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Abstract—Many Virtual Reality (VR) applications usually
visualize only the VR controllers or floating hands. However, to
create an immersive experience, a full-body avatar is essential.
We reconstruct a full-body avatar by tracking the position and
orientation of the head, hands, feet, and hip. To track the arm
movements, the user has to hold two HTC Vive controllers. Addi-
tionally, the user has to bind Vive trackers to both ankles and the
hip. We apply some of the most popular Inverse Kinematics (IK)
methods to estimate the full-body pose. We perform parameter
optimization to analyze the damping constant, the maximum
number of iterations, and error value for the position as well
as rotation. We made several tests between the IK methods in
terms of the accuracy and the time to solve the IK problem.
The results show that Damped Least Squares (DLS) outperforms
the other methods. We furthermore conducted a user study to
evaluate the subjective quality of the DLS method. Evaluation
results show that the motion reconstruction for lower-body is very
accurate; however, for the upper-body, some inaccuracies can
occur. Such a motion reconstruction approach can be used in VR
exergames, e.g., users can learn different poses while observing
the movements in a virtual mirror and by looking down towards
their own body.

Index Terms—Full-Body Motion Reconstruction, Immersive
Virtual Reality, Inverse Kinematics, Joint Configuration

I. INTRODUCTION

Virtual Reality (VR) is becoming increasingly important in
many areas, e.g., exergames [1], exposure therapy [2], and for
training/simulation [3]. Most VR applications aim to create an
immersive virtual environment to give the user a sensation of
“being there.” As Slater and Wilbur [4] point out, immersion
requires a self-representation in the virtual environment, thus
a virtual body. Moreover, to improve presence, the user in VR
must identify herself/himself with this virtual body. The focus
on presence and immersion requires to create a connection
between a user and a virtual environment as well as a user and
a virtual body. Therefore, it is crucial to track the movements
of the user and to visualize a full-body avatar in VR.

Body pose estimation can be done using different devices.
Several studies focus on using a Microsoft Kinect to recon-
struct a body pose [1]. The main advantage of this device is
that the user does not need to bind any sensors to the body.
However, a single camera often fails to capture non-frontal
poses, suffers from occlusion, and provides insufficient data.

Therefore, some researchers combine a depth camera with
inertial measurement units [5] or even use inertial sensors
without external cameras [6]. A far more effective motion
capture technology is based on small retro-reflective mark-
ers, which are usually attached to the motion capture suit.
Commercial solutions such as OptiTrack or Vicon are very
accurate and precise, but also very expensive. Previous works
have shown that such a system is very suitable to visualize a
full-body avatar in multiplayer VR applications [7].

All motion tracking systems have their advantages and
disadvantages. The Kinect is limited either by its latency of
insufficient accuracy. Expensive and accurate motion capture
suits often depend on many sensors and can create discomfort.
We aim to minimize the number of sensors attached to the
user’s body while still accurately and reliably reconstruct-
ing movements. We use a HTC Vive HMD to track head
movements. To track the arms, the user has to hold one Vive
controller in each hand. Additionally, the user has to bind one
Vive tracker to each foot and to the hip. Since the position
and orientation of these six joints are known, we can solve
the Inverse Kinematics (IK) problem to estimate the full-
body pose. The major contributions of our work include the
following:
• Reducing the number of sensors to enable full-body

motion reconstruction
• Analyzing different IK solutions regarding computation

time and accuracy
• Applying parameter optimization to optimize and validate

the IK parameters, such as damping constant, maximum
error (for position and rotation), and a maximum number
of iterations

• Evaluating the subjective quality of the IK method

II. RELATED WORK

A. Inverse Kinematics Methods

The main problem in IK is to choose appropriate joint
values (e.g., the angle of a rotational joint) so that the end-
effector reaches the desired target position and orientation [8].
To solve the IK problem, we can use different methods, e.g.,
analytic or iterative methods. Systems with simple structure
and low number of Degree of Freedom (DoF) can be solved978-1-7281-0300-6/19/$31.00 © 2019 European Union
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TABLE I: Angular restrictions for each joint.

