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Abstract. Due to recent improvements in Virtual Reality (VR) re-
garding the potential of full-body tracking, the number of VR-based
exergames has been increasing. However, such applications often depend
on additional tracking technology, e.g., markerless or marker-based. On
the one hand, tracking approaches, such as the Kinect device are limited
by either high latency or insufficient accuracy. On the other hand, mo-
tion capture suits are expensive and create discomfort. In this paper we
present an accurate motion recognition approach, using only the HTC
Vive HMD with their associated Controllers and Trackers. The recog-
nition is based on an Hidden Markov Model, that has been trained in
advance for a specific movement. The results suggest that our system is
capable of detecting a complex full-body gesture, such as yoga Warrior
I pose, with an accuracy of 88%. In addition, audible feedback is pro-
vided, so that the user can immediately hear if the particular exercise
has been executed correctly. Such a system can be used to assist players
in learning a particular movement and can be applied in various serious
games applications, e.g., for training purposes or rehabilitation.
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1 Introduction

Recognition of body movements is attracting increasing research interest. How-
ever, most publications using Hidden Markov Models (HMMs) are recogniz-
ing only a part of the body, e.g., hand gestures [4, 12–14, 18, 24] or arm move-
ments [17,20]. Only a little research regarding full-body recognition in VR-based
exergames using machine learning approaches has been made.

On the one hand, many publications trying to recognize full-body motions
are using markerless tracking technologies, such as the Microsoft Kinect de-
vice1 which provides the joint orientation for the player’s skeleton. However, the

1 https://www.xbox.com/en-GB/xbox-one/accessories/kinect, last visited on May
25th, 2018
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Kinect suffers from occlusion, low precision, and inaccuracy [8]. On the other
hand, more precise motion capture technologies, such as Optitrack2 or Vicon3,
are based on multiple markers attached to the player’s suit which are tracked
by multiple cameras. Even though such a system is more accurate, it can cre-
ate discomfort since the user has to wear a tight suit [21]. Moreover, multiple
Inertial Measurement Units (IMUs) can be attached to the user’s body in order
to recognize body motions [7]. However, since multiple sensors must be worn by
the user, such a system may also be considered intrusive.

In contrast to Kinect, our approach is designed to recognize full-body motions
reliably. Furthermore, the recognition algorithm should be independent of the
execution speed (i.e. how fast or slow the user performs a pose) as well as user’s
size (i.e. the height of the user). According to Raheja et al. [20], HMM are scale-
invariant. In other words, the recognition algorithm using HMM works regardless
of the student’s height performing a movement. Unlike suit-based motion capture
systems, we use only a small number of devices. Some advantages of the reduced
sensor amount include ease of use, detection reliability and less potential for
error. With two HTC Vive Controllers, the hands’ movements are tracked. With
the three additional HTC Vive Trackers, we determine the position of the lower
back as well as both legs.

There are basically three main criteria that our approach should meet:

– The approach must be computationally efficient and must recognize the mo-
tion in real-time

– The motion recognition algorithm must be reliable:
• It should be independent of the player’s movement speed
• It should provide similar results regardless of the player’s height

– Only a small number of devices must be used

The paper is organized as follows: Section 2 presents relevant related work. In
Section 3, the concept of the proposed approach using HMM in VR is presented.
In Section 4, implementation details are provided in order to specify the param-
eters of the HMM. Section 5 presents the results of the full-body recognition.
These results are discussed in Section 6. Finally, Section 7 concludes this paper.

2 Related Work

In the field of motion detection in VR there exist already a number of applica-
tions. However, to the best of our knowledge, none of this work uses the Vive
Tracker in conjunction with supervised machine learning, such as HMM.

