
Noname manuscript No.
(will be inserted by the editor)

Real-Time Body Tracking in Virtual Reality using a Vive
Tracker

Polona Caserman · Augusto Garcia-Agundez · Robert Konrad · Stefan
Göbel · Ralf Steinmetz

Received: date / Accepted: date

Abstract Due to recent improvements in virtual real-
ity (VR) technology, the number of novel applications
for entertainment, education, and rehabilitation, has in-
creased. The primary goal of these applications is to en-
hance the sense of belief that the user is “present” in the
virtual environment. By tracking the user’s skeleton in
real-time, it is possible to synchronize the avatar’s mo-
tions with the user’s motions. Although current com-
mon devices implement body tracking to a certain de-
gree, most approaches are limited by either high latency
or insufficient accuracy. Due to the lack of positional
and rotation data, the current VR applications typi-
cally do not represent the user’s motions. In this paper,
we present an accurate, low-latency body tracking ap-
proach for VR-based applications using Vive Trackers.
Using a HTC Vive headset and Vive Trackers we have
been able to create an immersive VR experience, by an-
imating the motions of the avatar as smoothly, rapidly
and as accurately as possible. An evaluation showed
our solution is capable of tracking both joint rotation
and position with reasonable accuracy and a very low
end-to-latency of 6.71±0.80 ms. Due to this merely im-
perceptible delay and precise tracking, our solution can
show the movements of the user in real-time in order to
create deeper immersion.

Keywords

P. Caserman, A. Garcia-Agundez, R. Konrad, S. Göbel and
R. Steinmetz
Multimedia Communications Lab, Technische Univer-
sität Darmstadt, 64283 Darmstadt, Germany E-mail:
firstname.lastname@kom.tu-darmstadt.de

1 Introduction

Virtual Reality (VR) can be experienced wearing novel
Head-Mounted Displays (HMDs). In the last few years,
there has been a rapid improvement in VR technology,
increasing the availability of HMDs to consumers [7][13].
The most advanced HMDs, like Oculus Rift, HTC Vive,
and PlayStation VR, already have a high-definition res-
olution, a wide field-of-view, and a high refresh rate.
Furthermore, novel VR systems are capable of posi-
tional and rotational tracking of the HMD as well as
additional VR devices. Tracking systems in VR can pro-
vide new possibilities for a more comfortable, immer-
sive experience and gameplay [16]. Oculus Rift, for ex-
ample, enables tracking through an embedded infrared
system [12]. HTC Vive has similar technical specifica-
tions to Oculus Rift Consumer Version 1. Both HMDs
provide high-definition resolution of 2160×1200 pixels,
split between each eye and can maintain a frame rate of
up to 90 Hz [12] [39]. But the special feature of the HTC
Vive is the Vive Tracker, which allows the developers
to bring any real-world object into the virtual environ-
ment, e.g. by simply attaching it to sporting equipment
like a baseball bat, a golf club or a weapon1. The po-
sition and orientation of this device are then tracked
by two “Lighthouse” station, based on infrared signals.
Each “Lighthouse” stations consist of infrared LEDs,
flashing at regular intervals and signaling the start of a
cycle [9]. Two little motors project laser beams across
the room, one spinning horizontally and the other ver-
tically. The sensors on the VR devices then detect these
lasers and can determine its position based on the order
its sensors receive the laser sweeps.

1 Vive Tracker: https://www.vive.com/us/
vive-tracker/, last visited on April 3rd, 2018

https://www.vive.com/us/vive-tracker/
https://www.vive.com/us/vive-tracker/
Polona Caserman
Caserman, P., Garcia-Agundez, A., Konrad, R., Göbel, S., Steinmetz, R.: Real-time body tracking in virtual reality using a vive tracker. Virtual Reality 23(2), 155–168 (2019). DOI 10.1007/s10055-018-0374-z.�

Polona Caserman
The final authenticated version is available online at https://doi.org/10.1007/s10055-018-0374-z.

2 Polona Caserman et al.

Due to this HMD development, the number of novel
and innovative games for rehabilitation, training and
exercise activities has greatly increased, e.g., [3] [8] [19]
[38]. The primary goal of these applications is to give
the user an illusion of presence of “being there” in the
VR [11] [16]. To create an immersive experience, the
connection between the user and the VR, as well as be-
tween the player and the avatar, has to be established.
Immersive VR can be used to induce ownership over a
virtual body that substitutes the real body, as seen from
the first-person view [2] [31]. The person exploring VR
would then be able to look down and perceive the avatar
as her/his own body. Hence, by synchronizing the body
movement of the user and their avatar, a positive effect
on the cognitive ability of the user as well as the feel-
ing of agency over the avatar can be achieved [8] [31].
Especially multiplayer VR games have the requirement
of synchronizing the whole body in real-time in order
to create deeper immersion [20]. Recent commercial ap-
proaches use infrared VR devices to track the full-body
movements in real-time2. Furthermore, other develop-
ers provided Unity 3D game engine based asset pack-
ages to achieve full-body tracking, e.g. Vive IK Demo3

and Final IK4. However, to the best of our knowledge,
there is no research on evaluating these existing com-
mercial kinematic solutions, particularly regarding its
accuracy and latency.

Tracking and representing body movements, regard-
less of the user orientation, can be challenging. Although
common devices implement body tracking to a certain
degree, most approaches are limited by either high la-
tency or insufficient accuracy. Due to this lack of data
about a user’s position and orientation in the world, the
current VR games typically do not track or represent
the body of the user [12].

In this paper, we implement a low-latency body
tracking approach for immersive VR-based applications.
By using only infrared VR Controllers, e.g. Vive Tracker
it is possible to transfer full-body player’s motions onto
a virtual avatar. In addition, end-to-end latency is mea-
sured. The main research contributions of our work are
the following:

– We develop a latency measurement tool in order to
evaluate the total delay of the proposed method. Us-
ing this tool, we want to show that the end-to-end
latency of the developed system stays below 20 ms

2 IKinema Orion: https://ikinema.com/orion, last visited
on April 3rd, 2018

3 Vive IK Demo: https://github.com/JamesBear/vive_
ik_demo, last visited on April 3rd, 2018

4 Final IK: https://assetstore.unity.com/packages/
tools/animation/final-ik-14290, last visited on April 3rd,
2018

since this satisfies the requrements of the VR expe-
riences.

– In contrast to systems using motion capture suits,
we only use a small number of sensors to avoid high
initial costs as well as complex setup. We do not
explicitly track each body joint. In our research,
we only track the position and orientation of the
end-effectors (e.g. hands). We then solve the Inverse
Kinematics (IK) problem to determine the angle of
other joints in order to enable full-body tracking.
This satisfies the desire to reduce the amount of
sensor.

– We use infrared VR Controller, which do not suffer
from occlusion and high latency, such as the Kinect
sensor.

– Our system is entirely based on low-cost hardware
and low-level game API. We can easily access the
lowest level in order to achieve maximal performance.
Additionally, because our body tracking solution should
be available e.g. for researchers to create immersive
VR experiences, we include source code, which can
be accessed on GitHub5.

The rest of this paper is structured as follows. Sec-
tion 2 provides the related work. In Section 3, the ap-
proach of body tracking using infrared sensors and a la-
tency measurement tool are described. An experimental
evaluation of the deployed system is given in Section 4.
A discussion of the results and a conclusion follow in
Section 5.

2 Related Work

2.1 Full-Body Tracking

Many recent research publications add a growing base
of evidence to support the use of VR and full-body
tracking. Examples recently showed the benefits of hav-
ing a full-body avatar in a virtual environment by demon-
strating the important role of realistic looking virtual
humans [27]. Furthermore, owning a virtual body and
perceiving it from the first-person perspective is also
important when performing reaching tasks in VR [42].