Joint
x-axis y-axis z-axis

Min Max Min Max Min Max

Wrist −55◦ 45◦ / / −85◦ 75◦

Elbow 0◦ 155◦ / / / /

Shoulder −65◦ 195◦ −105◦ 105◦ −145◦ 105◦

Knee 0◦ 155◦ / / / /

Hip −145◦ 45◦ −75◦ 55◦ −65◦ 65◦

analytically. However, due to complex geometry for long
kinetic chains, the analytical methods are not suitable for
computer animations [9].

Systems with a complex structure are usually solved nu-
merically. The most popular methods are based on the Jaco-
bian matrix [8], [10]. Jacobian matrix methods aim to find
a linear approximation of the problem to move the end-
effector to the desired target gradually. Many different methods
have been proposed to calculate the Jacobian Inverse, such
as Jacobian Transpose (JT), Jacobian Pseudo-Inverse (JPI),
Damped Least Squares (DLS), Singular Value Decomposition
(SVD), Damped Least Squares with Singular Value Decom-
position (SVD-DLS), and Selectively Damped Least Squares
(SDLS). Jacobi methods usually provide very accurate results.
However, complex mathematical calculations lead to higher
computational costs, especially when the matrix is large [11].
Furthermore, methods such as JPI and SVD suffer from
singularity problems [8], [12].

Full-Body Motion Reconstruction using Inverse Kinematics

Previous works have shown promising results using dif-
ferent motion capture systems for full-body motion recon-
struction, e.g., using only a HTC Vive HMD and two con-
trollers [13]. Likewise, recent commercial approaches, such
as Orion IKinema1 or DeepMotion2 use Vive devices strapped
to the limbs to reconstruct full-body avatar in real-time.

Aristidou and Lasenby [14] propose a novel method, called
FABRIK. Even though the method converges in a few itera-
tions and yields visually realistic poses, their approach does
not take the desired rotation into account. Bentrah et al. [15]
suggest an extension of the FABRIK and minimize the number
of moving joints to reach targets and can handle environmental
obstacles. Similar to FABRIK, Meredith et al. [9] reduce
computational costs by using only half Jacobian and thus
ignore the orientation of the end-effector.

Furthermore, Kenwright et al. [10] propose a realistic,
robust, and computationally fast method of solving the IK
problem using the Gauss-Seidel iterative method. Moreover,
Unzueta et al. [16] describe a Sequential IK solver. The
researchers solve the IK problem sequentially, using a simple
analytic-iterative IK algorithm in different parts of the body in
a specific order. Their approach can also prevent self-collisions

1https://ikinema.com/orion, retrieved March 4th, 2019
2https://www.deepmotion.com, retrieved March 4th, 2019

Fig. 1: Calibration process: A student is standing in a T-pose
and holding two Vive controllers (red), while three trackers
are bound to the feet and hip (yellow).

in posture reconstruction, e.g., the penetration of the elbows
in the torso.

III. BODY MODEL

We design a realistic virtual avatar with 32 bones using the
MakeHuman3 tool to visualize full-body motions in VR. To
obtain a natural pose, we define for each joint in the IK chain
the DoF. We specify the upper and lower limits for these joints,
as suggested by Hamilton et al. [17] and furthermore modify
the joint limits by adding a tolerance of ±15◦ (see Table I).
The skeleton consists of four kinematic chains: wrist, elbow,
and shoulder for both arms (2 × 6 DoF) as well as knee and
hip for both legs (2 × 4 DoF).

Skeleton Calibration

We apply skeleton calibration so that motion reconstruc-
tion works independently of the body height and the posi-
tion/rotation of the attached VR devices. For the calibration,
the user has to stand in a T-pose as depicted in Figure 1.