2.1 Motion Recognition in VR

Chan et al. [3] used a motion capture suit to follow the movements of the virtual
teacher in order to learn how to dance. The suit with several attached markers
2 http://optitrack.com, last visited on May 29th, 2018
3 https://vicon.com, last visited on May 29th, 2018

http://optitrack.com
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can capture the full-body movements. The resulting data is then compared with
“correct” reference data to give the student feedback about the correctness of her
or his movement. Similar, Jiang et al. [11] presented a novel action recognition
algorithm based on neural network. The researchers could reconstruct various
full-body motions, such as walking, jogging, jumping, crouching and turning by
only using Vive HMD and two associated Controllers.

Motion recognition in VR can also be done using a single Kinect sensor.
The developers can easily exploit Microsoft Visual Gesture Builder NUI tool4

in order to perform real-time gesture detection. Past work showed, that Kinect
can be utilized to recognize motions in VR, e.g., for remote posture guidance
during sports [10], for efficient strength training [22] or for efficiently dancing
training [23]. In the approach proposed by Lee et al. [16], posing and acting is
used as input to personalize furniture. The users can specify dimensions with
simple speech commands while indicating a distance with their arms. However,
speech recognition was performed using a trained operator, thus no machine
learning approach was applied. Since the field of view of the Kinect is small,
Rhodin et al. [21] attached a pair of fisheye cameras to the VR headset to
increase the visibility of body parts in order to estimate the full-body pose.
Furthermore, hand gestures can be recognized using a Leap Motion5 device [6]
or a Myo6 armband [9,15] to enable natural interaction in VR.

Furthermore, IMUs can be advantageous for motion detection. Fitzgerald
et al. [7] integrated nine Xsens inertial-based sensors7 to develop a biofeedback
system for the instruction and analysis of sport rehabilitation exercises. However,
the sensor data were stored in order to do offline analysis by comparing the data
of the player and the expert. Another study used integrated sensors of a HMD
to detect steps in real-time by applying a Gaussian low-pass filter [2]. With the
recognition algorithm, the avatar’s feet could be synchronized with the user’s
feet while walking on a treadmill.

2.2 Hidden Markov Models

Previous work showed that machine learning approaches and more specifically
HMMs are widely and successfully applied in the field of speech and hand gesture
recognition. First work has been already presented in the 80’s and 90’s, e.g.,
for automatic speech [19] or handwriting [24] recognition. Later on, Chen et
al. [4] developed a real-time system to recognize hand gesture from a 2D video
input. To reduce the complexity of hand detection in the images, markers were
used in order to separate the hand from the background [14]. Similar, in the
study conducted by Just and Marcel [12], the user had to wear two colored

4 https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn785304(v%
3dieb.10), last visited on May 25th, 2018

5 https://www.leapmotion.com, last visited on May 28, 2018
6 https://www.myo.com, last visited on May 28th, 2018
7 https://www.xsens.com/functions/human-motion-measurement/, last visited on

May 28th, 2018
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gloves to facilitate hand tracking while recognizing two-handed gestures. Kao
and Fahn [13] proposed an approach, where a single hand or both hands, as
well as the face, have to be detected in each video frame in order to recognize
hand gestures accurately. Hand gesture recognition can also be done based on
recorded tracking data provided by a three-axis accelerometer embedded in a
handheld device [18].

Other researchers collected body movement data with a Kinect in order to
train the HMM [17,20]. Even though the Kinect device is capable of tracking a
full-body, both publications used this device to only recognize the upper body
or more precisely to track gross arm movements.

3 Concept

The proposed recognition approach based on HMMs can be used to assist the
player to learn a particular movement. A player can supervise own improve-
ments. Another possible application example would be a training scenario where
therapists can monitor the patient’s recovery.

To determine the HMM, a teacher is needed to repeat the movement so
that reference data can be gathered (ground truth). Since the recognition works
regardless of the height of the teacher performing the posture [20], our model
is generalized and independent of the size variance. Obtained data are then
utilized to decide if the student performed the motion correctly. The VR envi-
ronment provides visual and audible feedback to the student, informing her or
him whether the executed movement was right or wrong.