The most popular game systems, capable of motion-
sensing such as Microsoft Kinect6 or Nintendo Wii7 al-
ready provided a significant evidence that exergames
are entertaining and motivating [25]. However, both

5 Body Tracking Demo: https://github.com/CatCuddler/
BodyTracking, last visited on April 4th, 2018

6 Microsoft Kinect: https://developer.microsoft.com/
en-us/windows/kinect, last visited on January 28th, 2018

7 Nintendo Wii: https://www.nintendo.co.uk/Wii/
Wii-94559.html, last visited on January 28th, 2018

https://ikinema.com/orion
https://github.com/JamesBear/vive_ik_demo
https://github.com/JamesBear/vive_ik_demo
https://assetstore.unity.com/packages/tools/animation/final-ik-14290
https://assetstore.unity.com/packages/tools/animation/final-ik-14290
https://github.com/CatCuddler/BodyTracking
https://github.com/CatCuddler/BodyTracking
https://developer.microsoft.com/en-us/windows/kinect
https://developer.microsoft.com/en-us/windows/kinect
https://www.nintendo.co.uk/Wii/Wii-94559.html
https://www.nintendo.co.uk/Wii/Wii-94559.html

Real-Time Body Tracking in Virtual Reality using a Vive Tracker 3

Kinect versions suffer from inconsistent tracking, jit-
tering, and unreliable data [13]. Kinect V1 sensor is
only accurate when tracking gross movements such as
sit-to-stand, but is very poor for fine movements such
as hand clapping, toe or finger tapping [15]. Due to
the new technology, the Kinect V2 which is based on
the time-of-flight principle is more accurate in detecting
small movements and provides better tracking results.
However, the latency of the new version still remains
high, approximately at 170 ms when combined with the
Oculus Rift [4]. An additional disadvantage of a single
Kinect sensor is, that it can only poorly track the ro-
tation of body parts and is incapable of tracking when
the user stands sideways [13].

Although the Kinect suffers from occlusion, provides
noise in skeleton tracking and has a high latency, it is
the most popular device for body tracking. Due to its
adequate accuracy and low cost, many researchers are
using this technology to track the user’s movements.
Shum and Ho [37] investigated the major problems of
Kinect and developed a framework for a best-matched
posture from the captured motion. The proposed so-
lution can overcome the problem of missing Degree of
Freedom (DoF) due to occlusions and noises. Sra and
Schmandt [38] used Kinect V2 devices to track objects
and users. An Oculus Rift DK2 is used for tracking of
the head rotation. Collingwoode-Williams et al. [8] used
Kinect V1 to research the effect of limb and arm syn-
chronization on body ownership in VR. In their study,
the user wearing a HMD was able to see a gender-
matched avatar in a virtual mirror, that moved its limbs
synchronously with the user. Bolton et al. [3] developed
a VR-based exergame, based on the game Paperboy,
where the player is wearing a VR headset and driv-
ing a bicycle. The user movements of throwing newspa-
pers into the neighborhood mailboxes were tracked by
a Kinect camera. The arms were syncronized to create
a high level of immersion. To overcome occlusion prob-
lems, other studies even use multiple Kinect devices to
track a single user [10].

Unfortunately, the Kinect sensor in combination with
VR it inaccurate and will eventually show a false avatar
posture [41]. To provide a more accurate tracking, other
recent studies have attempted to use a suit-based mo-
tion capture technology. These body-tracking suits have
attached infrared LED markers which can be then de-
tected by a high-speed camera. Peck et al. [31] de-
veloped a VR experience, whereby the motions were
tracked by the OptiTrack8 system with 12 cameras. The
movements could be reconstructed at 100 Hz and syn-
chronized with the virtual avatar. The users wearing

8 OptiTrack system: http://www.optitrack.com, last vis-
ited on January 17th, 2018

the HMD could see their virtual body from the first-
person perspective as well as a reflection in a virtual
mirror. Likewise, Banakou et al. [2] used 34 cameras to
track user’s motions. Chan et al. [6] proposed a dance
system using a similar optical motion capture system.
The user, wearing the motion capture suit, can learn
new dance movements by imitating the motions demon-
strated by a virtual teacher and listening to the feed-
back. Since suit-based tracking technology is capable of
real-time full-body tracking of multiple users, some au-
thors developed VR multiplayer applications or games,
e.g. creating a physical condition control for athletes
and dancers [22]. In contrast to a single infrared cam-
era, such as Kinect, a wearable motion capture suit is
capable of a very accurate body tracking. However, it
is very expensive and complicated to use. Using a suit
with LED markers for tracking requires a setup area
and multiple high-speed cameras. Due to the high ini-
tial cost and complex setup, such a motion capture sys-
tem is in general not applicable for home-based usage.

For tracking full-body movements also Inertial Mea-
surement Units (IMUs) can be attached to the user’s
body. Different commercial tracking systems, such as
PrioVR9, Perception Neuron10 or Xsense11 are based on
IMU. Perception Neuron furthermore utilizes a special
data glove with a Vive Tracker in order to track hand
position as well as individual fingers. Tsai et al. [43] de-
veloped an own wearable sensor to determine the skele-
ton posture in real-time. Moreover, measurement val-
ues of the integrated sensors of a HMD can be used to
recognize steps [5]. Applying this step detector, the re-
searchers were able to synchronize the feet of the user
while walking on a treadmill. The user can then look
down and see her/his virtual body from the first-person
perspective as she or he would in the real world. In an-
other work, an IMU is attached to a bicycle to detect
the steering and breaking information [28]. The player
movements have been detected while the player was
sitting on the bicycle with the feet on the pedals and
hands on the handlebar.

2.2 Inverse Kinematics

Recent studies have attempted to use IK to determine
a set of appropriate joint configurations based upon
the desired end-effector position. IK approaches based
on Jacobian are originally used in robotics in order to

9 PrioVR: https://yostlabs.com/priovr/, last visited on
July 31st, 2018
10 Perception Neuron: https://neuronmocap.com, last vis-
ited on July 31st, 2018
11 Xsense: https://www.xsens.com/, last visited on 31st
July, 2018

http://www.optitrack.com
https://yostlabs.com/priovr/
https://neuronmocap.com
https://www.xsens.com/

4 Polona Caserman et al.

control (industrial) manipulators and were already pre-
sented in the 80’s [30] [29]. The IK problem, to provide
a solution that satisfies the positional and orientational
constraints of each specific joint, has been well studied.
Kenwright [24] presented a realistic and robust method
for solving nonlinear IK problems with angular limits
using the Gauss-Seidel iterative method. The proposed
method merely requires a small number of iterations
and needs only a few milliseconds to compute the solu-
tion. Aristidou and Lasenby [1] proposed a novel heuris-
tic method, combining forward and backward IK. Other
recent studies improved IK solutions using a multivari-
ate Gaussian distribution model, which precisely speci-
fies the joint constraints of a kinematic skeleton by inte-
grating bio-mechanical properties and physical capacity
of a human [18]. Additionally, IK systems based on a
probabilistic model of learned human poses were pre-
sented [17]. However, such a system can only produce
the most likely pose satisfying the constraints. Other
researchers try to improve tracking quality by taking
advantage of neural networks to reconstruct the mo-
tions, such as walking, jogging, jumping, crouching and
turning [20].

2.3 Latency

To improve the feeling of presence in the VR, merely
tracking user movements in order to synchronize the
movements with those in VR is not sufficient [8] [19].
Similarly, the total delay from the time a motion oc-
curs, to the time the results of that motion are dis-
played, should be well considered. A high frame rate
and low HMD latency must be ensured in order to cre-
ate an immersive VR experience [12]. On the one hand,
a high latency of the HMD can contribute to cyber-
sickness symptoms of disorientation, headache, nausea,
and dizziness [7] [40]. On the other hand, a big de-
lay between a physical movement and an output image
can decrease the user’s sense of immersion [12] [14].
Especially in VR, the end-to-end latency should not be
higher than 20 ms [32]. Kasahara et al. [22] also showed
similar results. The researchers found that a high la-
tency (> 30 ms) will break the sense of agency and
body ownership. Therefore, when developing VR expe-
riences, it is important to keep the end-to-end latency
as low as possible.

Previous works have shown that one or more syn-
chronized cameras can be used to measure the latency
in an immersive virtual environment [14] [33]. By film-
ing the tracked real object and the associated output of
the virtual environment, the delay can be determined
using image processing techniques.