First, while the user is standing in the T-pose, we obtain
the raw position and rotation (quaternion) of the Vive trackers
and controllers and transform them into the local coordinate
system of the avatar. Then, we determine the offset position
and rotation for each end-effector. We calculate the distance
between the desired position/quaternion (pdes, qdes ∈ R4×1)
and the actual position/quaternion (pact, qact ∈ R4×1):

poffset = (T(pdes[t
′]) ·R(qact[t

′]))−1 · pact[t
′], (1)

qoffset = (qdes[t
′])−1 · qact[t

′], (2)

where T ∈ R4×4 is a transformation and R ∈ R4×4 a rotation
matrix at time step t′ (at the moment of the calibration). Thus,
offset values (poffset, qoffset ∈ R4×1) are calculated only once.

Finally, in each further frame, we calculate the final position
pfinal[t] ∈ R4×1 and quaternion qfinal[t] ∈ R4×1:

qfinal[t] = qdes[t] · qoffset, (3)
pfinal[t] = T(pdes[t]) ·R(qfinal) · poffset, (4)

where pdes[t] and qdes[t] are the position and quaternion values
at each time step t with respect to the avatar local coordinate
system.

3http://www.makehumancommunity.org, retrieved March 4th, 2019



TABLE II: The value range of the λ.

Value range Step size

JT [0.05, 1] 0.05

JPI [0.05, 1] 0.05

DLS [0, 1.5] 0.05

SVD [0.01, 0.25] 0.01

SVD-DLS [0, 1.5] 0.05

SDLS [0.002, 0.052] 0.002

IV. APPLIED METHODS

We apply the most popular IK solutions, such as JT, JPI,
DLS, SVD, SVD-DLS, and SDLS. To achieve maximum
performance, we use the low-level game API and hardware
abstraction library Kore.4 In addition, we provide (c++) source
code to researchers.5

For motion reconstruction in VR, the IK method has to
be fast, so that the user does not perceive delays. The IK
approach must solve the problem for multiple end-effectors in
real-time and also has to represent realistic movements. There
are mainly three challenges:

1) The pose must look natural.
2) The IK method must reconstruct the pose in real-time.
3) The IK method must solve the problem for multiple end-

effectors.

Firstly, to ensure natural movements, we specify the upper
and lower limit for each joint, as already mentioned in Sec-
tion III. However, even with the constraints, several solutions
can still exist. We choose the pose that is close to the previous
pose. For example, some IK methods, such as SDLS, define
the maximum angle change to keep the difference between the
two poses small.

Secondly, we have to ensure low latency so that the user
in VR can interact through the avatar in real-time. If the
latency is too high, the user perceives the movement of the
virtual avatar delayed, which decreases immersion. However,
sometimes the IK solver cannot determine a pose, e.g., when
the end-effector cannot reach the target position or when the
algorithm is stuck in a local extremum. In this case, we define
conditions at which the IK method terminates, i.e., a maximum
number of iterations and maximum position as well as rotation
error. Thus, the algorithm terminates when the end-effectors
are sufficiently close to the targets or when the algorithm
reaches the maximum number of iterations.

Finally, the IK method must reconstruct the full-body pose
of multiple end-effectors, i.e., hands and feet. To reduce the
size of the Jacobian matrix, we use an approach presented in
our previous work [18]. For each end-effector, we consider
at most two predecessor joints. For example, for the hand
to reach the target, we rotate the wrist, elbow, and shoulder.
For the leg, we rotate only the knee and hip. Thus, in

4https://github.com/Kode/Kore, retrieved retrieved 4th, 2019
5https://github.com/CatCuddler/BodyTracking, retrieved March 4th, 2019

TABLE III: An overview of the optimized parameter values.

JT JPI DLS SVD SVD-DLS SDLS

λ 0.35 0.05 0.2 0.03 0.2 0.018

emaxPos [m] 0.01 0.1 0.001 0.01 0.001 0.01

emaxRot [rad] 0.01 0.1 0.01 0.01 0.01 0.01

itmax 10 100 20 10 20 60

our approach, each joint is influenced by at most one end-
effector. The end-effectors are therefore independent of each
other and can be considered separately. With this reduced
Jacobian matrices, our approach can easily handle multiple
end-effectors to reconstruct a full-body avatar in real-time.