3.1 Hidden Markov Model

The HMM was chosen since this approach showed good results for movement
recognition in previous works (see Section 2). Motion recognition using HMMs
essentially works in five steps (see Figure 1), as adapted from Yang and Xu [24].

Define full-body 
pose to detect

Describe the full-body 
pose in terms of an HMM Collect training data Train the 

HMMs
Evaluate full-body pose 
with the trained model

Pre-process raw input data

Fig. 1. Block diagram of the motion recognition-based system

In the first step, a pose or gesture, which should be recognized, must be de-
fined. We want to show that our approach is able to recognize full-body motions
in VR. Therefore, a pose must be selected, where the position of the hands and
feet are important.

In the second step, the full-body pose must be described in terms of an HMM.
The HMM is described as λ = (S, V,A,B, π) as proposed by Rabiner [19]:
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– S = (s1, ..., sN ), the set of N possible hidden states, i.e. possible values of qi
– V = (v1, ..., vM ), the set of M possible observations, i.e. values of oi
– A ∈ RN×N , the transition matrix between the states, where the elements
aij of the matrix indicate the probability for the transition from the state si
to sj , i.e. aij = P (qt+1 = sj |qt = si)

– B ∈ RN×M , the distribution matrix, which indicates with which probability
a state si leads to the observation vj , i.e. bij = bi(j) = P (ot = vj |qt = si)

– π ∈ RN , the initial probability, i.e. a vector whose elements indicate with
which probability si is the starting state: πi = P (q1 = si)

In this step only the structure of A and B are determined. The values of elements
in A and B will be first estimated in the training process (Step 4). An overview
is given in Figure 2.

Fig. 2. Schematic representation of an HMM

In the third step, before the training data is collected, the raw input data has
to be pre-processed. In order to train the HMM, several executions of the correct
movement must be recorded and saved in a file. Since the HTC Vive provides
global positions of the VR devices, this data has to be first transformed into a
local coordinate system. Otherwise, the result would be distorted. Hence, the
local orientation and position vector of all VR devices have to be continuously
stored while the actual motion is being performed. Because the motion detection
should work regardless of body height and execution speed, the data must be
furthermore normalized.

In the fourth step, the HMMs should be trained using the collected data from
the previous step. A console application, called HMM-Trainer allows the user to
select training sequences and adjust the HMM parameters to train the model.
The model parameters should be adjusted so that the likelihood P (O|λ) can be
maximized for the given training dataset. Therefore, the Baum-Welch algorithm
is used to iteratively improve the values of λ to achieve the local maximum. In
addition, the forward-backward algorithm to calculate the probability of a given
HMM emitting a given observation sequence must be implemented.

Finally, in the fifth step, the full-body pose must be evaluated with the trained
HMM. The trained model is then used to classify a full-body pose.
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3.2 Feedback

In addition to the recognition of a full-body movement in VR, a constructive
feedback is provided so that the student can improve the movement. Depending
on whether the pose is recognized as correct or incorrect, the student gets audible
feedback (e.g., “Your movement was correct” or “Your movement was wrong”).
For a more detailed feedback about each individual Vive Controller/Tracker, a
text is displayed on the PC and saved in a file. The student is informed whether
the executed movement was right or wrong and if necessary, which position of
the Controller/Tracker was recognized as correct or incorrect.

4 Implementation

The motion detection is implemented using the Body Tracking Framework8

which was previously developed by KOM - Multimedia Communications Lab
at the TU Darmstadt. To achieve maximal performance, the framework is based
on the low-level game API and hardware abstraction library Kore9 (C++). Au-
dio files are created using IBM’s speech synthesis software Watson10 to provide
audible feedback to the student. A demo can be viewed online11.

Fig. 3. An example of collected motion capture data. The first line indicates the number
of data points. The followed rows indicate data points with a prefix, time and position
vector (x, y, and z-axis).