3 Approach

To develop a reliable real-time body tracking system,
that can be used in an immersive VR experience, the
HTC Vive HMD and the Vive Tracker are used to track
the movements of the user. By using two “Lighthouse”
position-sensing base stations and the VR devices with
a large number of infrared sensors, such a system suf-
fers much less from occlusion than a single Kinect de-
vice. With this technology, we can develop a reliable
full-body tracking system which is able to provide ac-
curate user posture, regardless of the user orientation.
Thereby, the technical requirements of using only a
small number of sensors and avoiding of high costs as
well as complex setup (see Section 1) are satisfied. With
an accurate real-time body tracking solution and an ef-
ficient IK solver, the virtual character can be synchro-
nized with the user. The person wearing a HMD is then
able to view the virtual body from the first-person per-
spective.

3.1 Development of The Body Tracking System

In this section, the approach of the real-time body track-
ing system to determine user movements will be de-
scribed. Because this system should be used to synchro-
nize the virtual avatar with the body movements of the
user, an articulated character model with a skeleton
must be created. Then, by obtaining the positional and
rotational data of the Vive Trackers that are strapped
to hands and feet, the full-body motions of the user
can be continuously tracked. Through the efficient im-
plementation of the iterative method for solving the IK
problem, a set of appropriate joint configurations in an
articulated model based upon a desirable end-effector
position can be determined in only a few iterations. Fi-
nally, the skeleton is animated according to the calcu-
lated positions and orientations of the bones. In the fol-
lowing, a detailed description of these individual steps
will be given. The flow chart for the body-tracking sys-
tem is presented in Figure 1.

3.1.1 Character Model

An articulated character with a skeleton was modeled
with the MakeHuman12 open source tool. A skeleton
of a small number of bones was consciously chosen in
order to easily define joint constraints to solve the IK
problem and to animate the user’s motions, which will

12 MakeHuman: http://www.makehuman.org, last visited on
February 3rd, 2018

http://www.makehuman.org

Real-Time Body Tracking in Virtual Reality using a Vive Tracker 5

Inverse Kinematics AnimationPosition and Rotation Tracking

Transform to Local
Coordinate System Calculate Error Calculate Jacobian

Calculate
Pseudo-Inverse

Calculate
joint anglesApply Quaternions

J
−1

J

||Δ e ||<ϵ || it
current

>it
max

Update
new positions

Interpolate
Quaternions

Vertex Skinning

Raw Position and
Rotation Data

p
raw

[t] ,q
raw

[t]

p trans[t]=T init
−1⋅praw [t] ||Δ e ||

Δθ

v
new

=∑
n=0

n−1
(Fn⋅v)⋅wn

Rotate to Local
Coordinate System

q trans[t]=qinit
−1⋅qraw [t]

Fig. 1 Flow chart for the body-tracking system. After obtaining the position and rotation of the Vive Controller, we solve the
IK problem in order to determine the appropriate joint configurations. In the last step, we animate the character, according
to the skeleton.

be described later. To facilitate the transfer of the char-
acter model to the Kore13 framework, the Open Game
Engine Exchange format (OpenGEX14) is used. Both,
the OpenGEX format and the Kore framework are open
source projects. OpenGEX exports skinned meshes (ver-
tex data, skeleton, bind-pose transforms, bone influ-
ence weighting data) in a human-readable text-based
file. Kore is a low-level game library and hardware ab-
straction framework, which is implemented in the C++
programming language. It provides the necessary func-
tionality to develop games and multimedia applications
with high performance.

A skeleton is defined as a tree structure of bone
nodes, where each of these nodes is described by a 4×4

transformation matrix. The transformation matrix de-
scribes the bind-pose of a bone node, thus, the default
pose of the character mesh before any bone transfor-
mation is applied. When the animation is applied, this
matrix is used to calculate the new position and orien-
tation. However, in order to prevent unnatural-looking
poses while animating the character, we have to define
a DoF for each joint. We have to restrict the possible
rotations, i.e. rotations around the x, y, and z-axis. The
generated skeleton gives us 56 DoF in total, as it can
be seen in Table 1.

The constraints are defined by creating an axis vec-
tor a ∈ R3×1 for each joint and setting the angular
limits for each of the axes. To prevent such an abnor-
mal pose, like it can be seen in Figure 2, a constraint for
the knee has to be specified, i.e. aknee =

[
1 0 0

]T with
angular limits minknee = 0 and maxknee = 2. Hence,
the knee can rotate only around the x-axis and the an-

13 Kore: https://github.com/Kode/Kore, last visited on
April 3rd, 2018
14 OpenGEX: http://opengex.org, last visited on February
21st, 2018

Fig. 2 Character foot reached the desired end position in
both variants. However, only the left body posture is natural.
On the right, an unrealistic pose is shown.

gle can be only in the range of 0 and 2 radians. When
a joint rotates around multiple axes, consequently an-
gular limits for each axis have to be specified.

3.1.2 Position and Rotation Tracking

The position and rotation tracking is the core task of
the full body-tracking system to represent the move-
ments of the user in the VR. For tracking Vive Trackers

Table 1 DoF of the articulated character model. The num-
ber in the brackets indicates how many of these joints exist
in the skeleton.

Joint DoF Joint DoF

Head (1) 3 Foot (2) 3
Neck (1) 3 Ball (2) 3
Pelvis (1) 3 Clavicle (2) 2
Spine (3) 3 Upper arm (2) 3
Thigh (2) 3 Lower arm (2) 2
Calf (2) 1 Hand (2) 2

Total: 56

https://github.com/Kode/Kore
http://opengex.org

6 Polona Caserman et al.

are strapped to hands and feet. The sensors can accu-
rately track the yaw, pitch and roll movements as well
as the spatial position.

The coordinate system of the avatar is attached
on the floor and is a right-handed coordinate system,
where the x-axis points to the left, the y-axis points
backward and the z-axis points upwards. To locate the
character so that the user wearing HMD can look down
and see her/his virtual body, the character has to be
transformed, rotated and scaled. First, the character is
scaled by a Sinit ∈ R4×4 matrix so that the eye height
of the character corresponds to the height of the HMD.
The sensor measurements of the HMD are provided in
a head-fixed coordinate system, where the x-axis points
to the right, the y-axis points upwards and the z-axis
points backward. To calculate the scale factor, we can
divide the current height of the user (y position of the
HMD, py,hmd) by the character height (z position of the
character head bone, pz,head), i.e. s = py,hmd/pz,head.

In addition, we have to rotate the character so that
its orientation coincides with the orientation of the user.
Let qinit ∈ R4×1 be the initial quaternion that ro-
tates the character so that the virtual body looks in
the same direction as the user. Quaternions are used
because they are very simple, efficient and do not suf-
fer from Gimbal lock [36]. However, because the local
transformation of the character is calculated by apply-
ing the scale, rotation and lastly translation matrix,
we have to convert the quaternion to a matrix. To in-
clude quaternion calculations in a regular, matrix-based
transformation pipeline, we can represent the quater-
nion q =

[
x y z w

]T as a matrix [36]:

Rinit =

1− 2y2 − 2z2 2xy − 2zw 2xz + 2yw

2xy + 2zw 1− 2x2 − 2z2 2yz − 2xw

2xz − 2yw 2yz + 2xw 1− 2x2 − 2y2

(1)

Finally, we translate the character to the position
of the HMD, represented by a vector phmd ∈ R3×1. Let
Tinit ∈ R4×4 be the initial transformation matrix and
is described as:

Tinit =

1 0 0 px,hmd

0 1 0 0

0 0 1 pz,hmd

0 0 0 1

 (2)

Combining all three matrices, the coordinate sys-
tem of the character is placed so that the user can look
down and see her/his virtual body. Multiplying the raw
positional vector praw[t] ∈ R4×1 of the Vive Tracker at
time step t with the inverse transformation matrix T†

will transform the sensor measurements to the charac-
ter local coordinate system:

T† =
(
Tinit ·Rinit · Sinit

)−1
, T† ∈ R4×4 (3)

ptrans[t] = T† · praw[t], ptrans[t] ∈ R4×1 (4)

Similar, the orientation of the Vive Tracker qraw[t] ∈
R4×1, has to be transformed as:

qtrans[t] = q−1init · qraw[t], qtrans[t] ∈ R4×1 (5)