Analysis tool for parameter optimization

The accuracy is defined as the distance between the target
and actual end-effector. We achieve good accuracy when the
error in position and rotation is small. The speed is defined
as the average time which is required to reach the desired
position as accurately as possible. Thus, time is dependent on
the number of iterations and time per iteration.

We collected raw data (position vector and quaternion) for
each VR device while five participants walked in a circle,
performed squats, and ran in place. For the parameter op-
timization, we use this dataset and accordingly change the
parameters, e.g., λ, maximum error for position emaxPos

and rotation emaxRot, and maximum number of iterations
itmax. The λ value has different functionality for different
IK methods, e.g., a damping constant (JT, JPI, DLS, and
SVD-DLS), a threshold (SVD) or it specifies maximum angle
change (SDLS). We define the interval of the λ value for each
IK method separately (see Table II). Furthermore, as proposed
by Buss and Kim [8], we search for the optimal emaxPos and
emaxRot in the range of 0.0001 and 0.1 and increase values
exponentially in each step. For optimal itmax, we search in
the range of 10 and 250 and increase the value by 10 in each
step.

After we obtain the values for all parameters, we standardize
the results. We want to optimize the values regarding the ac-
curacy (minimum average error) and the time needed to reach
the target (minimum average iteration number). However,
the parameter that minimizes the time does not necessarily
also minimizes the error. To this end, we use the z-score to
transform normal variates to standard score form [19]. The
z-score transformation allows us to compare the parameter
values along each other. To get the optimal value for each
parameter, we cross-validate the values between different mo-
tions (walking, performing squats, running). We search for the
smallest error with the shortest calculation time and therefore,
the minimum average. Thus, we choose the parameter value
that gives us the lowest cross-validation average error.

V. PARAMETER OPTIMIZATION RESULTS

The parameter optimization aims to achieve an optimal
parameter configuration for each IK method, which ensures



(a) JT (b) JPI (c) DLS

(d) SVD (e) SVD-DLS (f) SDLS

Fig. 2: Optimizing the λ value regarding the error and number of iterations.

the most accurate possible result with the shortest possible
computing time. The optimal parameter values for each IK
method after cross-validation are specified in Table III.

A. Optimal λ value

Figure 2 shows the optimal λ value (minAverage) for each
IK method. The λ depends on the error (blue) and the number
of iterations (red). The JT and the JPI methods both use the
λ value as damping constant to keep the calculated change
in joints small. For JT, the error and the number of iterations
increase rapidly with λ > 0.55 (see Figure 2a). For JPI, with
increasing λ value, the error continually increases while the
number of iterations converges (see Figure 2b). Both methods
get unstable with a larger damping constant. JT achieves the
optimal result with λ = 0.35 and JPI with λ = 0.05.

The parameter optimization shows that λ = 0.2 is the
optimal value for the DLS and SVD-DLS. In Figure 2c
and 2e, we can observe that for very small values λ < 0.1,
the methods become unstable and both, the error and the
number of iterations, increase. The SVD uses the λ value
as a threshold. The parameter optimization reveals that the
method performs best for λ = 0.03. With λ = 0.16, the error
increases significantly and the number of iterations decreases
(see Figure 2d). Furthermore, with λ > 0.2, the number of
iterations and the error remain constant.

The advantage of SDLS over other IK methods is that we do
not need to specify the damping constant. The only parameter
to set is the λmax. It defines the maximum possible change

in any joint angle. Our results show that SDLS performs best
with λmax = 0.018.

B. Optimal emaxPos and emaxRot

Maximum position emaxPos and rotation emaxRot error
determine the accuracy. On the one hand, a small error
contributes to more accurate results. However, as the accuracy
increases, so does the number of iterations and thus the
computation time. On the other hand, a large error leads to
a faster result, but with less accuracy.