First, the training data has to be collected by a teacher. When the virtual
environment is loaded, the sensor data for the training of an HMM is recorded
by pressing the “trigger” button on the Controller. The data is stored in a text
file, as shown in Figure 3. Each line indicates positional data of a VR device at a
certain time. The prefix at the beginning of the line is an identifier to associate
the data with the VR devices: “lhC” and “rhC” correspond either the left or
right Controller held in the hands, “bac” corresponds to the Tracker on the
lower back (or hip), and “lfT” as well as “rfT” corresponds either to the left or
right Tracker attached to the foot. In each row, time in seconds (equal for all six
entries) and values for x, y, and z-axis are saved. The x and z-axis are defined

8 https://github.com/CatCuddler/BodyTracking, last visited on May 22th, 2018
9 https://github.com/Kode/Kore/, last visited on May 22th, 2018

10 https://text-to-speech-demo.ng.bluemix.net, last visited on May 22th, 2018
11 https://youtu.be/q-yKLtrTodA, last visited on May 30th, 2018

https://github.com/CatCuddler/BodyTracking
https://github.com/Kode/Kore/
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Fig. 4. Attached HTC Vive Tracker to the body.

as horizontal and the y-axis vertical. In addition, the number of data points is
saved in the first line.

For training and evaluation, the Vive Trackers have to be attached to the
teacher’s and student’s body. As it can be seen in Figure 4, two of the three
additional Trackers are attached on the outside of the legs right above the ankle.
It should be ensured that the Trackers are mounted as tight as possible in order
to avoid falsification of the data by shaking. The third Tracker is fastened with
a belt at the lower back. The Controllers are held in the hands and the HMD is
worn on the head.

To define the HMM, we have to characterize the number of hidden states, the
number of clusters, and the depth of the left-to-right matrix. We use k-means
clustering to partition the observations of the data matrix into k cluster. For
the initial estimation of the parameters, a teacher performed 17 correct and 30
incorrect versions of the yoga Warrior I pose. We deliberately chose this pose
because it is well defined (only one correct possible execution). In other words,
with another teacher, the correct movement should look very similar. The data
was divided into a training and test set. We observed the result data of 6 to
16 hidden states, 8 to 100 cluster with random initial parameters and bounded
left-to-right depth from 1 to 3. The HMMs were trained in order to calculate
the log probability. By analyzing these log probabilities and standard deviations,
some quantities could be calculated to adjust the HMM parameters. The first
results of the test set indicate, that the smaller number of clusters (between
8 and 12) achieved better results. As expected, our model is overfitting due
to a larger number of clusters approaching the number of actual data points
(measurement values, i.e. position vector). The number of states, however, does
not seem to have much influence. With six or eight hidden states the results are
slightly better. Observing the left-to-right depth, the completely random initial
parameters (depth of 0) yielded worse results. By increasing the depth parameter
(i.e. depth of 2 or 3), better results were achieved.
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5 Results

The HMM should be used to demonstrate that our concept is able to recognize
complex full-body movements. To complete the pose correctly (see Figure 5),
the student starts the movement while standing and takes a step backward with
his left foot. Both heels should lie on one line and the rear foot should be turned
outwards. Then the arms are stretched out in front of the body and the upper
body remains upright. The right knee should now be directly above the right
heel. Finally, the arms are stretched out parallel to each other with the palms
facing inwards.

Fig. 5. The final position of the yoga Warrior I pose (left) and visualization of the
test data (right).

5.1 Training

In the initial tests (see Section 4), no explicit ideal HMM parameters could be
determined. Therefore, a total number of further 100 correct movements of the
yoga Warrior I pose were collected (training set). Two final HMMs were trained
and finally tested to find the best model. The first HMM has six hidden states
(HMM6) and the second HMM 10 hidden states (HMM10). For HMM6 we use
8 clusters and left-to-right depth of 2 while for the HMM10 100 clusters and
left-to-right depth of 3 are used.