3.1.3 Implementation of Inverse Kinematics with
reduced Jacobian Matrix

To solve the IK problem we use the transformed posi-
tional vector and the quaternion (rotation) computed in
the previous step. With the known desired position and
orientation of the end-effector (e.g., a hand or a foot),
the angle of each predecessor joint (e.g., an elbow or
a knee) can be computed using an iterative, numerical
method. An overview of the algorithm is as follows:

1. Calculate error between desired and actual position
as well as rotation

2. Check for convergence
3. Calculate Jacobian
4. Calculate Pseudo-Inverse
5. Calculate joint angles for each bone joint
6. Apply quaternions to the transformation matrix
7. Update new positions

In each iteration, in the first step, an error between
the desired and actual position ∆epos as well as the de-
sired and current rotation ∆erot of the end-effector has
to be calculated. Subsequently the error∆e = [∆epos;∆erot]

is normalized. When checking for convergence in the
second step, the error is compared with the maximum
error threshold, i.e. ||∆e|| < ε. When the end-effector
is close enough to the desired location or when there is
no significant change between current and desired ro-
tation, the algorithm will terminate. Because the end-
effector may not be able to reach the desired position,
we have to specify the maximal iteration number. This
can happen when the desired position is out of range
and therefore too far away to be reached. Otherwise, the
Jacobian matrix J is calculated in the third step. The
position and rotation values of the required axes can be
obtained from a combined transformation matrix:

0Cj =

[
0axj

0ayj
0azj

0pj

0 0 0 1

]
∈ R4×4, (6)

where 0aj ∈ R3×1 represents the global rotation around
the x, y and z-axis and 0pj ∈ R3×1 represents the global
position of the jth joint with respect to the origin.

Real-Time Body Tracking in Virtual Reality using a Vive Tracker 7

The Jacobian J is defined by the partial deriva-
tives of the joint angles and the difference between the
current position and the desired position of the end-
effector. It can be determined by computing the cross
product of the joint angle and the change in end-effector
location:

0Jn,j =
∂0pn

∂θj
=

[
0aj × (0pn − 0pj)

0aj

]
, 0Jn,j ∈ R6×1

(7)

where 0pn ∈ R3×1 represents the current position of the
end-effector, 0aj ∈ R3×1 the rotation axis and 0pj ∈
R3×1 the position vector of the jth joint. In order to
minimize the computational effort, we calculate for each
end-effector only three partial derivatives. In other words,
e.g. for a hand to reach the final position, we only de-
termine the position and orientation of the three pre-
decessor joints. The Jacobian J is then build as:

0J3 =
[
0J3,1

0J3,2
0J3,3

]
∈ R6×3, (8)

where the 0th joint specifies the root node and the 3th

joint the end-effector. Thus, to manipulate the hand,
we rotate the three predecessor joints, i.e. lower arm,
upper arm, and clavicle.

In the fourth step, the pseudo-inverse of the Jaco-
bian J has to be computed. Due to our adjustment of
the Jacobian matrix, it will always have the same di-
mensionality:

J−1left =
(
JTJ

)−1︸ ︷︷ ︸
3×3

JT . (9)

The calculation of the left pseudo-inverse will lead to
the determination of a smaller inverse matrix (3 × 3)
and is therefore advantageous.

In the fifth step, the joint angles are calculated by
multiplying the inverse Jacobian with the difference be-
tween desired and current position as well as rotation
of the end-effector, as it can be seen in Equation 10:

∆θ = J−1 ·∆e, ∆θ ∈ R3×1 (10)

In the sixth step, we can apply the new rotation to
the joints:

θ(k+1) = θ(k) +∆θ (11)

Before the quaternion can be applied to the trans-
formation matrix, the angular limits have to be ensured
as described in Section 3.1.1. Otherwise, the character
hand or foot will reach the desired position, however,
the individual joints within the kinematic chain can

cause unnatural movements. The joint rotations are en-
forced through clamping between a lower bound (LB)
and an upper bound (UB):

θ(k+1) =

LB if θ(k) + J−1∆e < LB
UB if θ(k) + J−1∆e > UB
θ(k) + J−1∆e otherwise

(12)

To apply the rotation to a joint, the quaternion is first
represented as a matrix (see Equation 1). The local
transformation matrix is then computed by multiplying
the bind transformation matrix with the new rotation
matrix.

Finally, in the last iteration step, the new rotation
of each joint in the skeleton is calculated by updating
the combined transformation matrix:

0Ci =
0Pi · Li, Ci ∈ R3×3 (13)

where 0Ci is the combined transformation matrix, Li is
the local transformation matrix of the ith bone and 0Pi

is the combined transformation matrix of the ith bone’s
parent. Thus, a bone’s combined transformation matrix
is determined by first applying its local transformation
and then by applying the local transform of its parent.
If the maximum number of iterations is not yet reached,
we go back to the first step. Otherwise, the algorithm
terminates.

3.1.4 Animation

To animate the avatar, the calculated new orientations
has to be applied to the bone joints. While solving the
IK, the quaternion of each joint was updated, depend-
ing on the desired position and orientation of the end-
effector. However, the difference between the new joint
orientation, compared to the joint orientation from the
previous frame, is eventually large. In this case, we have
to interpolate between the quaternions by applying the
SLERP method. Then, to calculate the new skinned
vertex position, we first have to calculate a final trans-
formation 0Fj by multiplying the combined transform
0Cj with the inverse transform matrix.

By iterating over all vertices, we calculate the new
position of every vertex with respect to the bone rota-
tion. Because each vertex and, above all, vertices near
the joint can be influenced by several bones, the new
position of the vertex is determined by a weighted aver-
age of the influential bone transformations. Therefore,
for each vertex, the new position vector is determined
by multiplying the final transform matrix of the bone
influencing this vertex with the current position vector

8 Polona Caserman et al.

and the bone weight. The final vertex position vnew is
computed as proposed by Kavan [23]:

vnew =

n−1∑
n=0

(0Fn · v) · wn, vnew ∈ R3×1 (14)

where v is the current vertex position, Fn is the final
transform of the nth bone, that influences vertex v and
wn is the weight of the nth bone.

Finally, the vertex buffer is updated with the new
calculated vertex positions and normals. The vertex
shader then uses this buffer to draw indexed vertices. In
the current implementation, the vertex skinning calcu-
lation is done on a Central Processing Unit (CPU), that
runs the sequential code as fast as possible. However,
especially in the context of VR games, the execution
speed has to be considered. Therefore, these computa-
tions could also be carried out by a Graphical Process-
ing Unit (GPU), that can do hundreds of calculations
in parallel. These would eventually speed-up the calcu-
lations of the animation system.

The currently developed prototype can track multi-
ple end-effectors in order to animate the virtual body.
In Figure 3 the actual posture of the user and the cor-
responding virtual reality image is shown. In this case,
the Vive Tracker was attached to the foot in order to
synchronize the virtual leg with the user’s motions.

3.2 Development of a Latency Measurement Tool

In the second part, a latency measurement tool was
implemented to measure the total delay of the imple-
mented body tracking system. The total delay of a VR-
based tracking system represents the time at which the
motion occurs, to the time the tracking system detects
this motion and the results are displayed on the HMD.
Using this latency measurement tool, we expect to show

Fig. 3 The user’s actual posture (left) and a first-person per-
spective of the user looking down at the virtual body (right).

that the total delay of the developed method stays be-
low 20 ms. This would satisfy the requirement for a
real-time VR experience [32] [22].

The easiest way to measure the latency is to record
the Vive Tracker and the output screen at the same time
with a high-speed camera. When the Tracker moves in a
specific pattern, a video can be analyzed frame by frame
in order to identify distinctive motions and to calculate
the delay between events. As proposed by Steed [40],
the Tracker can be bind to a string in order to swing
it. Applying this approach, the features can be identi-
fied by extracting the horizontal positions of both ob-
jects and detecting the local minima and maxima. By
calculating the deviation between the local minimum
or maximum of the Tracker and the local minimum or
maximum of the virtual object, the frame difference be-
tween them can be calculated and finally, the total delay
can be determined. Using this approach of identifying
the frames at which the Tracker changes the direction
and calculating the difference between them, the mea-
surements include only the end-to-end latency of the
developed application. However, we cannot make any
statement about the accuracy.