Figure 3 shows that for all IK methods (except for the
JPI) with the increased position error emaxPos → 0.1 (blue),
the number of iterations (red) decreases. The results for the
rotation error are analogous to the position error. As expected,
with increasing accuracy, the number of iterations will also
increase. Especially in the range of 0.01 and 0.1, the number
of iterations drops rapidly while the error increases.

The optimal position value for the JT, the SVD, and the
SDLS methods is emaxPos = 0.01 and for DLS as well as
SVD-DLS emaxPos = 0.001. For all methods (except for JPI)
the optimal value for emaxRot is 0.01. The results for the JPI
are contradictory. With increased maximum error, the number
of iterations decreases. We will discuss this instability problem
in Section VI.

C. Optimal itmax value

As shown in Figure 4, for most IK methods, the number
of iterations (red) increases while the error (blue) decreases.
Only the JPI and the SVD method show some unstable results.



(a) JT (b) JPI (c) DLS

(d) SVD (e) SVD-DLS (f) SDLS

Fig. 3: Optimizing the maximum position error regarding the number of iterations.

(a) JT (b) JPI (c) DLS

(d) SVD (e) SVD-DLS (f) SDLS

Fig. 4: Optimizing the number of iterations regarding the position and rotation error.



TABLE IV: Reconstruction comparison in terms of cost.

itnum tit [µs] ttotal [µs]

JT 7.917 14.465 114.519

JPI 32.75 17.17 562.318

DLS 6.511 17.824 116.052

SVD 5.689 29.083 165.336

SVD-DLS 6.505 28.829 187.533

SDLS 7.717 27.122 209.3

Observing the results for the JT (see Figure 4a), we can
see that for itmax > 50 both, the number of iterations and
the error, remain constant. We can obtain the optimal value
regarding the error with less than ten iterations. As already
mentioned before, JPI suffers from singularity problems and
therefore, the total error shows unstable results (see Figure 4b).
We achieve the best results with itmax = 100. Furthermore,
there is a similarity between the DLS and the SVD-DLS
method. For both methods, we need at least 20 iterations to
achieve the best results. The SDLS converges much slower
and requires at least 60 iterations to minimize the error.

D. Motion Reconstruction Costs

Motion reconstruction costs depend on the number of it-
erations and the time per iteration. Table IV summarizes the
average number of iterations itnum, the time per iterations tit,
and the total time ttotal required by each IK method.

JT is the most time efficient (ttotal = 114.52 µs); however,
it needs many iterations (itnum = 7.917) and, thus, converges
only slowly. Although DLS performs similarly and requires
fewer iterations than JT (itnum = 6.511), it needs more
time per iteration. Hence, DLS is the second fastest method
(ttotal = 116.05 µs).

Even though the SVD needs the lowest number of iterations
(itnum = 5.689), the method requires, due to the computa-
tionally intensive singular value decomposition, the longest
time per iteration (tit = 29.083 µs). DLS and SVD-DLS
need a similar number of iterations; however, SVD-DLS needs
significantly more time per iteration. Likewise, the results
suggest that SDLS is very computationally expensive. The
SDLS method is, apart from JPI, with ttotal = 209.3 µs the
slowest.

E. Motion Reconstruction Accuracy

The position and rotation error define the accuracy of the
motion reconstruction. We measure the accuracy by comparing
the position and rotation of the end-effector with the actual
position and rotation of the Vive devices. Thus, for each IK
method, we calculate the difference between the desired and
actual end-effector position as well as rotation.

In general, a small error will provide more accurate results;
however, the number of iterations will increase. We use the
optimal parameter values to calculate the average position and
rotation error. The results are shown in Table V.

Observing the error, we can see that all IK methods, except
for the JPI, have a similar error in position. In terms of

TABLE V: Reconstruction comparison in terms of error.

