. [6] apply genetic algorithms for solving the
Web Service composition problem. The results reveal that
genetic algorithms show a better performance and scalabil-
ity than linear integer programming with increasing num-
bers of candidate Web Services and tasks. In a further pa-
Per, the authors consider replanning at runtime as well [7].
Their understanding of replanning is very similar to ours.

VI. CONCLUSION AND OllTLOOK

In this paper we extend our previous work on QoS-aware
selection and execution of Web Service workflows. Due to
the volatile nature of the Internet the runtime behavior of
Web Services ofien differs from the one predicted during
the planning phase. As a consequence, preferences and con-
straints defined by the User cannot be met anymore and
SLAs concerning the whole business process may be vio-
lated. Thus, we have designed a replanning mechanism to
adapt the unexecuted part of a workflow in a way that de-
spite the deviation of the runtime behavior the User re-
quirements will still be met. For this, we model replanning
as an optimization problem, which can be efficiently solved
by our heuristic Hl-RELAX-IP. The focus of this paper is
on the detailed evaluation of our replanning heuristic. As a
result, we can show that our approach can achieve signifi-
Cant cost savings with reasonable computation effort.
As future work we will investigate different replanning
strategies. For this, we will have a look at related work in
the area of production planning as well as performance pre-
diction.

REFERENCES

[I] R. Aggarwal, K. Vcrina, J. Miller, and W. Miliior, Constraint Driven
Web Service Composiiion in METEOR-S, in Proceedings of rhe
IEEE In~ernarional Conference on Services Cornprrring (SCC 2004).
2004, IEEE Computer Society Press, Slianghai. China. pp 23-30.

[2] R. Berbner, T. Grollius. N. Repp, 0. Heckmann, E. Onner and R.
Steinmetz, An appmach for the Management o f Service-oriented Ar-
chitecture (SoA) based Applicatioii Systems, in Proceedings of rhe

1 10% ,
I

OO,/o 1 - , --- --- T - ---I
10 20 30 40 50 60 70

I Strengih olrestrirtions [%I
I

(b) Costs

I

(d) Costs relativc to coinpulation time

strcngih o f resiriction

Enrerprise Modelling und Informarion Svsrerns Archirecrlrres (EMISA
2005). 2005. Klagenf~irt, Austria, pp. 208-22 1.

[3] R. Ucrbner, M. Spahn. N. Repp, 0 . Heckmann, and R. Steinmetz. An
Approach Tor Rcplanning o f Web Service Workllows, Atnericas Con-
ference on Informarion Svsrems (AMCIS 2006). 2006. Acapulco.
Mexico.

[4] R. ßcrbner. 0. I-leckmann, and R. Steinmetz. An Architecture for a
QoS driven composition o f Web Service based Workllows, Nehilork-
ing and Elecrronic Cotnn~erce Research Conference (NAEC 20/)0),
2005, Riva Del Garda.dtaly.

[SI R. ßerbner. M. Spalin. N. Repp. 0 . Heckinann. and R. Steinmetz,
Heuristics for QoS-aware Web Service Compositioii. in Proceedings
(/rite 4th 1l:'EL: 11lre1'1m1iontrl Confirence Web Services (ICWS 2006),
2006, Chicago. USA. pp. 72-82.

[6] G. Canfora. M.D. Penta. R. Esposito. and M.L. Villani. An approach
for QoS-awarc servicc composition basal oii genetic algorithins. in
Proceedings of rhe Generic and Evol~rriona~y Cotnpr~a~ion (onfir-
ence (GECCO 2005). 2005. Wasliingion DC, IJSA, pp. 1069-1075.

[7] G. Canfora, M.D. Penta. R. Esposito. and M.L. Villani, QoS-Awarc
Replanning o f Coinposite Web Serviccs, in Proceedings of rhe 3rd
IEEE In~ernarional Conrrence on Web Services (ICWS 2005). 2005,
IEEE Computcr Society, Orlüiido. USA. pp. I 2 I - 129.

(X] J. Cardoso. C)tiali~v of Senice und Senranric <.70n~posi~ion of Work-
Jloiits, 2002, Dcpartnierit o f Compuier Sciencc, P1i.D Thesis, Univer-
sity of<icorgia. Athens. GA, IJSA.

[9] J. Cardoso, A. Slicth, J. Miller, J Arnold, and K. Kochut, Quality o f
scrvice for workflows and web scrvice processes. lVeb Sernanrics:
Science. Ser?>ices und Agenis on rlte World Wide Weh, vol. I, no. 3.
2004.28 1-308.

[I01 T. Yu and K.-J. Lin. The Design o f QoS Broker Algorithms for 00s-
Capable Web Services, in Proceedings of the Inrerna~ional ('onfir-
ence 011 e-Technolog)~, e-Conimerce und e-.Yer~ice (LEE 2004). 2004,
IEEE Coinputer Socicty. Taipci. Taiwan, pp. 17-24.

[I I] T. Yu and K.-J. Lin, A Broker-Ras4 Fnmcwork Tor QoS-Aware
Web Servicc Coinpositioti. in Proceedings of rhe Inrernurional Coil-
ference on e-7¿.chnolog~ e-Coi~rnrerre. and e-Sen,ices (EEl:' 2005),
2005. IEEE Compuier Society, Ilong Kong, China, pp. 22-29.

[I21 1'. Yu and K.-J. Lin. Scrvicc Sclrction Algorithins for Composing
Complex Services with Multiple QoS Constraints, in Proceedings of
rhe 3rd Inrerna~ional Confirence on Service-Orienred Con~ptrring
(ICSOC 2005). 2005. Amstcrdain, Tlie Netlicrlaiids, pp. 130- 143.

[I31 L. Zeng, H. Bcnatallah. A. Ngu. M. Driinas, J. Kalagnaiiani, and H.
Cliaiig, QoS-aware Middleware for Web Servicc composition. IEEE
Transacrions on SoJl,vare Engineering, 2004. vol. 30. no. 5, pp.3 1 I -
328.