To measure the end-to-end latency, the steps de-
scribed below should be followed:

1. Load the video and select two bounding boxes, that
contain the Vive Tracker and the corresponding vir-
tual object

2. Extract the horizontal position of both bounding
boxes in each frame

3. Apply the Gaussian kernel to smooth the data and
normalize the samples

4. Identify distinctive motions by detecting local peaks
5. Calculate the frame difference and determine the

latency

Once a capture of the targets in motion has been
taken, an algorithm tracks their locations throughout
the video. For this purpose, we use a KCF tracking al-
gorithm, which is already implemented by OpenCV15

and is able to track multiple objects simultaneously. Af-
ter the KCF tracker is initialized, a video can be loaded
and two initial bounding boxes, one for the marker and
one for the VR object, are defined.

To detect distinctive motions, the horizontal posi-
tions of both bounding boxes are smoothed and nor-
malized. By applying the Gaussian kernel at different
scales, we reduce the noise and ensure smooth data.
Then the peaks, thus, the minima and maxima of both
curves have to be identified. When a peak is detected,

15 KCF Tracker: http://docs.opencv.org/trunk/d2/dff/
classcv_1_1TrackerKCF.html, last visited on February 17th,
2017

http://docs.opencv.org/trunk/d2/dff/classcv_1_1TrackerKCF.html
http://docs.opencv.org/trunk/d2/dff/classcv_1_1TrackerKCF.html

Real-Time Body Tracking in Virtual Reality using a Vive Tracker 9

the frame number is saved in an array. This results in
two equally long arrays, one containing frame numbers
of the peaks for the Vive Tracker and the other con-
taining frame numbers for the virtual object.

Once all frames have been processed and the fea-
tures were extracted, the time difference between the
two events tmotion− tdisplay is calculated. The latency is
calculated as follows:

t =
1

N

N∑
i=0

(
Xi − X̃i

)
· 1000
FPS

ms, (15)

where N is the number of peaks identified in a video,
Xi is the frame number of the ith peak for the Vive
Tracker, and X̃i is the frame number of the ith peak
for the virtual object. The total delay is then deter-
mined by multiplying the mean difference between two
events with the time, the camera needs to capture a
new image. The flow chart of the latency measurement
tool, including the entire calculation, is presented in
Figure 4.

4 Results

The main objective of this research is to evaluate the
end-to-end latency of the proposed method as well as
the accuracy and reliability of motions tracking with
a Vive Tracker. To evaluate the performance of the
tracking system, we determined the total delay with
the developed latency measurement tool. We analyzed
which limitations and errors can occur and how we can

Apply the Gaussian kernel,
normalise samples and detect peaks

Load video and select bounding
boxes

Calculate the frame Difference

Determine the latency

t=
1

N
∑

i=0

N

(X i− X̃ i)⋅
1000

FPS
ms

n frames

Extract the horizontal position

latency=tmotion−tdisplay

Fig. 4 Flow chart of the latency measurement tool. The
blue curve corresponds to the horizontal positions of the Vive
Tracker and the red curve corresponds to the horizontal posi-
tions of the virtual object. One can easily recognize, that the
red curve is shifted to the right. This horizontal difference of
both curves indicates the latency of the distinctive motions.

Fig. 5 Strapped Vive Tracker during the evaluation (left).
To track the leg movements, an additional Tracker must be
strapped to the ankle.

minimize them. In addition, we evaluated if the per-
son exploring VR can perceive the avatar movements
as her/his own.

For the evaluation, an HTC Vive was connected to
a computer running Microsoft Windows 10 to enable
full-body tracking of the user. The computer has an
3.30 GHz Intel CoreTM i7-5820K processor with 16 GB
RAM and a NVIDIA GeForceTM GTX 980 graphics
card. It has sufficient processing power and it fulfills
the minimal requirements for the HTC Vive16.

4.1 Evaluation of the Body Tracking System

The evaluation of the body tracking system was con-
ducted in the TU Darmstadt, Germany. A total of 13
subjects participated, 1 female and 12males with an av-
erage age of 27 years. First, the participants were asked
to fill out the pre-study questionnaire, which included
personal questions about gender, age, game consump-
tion habits, VR experience and body tracking. After-
ward, the participants tried out the simulation. They
strapped the Vive Tracker to the left and right wrist,
as it can be seen in Figure 5. The bands were able to
fix the Tracker strongly enough so that it could not slip
away and could remain in place for the time of the eval-
uation. For the immersive experience, the subjects were
wearing an HTC Vive HMD to view the virtual char-
acter from the first-person perspective. The simulation
was then run for approximately 5 Minutes. Finally, the
participants were again asked to fill out the post-study
questionnaire.

The results of the pre-study questionnaire (see Fig-
ure 6) showed, that almost the two-fifths (38.5%) play
video games more than seven hours per week. However,
almost one-third (30.8%) never play video games. Fur-
thermore, the majority (84.6%) had already prior expe-
rience with HMDs, e.g., Oculus Rift or HTC Vive. On

16 Minimum requirements: https://www.vive.com/us/
ready/, last visited on February 5th, 2018

https://www.vive.com/us/ready/
https://www.vive.com/us/ready/

10 Polona Caserman et al.

Fig. 6 The results of the pre-study questionnaire.

the one hand, some subjects reported, that they already
suffered from cybersickness, such as dizziness, nausea
or a headache while wearing a HMD for a longer time.
On the other hand, some of them also explicitly stated,
that they never feel side effects of any kind. The major-
ity, however, criticised an insufficiently low resolution of
the currently available HMDs. Most of the participants
(84.6%) can imagine body tracking in the context of
VR-based games. Three-fourth (76.9%) would like to
have an avatar, which synchronizes the movements and
one-fourth (23.1%) is not sure if they want an avatar.
However, the results of the post-study questionnaire re-
veal that almost all participants (92.3%) would like to
have body tracking in VR games. Body tracking has
been proposed in various application scenarios, e.g.,
goalkeeper, ego-shooter games and other first-person
games, where the player can interact with virtual ob-
jects. The subjects furthermore suggested body track-
ing in medicine, where the user can remotely control the
surgery with her/his own movements. VR in a combi-
nation with the body tracking could be used to train
the users to complete a certain task correctly. Further
scenarios could include virtual video calls or meetings.

Figure 7 shows the mean response of selected ques-
tions from the post-study questionnaire, along with their
associated standard deviations. The results show that
the majority in general likes the VR as well as the idea
of body tracking in the VR17. Furthermore, it was found
that the subjects could feel as if they were “present” in
the virtual environment and could also identify them-
selves with the avatar18. The subjects liked it, that they
could see the full-body avatar and not only the arms, as

17 Question: “I find the VR in general exciting”, five-level
Likert scale, N = 13, AV R = 4.92, SD = ±0.27, question: “I
like the idea of body tracking in VR”, five-level Likert scale,
N = 13, AV R = 4.92, SD = ±0.27
18 Question: “I felt like I was a part of the VR”, five-level
Likert scale, N = 13, AV R = 4.3, SD = ±0.48, question: “I

in the most current first-person games. Some subjects
stated they liked that the avatar reflects the movements
of the arms, however, they missed the tracking of the
legs. Since the current implementation can handle mul-
tiple end-effectors, we would only need additional Vive
Tracker in order to track the hands and legs simultane-
ously.

The results of the body tracking show that the move-
ments of the avatar corresponded to the real move-
ments of the user and that tracking provided accurate
positions19. However, the orientation of the elbow did
not always correspond to the reality. Some subjects re-
ported, that the elbow was sometimes twisted or that
they could perceive some inaccuracies in arm tracking.
To evaluate the accuracy, the subjects were asked to
perform various movements, including small and large
movements at different speeds. Although the most sub-
ject stated that the tracking was quite accurate, some-
times the position of the virtual hands was different
from the position of the real hands. This was especially
noticeable when touching the own arms or hands. Sub-
jects reported, that while the fingers were touching in
the real world, the virtual fingers were too far away
from each other or they were overlapping. In order to
improve the accuracy, the length of the upper and lower
arm could be considered. Moreover, a collision detec-
tion should be incorporated in order to prevent that
the body limbs are overlapping.