IK epos [mm] erot [deg]

JT 86 1.318

JPI 190 25.898

DLS 76 3.724

SVD 81 3.037

SVD-DLS 76 3.724

SDLS 98 1.776

position error, the DLS and the SVD-DLS methods perform
best with epos = 76 mm. However, in terms of rotation error,
both methods perform badly with erot = 3.724◦. Only the
JPI method performs even worst and suffers from singularity
problems.

For SDLS, we can observe exactly the opposite results.
While the position error is very high (epos = 98 mm), the
rotation error remains very low (erot = 1.776◦). Likewise, the
JT also results in a large position error (epos = 86 mm) but
shows the smallest rotation error (erot = 1.31◦).

VI. PARAMETER OPTIMIZATION DISCUSSION

From the results presented in Table IV and V, we can
see that the JT performs best regarding speed (ttotal =
114.519 µs) and gives very accurate results in terms of
orientation (erot = 1.318◦). However, DLS method achieves a
smaller position error (epos = 76 mm) and needs only 1.5µs
more time to solve the IK problem. Even though the DLS
method has a bigger rotation error, the user can hardly perceive
a small difference of only a few degrees. Both approaches
represent smooth and accurate movements. Nevertheless, we
believe that the user recognizes the difference between the
actual and the desired position more clearly than the change
between the actual and the desired rotation. Therefore, we
prefer the DLS over the JT method.

Figure 5 shows the results of the full-body reconstruction
based on the DLS. We can reconstruct complex poses such as
kneeling and kicking in real-time. This motion reconstruction
can be beneficial for VR exergames, e.g., to learn a particular
movement such as yoga poses. The users can observe the
movements in a virtual mirror and by looking down towards
their body. Another possible application scenario could be a
serious game for training purposes or rehabilitation.

The supplementary video6 for this paper shows the user
performing some tasks in VR. We reconstruct the motions
using the DLS with the optimal parameters. As one can
see in the video, the results sometimes suffer in terms of
smoothness, e.g., the elbow can snap to a new location. These
inaccuracies can happen when the difference between the
new joint orientation, compared to the joint orientation in
the previous frame is too large. We could solve this problem
by using the Slerp method and interpolating between the
quaternions. Furthermore, to improve the results, we could

6https://youtu.be/x4SS8_-XY38, retrieved May 10th, 2019



Fig. 5: Examples of our real-time full-body motion reconstruction based on HTC Vive trackers and controllers.

use weights when optimizing error. In other words, we should
focus on minimizing the position error rather than minimizing
the rotation error. The experiments with subjects have also
shown that position accuracy is more important than rotation
accuracy (see Section VII).

Compared to Aristidou and Lasenby [14] with the median
position error of 58.68 mm, we obtain for DLS and SVD-DLS
a similar result (76 mm). However, they did not consider the
rotation error. Our solution outperforms [20] (mean rotation
error of 7.8◦) and [16] (average rotation error of 16.9◦) across
the rotation error. We obtain a minimal rotation error of less
than 4◦ for all IK methods, except for the JPI. Furthermore, for
the JT, the SDLS, and the DLS methods, we need significantly
fewer iterations than Buss and Kim [8] to reach the desired
target.

Limitations: In this paper, we evaluated the IK methods
in terms of error, i.e., distance to end-effector. We did not
measure the position error for the elbow or knee. To calculate
the accuracy of each joint, we would need to compare the
estimated pose against a baseline. One possibility would be
to bind further Vive trackers to the body and then calculate
the error of the individual joints. In future work, we want to
compare our results with ground truth. We believe that this
will help us to optimize the parameters even better, which
will lead to better results.

VII. USER STUDY RESULTS

We conducted a user study to measure the presence, agency,
sense of body ownership, and end-to-end latency. The ques-
tions were adapted from Kilteni et al. [21] and can be seen in
Table VI. We calculate the median (MED) and Inter-Quartile
Range (IQR) for each question.