The results of the tracking itself suggest, that the
subjects only perceived a low latency20. A low latency
was identified for very fast movements by only one par-
ticipant, who plays the games more than sever hours
a week. As it will be described in the next section,
the total delay of the tracking remains very low, at
6.71±0.80ms. Some subjects reported that the tracking
had some jitter problems21. This sometimes happened,
when the Vive Tracker was not able to detect enough
laser sweeps from the base stations. When holding an
arm in a steady position, no noise or other tracking
errors could be identified. Three subjects, however, re-
ported, that the arm was for a short moment locked at
some position. Then, after the subjects stretched the
arm again, the arm “jumped” to the right position.

could identify myself with the avatar”, five-level Likert scale,
N = 13, AV R = 4.07, SD = ±0.49
19 Question: “The movements in the VR have corresponded
to the real movements”, five-level Likert scale, N = 13,
AV R = 4.23, SD = ±0.59, question: “The tracking was
accurate”, five-level Likert scale, N = 13, AV R = 4.07,
SD = ±0.64
20 Question: “The movements of the avatar were delayed”,
five-level Likert scale, N = 13, AV R = 1.23, SD = ±0.43
21 Question: “The tracking had some jitter problems”, five-
level Likert scale, N = 13, AV R = 2.37, SD = ±1.25

Real-Time Body Tracking in Virtual Reality using a Vive Tracker 11

Fig. 7 Rating the simulation, where 1 stands for totally incorrect, 2 for kind of incorrect, 3 for not sure, 4 for kind of correct
and 5 for totally correct. The bar shows the mean responses to questions from the post-study questionnaire and the error bars
indicate the standard deviations.

Finally, the results show that almost all subjects
would like to have body tracking also in other VR games22.
For a more immersive experience, finger recognition
should be included, e.g., using a Leap Motion23 device
or special gloves such as Hi5 VR Gloves24, VRgluv25,
HaptX26, VRtouch27), which can detect the motion of
each individual finger. Some subjects stated that they
liked to have nothing to hold in their hands. However,
the Vive Tracker that was fixed to a hand, is big and
is actually developed to be attached to sporting equip-
ment. In the future work, we could also create a smaller
and lighter Tracker, e.g. using only a few infrared sen-
sors in a bracelet that can be attached to the hand as
well as ankle.

The total number of 13 participants is too low for
any statistical conclusions. In addition to the problem
of too few participants, some of them were friends or
colleagues. Although the study participants were asked
to answer the questions honestly, one cannot rule out
that the feedback still was more beneficial. Therefore,
an evaluation with more subjects should be carried out
in a future work.

22 Question: “I would like body tracking also in other VR
games”, five-level Likert scale, N = 13, AV R = 4.92, SD =
±0.27
23 Leap Motion: https://www.leapmotion.com, last visited
on January 19th, 2018
24 Hi5 VR Glove: https://hi5vrglove.com, last visited on
January 19th, 2018
25 VRgluv: https://vrgluv.com, last visited on January
19th, 2018
26 HaptX: https://haptx.com, last visited on January 19th,
2018
27 VRtouch: ttps://www.gotouchvr.com/order_vrtouch/,
last visited on January 19th, 2018

4.2 Evaluation of Latency Measurements

For the second part of the evaluation, an estimation
using a latency measuring tool based on an automatic
frame counting method using a video camera was made.
The Vive Tracker and the output of the virtual environ-
ment were captured by a single phone camera (iPhone
SE) at 240 FPS and 1280 × 720 pixels resolution. The
virtual environment was rendered on a gaming monitor
with a 144 Hz refresh rate and G-Sync support. Thanks
to G-Sync, the frame rate of the output device can be
adapted which allows us to maintain the frame rate at
the highest possible value of the VR system. Thus, it
was possible to ensure a frame rate of 90 FPS.

In the first step, the latency of the Vive Tracker it-
self was determined. Thus, the latency of the Tracker
as provided by the Vive system, without further pro-
cessing (thus, without IK or other calculations), was
measured. The measurements have shown a latency of
6.07± 1.36 ms. Since the developed system cannot ob-
tain a better latency than the one provided by the Vive
system, we want to get as close to the value as possible.

In the second step, the latency of the developed
body tracking system using a Vive Tracker is measured.
That is the total time between making a movement,
sensing it by the Vive system, solving the IK problem
and displaying the motion. Table 2 shows the mean and
standard deviation of the measured latency due to the
different maximum number of iterations. For each trial
(5, 10, 30, 50 and 100 maximum number of iterations),
9 measurements were provided and the average (AVG),
as well as the standard deviation (STD), were calcu-
lated. As one can see, the body tracking system with
5 maximum number of iterations shows the worst re-
sults with an average delay of almost 200 ms. With a
higher iteration number (10, 30, 50 and 100), the de-

https://www.leapmotion.com
https://hi5vrglove.com
https://vrgluv.com
https://haptx.com
ttps://www.gotouchvr.com/order_vrtouch/

12 Polona Caserman et al.

Table 2 Measured latency due to the different maximal steps
of the IK solver.

Max Iterations Latency

5 185.59± 1.30 ms
10 55.24± 1.62 ms
30 33.33± 0.52 ms
50 23.78± 0.30 ms
100 6.71± 0.80 ms

lay will greatly decrease. From these results, we can
assume, that with a very small maximum number of it-
erations, the end-effector will move towards the desired
position, but the joint angle will change over time only
very slowly. In this case, the IK solver will not be able
to provide an appropriate set of joint configurations in
order to reach the desired position as smoothly, rapidly
and as accurately as possible. The results of the latency
evaluation suggest, that the maximum number of iter-
ations is very important for the performance of the IK
solver.

As presented in Figure 8, with a higher iteration
number, the latency will exponentially fall. One would
normally expect increasing computational costs in terms
of time. As already mentioned before, with fast move-
ments, a very small number of iterations will indeed
move the end-effector towards the desired position. How-
ever, it will always stay too far away from this desired
position. Thus, for fast movements, we obtain better
results with a higher number of iterations. If the speed
of the movement is very slow, even a lower number of
iterations is enough for the convergence because the po-
sition in the current frame is almost the same as in the
previous frame. As described in Section 3.1.3, the IK
solver converges if the end-effector is close enough to the
desired location or when there is no significant change
between current and desired rotation. However, on av-
erage after 95 iterations there is no significant change
between desired and current position as well as orienta-
tion. If the algorithm would terminate at much higher
iteration number, without checking if the end-effector is
close enough to the desired position, the latency would
increase. Due to many calculations (e.g. calculating an
inverse of a non-square matrix), it would not be possi-
ble to complete the computations before the next frame
needs to be rendered. Thus, the frame rate would drop
rapidly, which would decline the performance.

The end-to-end latency of 6.71 ms shows that the
implemented solution can reconstruct the motions in
real-time. Since the result stays well below 20 ms, it
meets the requirements for real-time VR experiences [32]
[22]. Compared to the results based on the publication
by Jiang et al. [20] with a total latency of 7 ms, our so-
lution provides a slightly better result. In this work, two

Fig. 8 Visualisation of the measured latency. With the
higher iteration number, the latency will exponentially fall.
However, with a higher maximum number of iteration, the
frame rate will drop since we would not be able to complete
all computations before the next frame needs to be rendered.

Vive Controllers were used. Similarly, Seele et al. [35]
also used two Vive Controller. However, only the upper
body was reconstructed and no latency was measured.
The Table 3 summarizes the end-to-end latencies of the
related work. All these publications tracked full-body
movements and visualized an avatar. As it can be seen,
we could achieve similar results or even a much lower
latency.

Compared to the latency of the Vive system (with-
out IK solution) with 6.07 ms, we can still improve our
method. We expected a total delay below 11.11ms since
this would satisfy the refresh rate of the HTC Vive
HMD, which is 90 Hz. Thus, the latency measurements
fulfill our expectations. However, because the tracked
and the corresponding VR objects were captured with
a camera at 240 FPS, a latency below 4.16 ms cannot
be detected at all. In the future work, an even better
camera, which is capable of recording at a high-speed,
could be used in order to measure the latency even more
accurately.

The overall evaluation results suggest that the algo-
rithm can be further optimized. On the one hand, the
current performance of the implementation can be im-
proved, so that a smaller number of iterations would be

Table 3 Latency results of the related work

Author Latency

Latoschik, Lugrin et al. [26] 73 ms
Desai et al. [10] < 50 ms
Kasahara et al. [22] ≈ 70 ms
Latoschik, Roth et al. [27] < 150 ms
Jiang et al. [20] 7 ms
Schmidt et al. [34] < 100 ms
Thomas et al. [42] 39 ms
Johnson et al. [21] > 300 ms

Real-Time Body Tracking in Virtual Reality using a Vive Tracker 13

needed to obtain the best solution. Therefore, we must
first evaluate the performance of computing the Jaco-
bian inverse. In the current implementation, a pseudo-
inverse method is used to approximate the inverse of the
Jacobian matrix. By applying a more computationally
efficient approach to calculate the inverse, e.g. damped
least squares, we could reduce the computational cost,
complex matrix calculations, and singularity problems.
On the other hand, we could minimize the user’s expe-
rience of latency by predicting their movements. More
specifically, we could analyze the posture of the user
and their movements in order to predict the actions in
the virtual environment to further reduce the latency.

5 Conclusion

In this paper, a novel body tracking system using IK
approach with reduced Jacobian Matrix was developed.
Such a real-time solution can be used for immersive
VR-based games. By strapping only a small number of
Vive Tracker to the player, the full-body motions of the
player can be transformed into a virtual avatar. With
the tracked motions even the gestures can be recognized
in order to create multiplayer VR experiences. The eval-
uation with the latency measurement tool showed a
very low delay of only 6.71 ± 0.80 ms. Thus, the re-
sults show that the proposed method is satisfied with
the technical requirement of the HTC Vive HMD and
fulfill our expectations. Furthermore, compared to the
related work, our latency evaluation show similar or
even better results. Our system can provide an appro-
priate set of joint configuration in order to reach the
desired position as smoothly, rapidly and as accurately
as possible in real-time. The evaluation with the partic-
ipants revealed that the position and orientation of the
arms were accurately tracked. Because the movements
of the virtual body corresponded to the real movements
of the users, the user could feel like they were a part of
the VR and could identify themselves with the avatar.
The evaluation with the subjects also validated that
only a low end-to-end latency could be perceived by a
minority.

Future research will focus on making the body track-
ing even more robust and reliable. The effectiveness
of the iterative method to solve the IK should be im-
proved. Therefore, we should reduce the computational
cost by minimizing the maximum number of iterations
that are needed to calculate the appropriate orientation
of bones. Especially, because there is no objective eval-
uation on the accuracy in this research (the accuracy
was only evaluated with the subjects), in future work
a tool should be developed in order to measure how
accurate the developed body tracking system is.

Since in the current evaluation the participants could
see the full-body avatar, but only the hands were ani-
mated, also feet should be animated in the future work.
By attaching an additional Vive Tracker to the back
or hip as well as feet, the user should be able to see
an animated avatar while walking, dancing or jump-
ing. To further improve the immersion in the VR ex-
perience, the steps of the user could be identified in
order to create stepping sound. Furthermore, we could
do a comparative study, comparing different presence
approaches, e.g. full-body animated avatar vs. only an-
imated hands as well as even showing only the Vive
Controller or Tracker.

In addition, collision detection should be considered,
e.g. to interact with the environment. Collision detec-
tion is also important in the detection of body move-
ments since we do not want the body limbs to inter-
sect. When the user tries to touch the virtual body,
the collision detection should prevent that the hands
go through the body. Another important aspect is the
appearance of the avatar. Therefore, a tool to person-
alize the avatar body, e.g., based on muscles, clothes
and skin color should be integrated into the pipeline,
to create an even more immersive VR experience.

References

1. Aristidou, A., Lasenby, J.: FABRIK: A Fast, Iterative
Solver for the Inverse Kinematics Problem. Graphical
Models 73(5), 243–260 (2011)

2. Banakou, D., Groten, R., Slater, M.: Illusory Ownership
of a Virtual Child Body Causes Overestimation of Ob-
ject Sizes and Implicit Attitude Changes. Proceedings of
the National Academy of Sciences 110(31), 12846–12851
(2013)

3. Bolton, J., Lambert, M., Lirette, D., Unsworth, B.: Pa-
perDude: A Virtual Reality Cycling Exergame. In: CHI
’14 Extended Abstracts on Human Factors in Comput-
ing Systems, CHI EA ’14, pp. 475–478. ACM, New York,
NY, USA (2014)

4. Botev, J., Rothkugel, S.: High-Precision Gestural Input
for Immersive Large-Scale Distributed Virtual Environ-
ments. In: Proceedings of the 9th Workshop on Mas-
sively Multiuser Virtual Environments, MMVE’17, pp.
7–11. ACM, New York, NY, USA (2017)

5. Caserman, P., Krabbe, P., Wojtusch, J., von Stryk, O.:
Real-Time Step Detection Using the Integrated Sensors
of a Head-Mounted Display. In: 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC),
pp. 3510–3515 (2016)

6. Chan, J.C.P., Leung, H., Tang, J.K.T., Komura, T.: A
Virtual Reality Dance Training System Using Motion
Capture Technology. IEEE Transactions on Learning
Technologies 4(2), 187–195 (2011)

7. Choi, S.W., Seo, M.W., Lee, S.L., Park, J.H., Oh, E.Y.,
Baek, J.S., Kang, S.J.: Head Position Model-based La-
tency Measurement System for Virtual Reality Head
Mounted Display. SID Symposium Digest of Technical
Papers 47(1), 1381–1384 (2016)

14 Polona Caserman et al.

8. Collingwoode-Williams, T., Gillies, M., McCall, C., Pan,
X.: The Effect of Lip and Arm Synchronization on Em-
bodiment: A Pilot Study. In: 2017 IEEE Virtual Reality
(VR), pp. 253–254. IEEE (2017)

9. Dempsey, P.: The teardown: HTC Vive VR headset. En-
gineering Technology 11(7-8), 80–81 (2016)

10. Desai, K., Raghuraman, S., Jin, R., Prabhakaran, B.:
QoE Studies on Interactive 3D Tele-Immersion. In: 2017
IEEE International Symposium on Multimedia (ISM),
pp. 130–137 (2017)

11. Desai, P.R., Desai, P.N., Ajmera, K.D., Mehta, K.: A
Review Paper on Oculus Rift-A Virtual Reality Headset.
International Journal of Engineering Trends and Tech-
nology (IJETT) 13(4) (2014)

12. Farahani, N., Post, R., Duboy, J., Ahmed, I., Kolowitz,
B.J., Krinchai, T., Monaco, S.E., Fine, J.L., Hartman,
D.J., Pantanowitz, L.: Exploring Virtual Reality Tech-
nology and the Oculus Rift for the Examination of Digi-
tal Pathology Slides. Journal of pathology informatics 7
(2016)

13. Friðriksson, F.A., Kristjánsson, H.S., Sigurðsson, D.A.,
Thue, D., Vilhjálmsson, H.H.: Become Your Avatar: Fast
Skeletal Reconstruction From Sparse Data for Fully-
Tracked VR. In: Proceedings of the 26th International
Conference on Artificial Reality and Telexistence and the
21st Eurographics Symposium on Virtual Environments:
Posters and Demos, pp. 19–20 (2016)

14. Friston, S., Steed, A.: Measuring Latency in Virtual Envi-
ronments. IEEE Transactions on Visualization and Com-
puter Graphics 20(4), 616–625 (2014)

15. Galna, B., Barry, G., Jackson, D., Mhiripiri, D., Olivier,
P., Rochester, L.: Accuracy of the Microsoft Kinect Sen-
sor for Measuring Movement in People with Parkinson’s
Disease. Gait & Posture 39(4), 1062–1068 (2014)

16. Goradia, I., Doshi, J., Kurup, L.: A Review Paper on
Oculus Rift & Project Morpheus. International Journal
of Current Engineering and Technology 4(5), 3196–3200
(2014)

17. Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.:
Style-based Inverse Kinematics. ACM Trans. Graph.
23(3), 522–531 (2004)

18. Huang, J., Wang, Q., Fratarcangeli, M., Yan, K.,
Pelachaud, C.: Multi-Variate Gaussian-based Inverse
Kinematics. Computer Graphics Forum 36(8), 418–428
(2017)