We recruited ten participants (six males and four females),
with an age range between 23 and 31 (average age was 27.1
years). First, we presented the HTC Vive headset and bound
the trackers to the body. Then, we explained the calibration
process. After the avatar was calibrated, the participants could
see an avatar while looking down towards their real body and

in a virtual mirror. The results of the questionnaire assess the
subjective quality of the optimized DLS.

The level of reported presence was very high, with a
median score of 4.5 (IQR = 1.25). The results show that the
participants felt as if they were really “being there” in the
virtual reality. Furthermore, the median score of the sense
of body ownership question was 3.75. The large IQR score
of 3.125 suggests that the participants tend to hold strong
opinions either for or against it. To understand the wide range
of possible answers, we have to take a closer look at arm
and leg ownership. The results for the arm ownership show
a median score of 3.5 (IQR = 2) and for the leg ownership,
a median score of 4.5 (IQR = 2.25). Thus, the participants
scored the ownership for legs significantly higher than for the
arms (p = 0.002). We believe that the results of large IQR for
the overall sense of body ownership arise from the fact that
the reconstruction of the upper-body sometimes fails while the
reconstruction of the lower-body is very accurate.

Most participants agreed that the avatar size matched the
real one (estimation of body parts) with a median score of 5
(IQR = 1). Furthermore, the participants rated both (similar)
questions about the sense of agency very high (MED = 4). The
results show that the participants were in control of the avatar
and they could control the movements of the virtual body.
Furthermore, the participants disagreed that the movements of
the avatar seem to be another person’s movement (MED = 2,
IQR = 2.25). Thus, the low score for full-body disconnection
supports the high score for the sense of agency. Moreover, the
results show that the participants perceived only a small delay
of the virtual avatar (MED = 2, IQR = 2.25).

VIII. CONCLUSION

In this paper, we analyzed many IK methods to find a
suitable approach for full-body motion reconstruction in VR
in terms of low latency and high accuracy. We optimized the
damping constant, maximum error in position and rotation
as well as the maximum number of iterations. The results
show that both the JT and the DLS methods are very fast and



TABLE VI: Questionnaire responses.

Condition Questions Each question was assessed on a 5-point Likert scale: 1 Strongly Disagree and 5 Strongly Agree. MED IQR

Presence I felt like I was present in the virtual world. 4.5 1.25

Sense of body ownership
I felt as if the virtual body was my body. 4 3
I had the feeling to look at my body when I looked down at myself. 3.5 3.25

Arm ownership It seemed like the virtual arms belonged to me. 3.5 2

Leg ownership It seemed like the virtual legs belonged to me. 4.5 2.25

Full-body disconnection The movement of the hands and feet seemed to be another person’s movement. 2 2.25

Estimation of body parts It seemed like the size of the avatar matched the real one. 5 1

Sense of agency
It seemed like I was in the control of the virtual avatar. 4 2.25
It felt as if I was controlling the movements of the virtual avatar. 4 1.25

Latency It seemed like the movements of the virtual avatar were delayed. 2 2.25

provide only a small error. On the one hand, the results for
the JT are more accurate in terms of orientation than position.
On the other hand, the DLS can achieve a smaller position
error and requires only slightly more time than the JT. We
prefer the DLS over the JT because the user in VR perceives
a large position error rather than rotation error. After the
parameter optimization, we conducted a user study to evaluate
the subjective quality of the DLS. The results show that the
ownership for legs is significantly higher than for the arms.
Moreover, the participants agreed that they could control the
movements of the avatar. Thus, the results indicate that the
DLS is suitable for full-body reconstruction in VR.

Future work will focus on improving accuracy. We want
to minimize the position error rather than the rotation error.
Furthermore, since the rotation for the elbow is sometimes
inaccurate, we want to develop a new device with integrated
IR sensors which can be attached to the user’s forearm. Such
a device would contribute to better results, as it would allow
us to follow the rotation of the elbow more accurately.
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