19. Jain, D., Sra, M., Guo, J., Marques, R., Wu, R., Chiu, J.,
Schmandt, C.: Immersive Terrestrial Scuba Diving Using
Virtual Reality. In: Proceedings of the 2016 CHI Con-
ference Extended Abstracts on Human Factors in Com-
puting Systems, pp. 1563–1569. ACM, New York, USA
(2016)

20. Jiang, F., Yang, X., Feng, L.: Real-time Full-body Mo-
tion Reconstruction and Recognition for Off-the-shelf VR
Devices. In: Proceedings of the 15th ACM SIGGRAPH
Conference on Virtual-Reality Continuum and Its Appli-
cations in Industry - Volume 1, VRCAI ’16, pp. 309–318.
ACM (2016)

21. Johnson, M., Humer, I., Zimmerman, B., Shallow, J.,
Tahai, L., Pietroszek, K.: Low-Cost Latency Compen-
sation in Motion Tracking for Smartphone-based Head
Mounted Display. In: Proceedings of the International
Working Conference on Advanced Visual Interfaces, AVI
’16, pp. 316–317. ACM, New York, NY, USA (2016)

22. Kasahara, S., Konno, K., Owaki, R., Nishi, T., Takeshita,
A., Ito, T., Kasuga, S., Ushiba, J.: Malleable Em-
bodiment: Changing Sense of Embodiment by Spatial-
Temporal Deformation of Virtual Human Body. In: Pro-

ceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, CHI ’17, pp. 6438–6448. ACM,
New York, NY, USA (2017)

23. Kavan, L., Sloan, P.P., O’Sullivan, C.: Fast and Efficient
Skinning of Animated Meshes. Computer Graphics Fo-
rum 29(2), 327–336 (2010)

24. Kenwright, B.: Real-Time Character Inverse Kinematics
Using the Gauss-Seidel Iterative Approximation Method.
In: International Conference on Creative Content Tech-
nologies, vol. 4, pp. 63–68 (2012)

25. Lange, B., Rizzo, S., Chang, C.Y., Suma, E.A., Bo-
las, M.: Markerless Full Body Tracking: Depth-Sensing
Technology within Virtual Environments. In: Interser-
vice/industry training, simulation, and education confer-
ence (I/ITSEC) (2011)

26. Latoschik, M.E., Lugrin, J.L., Habel, M., Roth, D.,
Seufert, C., Grafe, S.: Breaking Bad Behavior: Immer-
sive Training of Class Room Management. In: Proceed-
ings of the 22Nd ACM Conference on Virtual Reality
Software and Technology, VRST ’16, pp. 317–318. ACM,
New York, NY, USA (2016)

27. Latoschik, M.E., Roth, D., Gall, D., Achenbach, J., Wal-
temate, T., Botsch, M.: The Effect of Avatar Realism in
Immersive Social Virtual Realities. In: Proceedings of the
23rd ACM Symposium on Virtual Reality Software and
Technology, VRST ’17, pp. 39:1–39:10. ACM, New York,
NY, USA (2017)

28. Melo, M., Rocha, T., Barbosa, L., Bessa, M.: The Impact
of Body Position on the Usability of Multisensory Virtual
Environments: Case Study of a Virtual Bicycle. In: Pro-
ceedings of the 7th International Conference on Software
Development and Technologies for Enhancing Accessibil-
ity and Fighting Info-exclusion, DSAI 2016, pp. 20–24.
ACM, New York, NY, USA (2016)

29. Nakamura, Y., Hanafusa, H.: Inverse Kinematic Solu-
tions With Singularity Robustness for Robot Manipula-
tor Control. Journal of Dynamic Systems, Measurement,
and Control 108(3), 163–171 (1986)

30. Orin, D.E., Schrader, W.W.: Efficient Computation of
the Jacobian for Robot Manipulators. The International
Journal of Robotics Research 3(4), 66–75 (1984)

31. Peck, T.C., Seinfeld, S., Aglioti, S.M., Slater, M.: Putting
Yourself in the Skin of a Black Avatar Reduces Implicit
Racial Bias. Consciousness and Cognition 22(3), 779 –
787 (2013)

32. Raaen, K., Kjellmo, I.: Measuring Latency in Virtual
Reality Systems. In: K. Chorianopoulos, M. Divitini,
J. Baalsrud Hauge, L. Jaccheri, R. Malaka (eds.) Enter-
tainment Computing - ICEC 2015, pp. 457–462. Springer
International Publishing, Cham (2015)

33. Roberts, D., Duckworth, T., Moore, C., Wolff, R.,
O’Hare, J.: Comparing the End to End Latency of an
Immersive Collaborative Environment and a Video Con-
ference. In: Proceedings of the 2009 13th IEEE/ACM
International Symposium on Distributed Simulation and
Real Time Applications, DS-RT ’09, pp. 89–94. IEEE
Computer Society, Washington, DC, USA (2009)

34. Schmidt, D., Kovacs, R., Mehta, V., Umapathi, U., Köh-
ler, S., Cheng, L.P., Baudisch, P.: Level-Ups: Motorized
Stilts That Simulate Stair Steps in Virtual Reality. In:
Proceedings of the 33rd Annual ACM Conference Ex-
tended Abstracts on Human Factors in Computing Sys-
tems, CHI EA ’15, pp. 359–362. ACM, New York, NY,
USA (2015)

35. Seele, S., Misztal, S., Buhler, H., Herpers, R., Schild, J.:
Here’s Looking At You Anyway!: How Important is Real-
istic Gaze Behavior in Co-located Social Virtual Reality

Real-Time Body Tracking in Virtual Reality using a Vive Tracker 15

Games? In: Proceedings of the Annual Symposium on
Computer-Human Interaction in Play, CHI PLAY ’17,
pp. 531–540. ACM, New York, NY, USA (2017)

36. Shoemake, K.: Animating Rotation with Quaternion
Curves. In: Proceedings of the 12th Annual Conference
on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’85, pp. 245–254. ACM, New York, NY, USA
(1985)

37. Shum, H., Ho, E.S.: Real-time Physical Modelling of
Character Movements with Microsoft Kinect. In: Pro-
ceedings of the 18th ACM Symposium on Virtual Real-
ity Software and Technology, VRST ’12, pp. 17–24. ACM
(2012)

38. Sra, M., Schmandt, C.: MetaSpace II: Object and Full-
Body Tracking for Interaction and Navigation in Social
VR. CoRR abs/1512.02922 (2015)

39. Staff, D.T.: Spec Comparison: Does the Rift’s Touch
Update Make It a True Vive Competitor? (2016). URL
https://www.digitaltrends.com/virtual-reality/
oculus-rift-vs-htc-vive/. Last visited on 4.5.2017

40. Steed, A.: A Simple Method for Estimating the Latency
of Interactive, Real-time Graphics Simulations. In: Pro-
ceedings of the 2008 ACM Symposium on Virtual Reality
Software and Technology, VRST ’08, pp. 123–129. ACM,
New York, NY, USA (2008)

41. Tao, G., Archambault, P.S., Levin, M.F.: Evaluation of
Kinect Skeletal Tracking in a Virtual Reality Rehabilita-
tion System for Upper Limb Hemiparesis. In: 2013 Inter-
national Conference on Virtual Rehabilitation (ICVR),
pp. 164–165 (2013)

42. Thomas, J.S., France, C.R., Leitkam, S.T., Applegate,
M.E., Pidcoe, P.E., Walkowski, S.: Effects of Real-World
Versus Virtual Environments on Joint Excursions in Full-
Body Reaching Tasks. IEEE Journal of Translational
Engineering in Health and Medicine 4, 1–8 (2016)

43. Tsai, T.C., Chen, C.Y., Su, G.J.: U-Art: Your Art and
Ubiquitous Art. In: Adjunct Proceedings of the 2015
ACM International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2015 ACM
International Symposium on Wearable Computers, Ubi-
Comp/ISWC’15 Adjunct, pp. 1295–1302. ACM, New
York, NY, USA (2015)

https://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/
https://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/

	Introduction
	Related Work
	Approach
	Results
	Conclusion