5.2 Testing

To test the final HMMs, a test set of 40 correct movements and 40 incorrect
movements was used. We furthermore divided the test set of the incorrect move-
ments into 20 partially correct or similar movements (e.g., only the legs were
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correctly positioned, however, the arms were stretched to the side rather than
up or the arms were correctly positioned and the legs not) and 20 totally incor-
rect movements (e.g., either legs nor arms were correctly positioned). Here the
motions are recognized in real-time and the student gets audible feedback right
after the motion is completed. The results can be obtained from the Table 1.
For the evaluation, we furthermore introduced the second condition. We wanted
to evaluate if false positives are recognized when the Tracker/Controller do not
move during the exercise. Thus, HMM6* and HMM10* will recognize a move-
ment as wrong as soon as one Tracker/Controller remains in the same cluster
during the entire movement.

Table 1. The results with the four final HMMs. In each case, the probability of correctly
recognized movements (either right or wrong) is given.

Positive Similar Negative Total

HMM6 97,5% (39 / 40) 50% (10 / 20) 100% (20 / 20) 86.25%
HMM6* 90% (36 / 40) 75% (15 / 20) 100% (20 / 20) 88.75%
HMM10 0% (0 / 40) 100% (20 / 20) 100% (20 / 20) 50%
HMM10* 0% (0 / 40) 100% (20 / 20) 100% (20 / 20) 50%

The results clearly show that neither HMM10 nor HMM10* is suitable for
detecting Warrior I movement, as none of the correct motions are detected. The
reason for this is that the current implementation of the forward algorithm is
not robust to underflow. Thus, even with the correct (positive) movements and
despite the fact that input data is normalized, the HMM10 is not able to recog-
nize the movements. As described by Blunsom [1] we could avoid underflow by
using a scaling coefficient ct, that only depends on t and can keep the probability
values in the dynamic range of the machine.

A significantly better result is provided by HMM6 or even HMM6*. These
two models can recognize all completely wrong (negative) movements. Analyz-
ing the partially correct movements (similar), the recognition rate of HMM6
drops to 50%. With HMM6*, the accuracy of similar poses is increased to 75%.
Compared to the HMM6 (with the accuracy of 97,5%), the detection of the cor-
rect movement decreases to 90% when using HMM6*. We believe this happens
because the right foot and back do not move much while performing Warrior
I pose. Therefore, HMM6 should be used for movements, where the positions
of all extremities differ much between the initial and final position. For other
movements, HMM6* should be used.

6 Discussion

The results presented in the previous Section show that the proposed concept
can be used to recognize a complex pose. Therefore, we believe that our method
can also be used to detect additional full-body movements: it can be used for
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exergames where the player is motivated to move or to learn a certain move-
ment pattern. The results suggest that our concept is able to detect complex
movements, such as yoga Warrior I pose. This movement takes advantage of all
existing sensors (Vive HMD, two Controllers, and three Tracker). We demon-
strated that a full-body movement can be detected with a probability of over
88%. We believe that our system is able to recognize various full-body move-
ments in VR.

Compared to related work using HMM, we could obtain similar results. In
the evaluation conducted by Chen et al. [4] an accuracy of 85% was achieved,
while Raheja et al. [20] achieved a recognition success rate of over 90%. Other
researchers detected more than 95% of the movements [13, 14, 17, 18] or even
more than 99% [24] as correct. The step detection algorithm using a Gaussian
low-pass filter provided an accuracy of up to 98.7% while walking at different
speeds [2]. Recognition of various hand gestures using Support Vector Machine
reached an accuracy of 80%12. However, in most publications, only motions of
one body part (e.g., only hand gestures or steps) were recognized and not a
full-body pose as in our approach. Furthermore, some works also only compare
gestures and do not take the detection of wrong movements into account.

To make the current HMM reliable in terms of player’s execution speed
and height, we normalize the tracking data. To improve our approach, a Dy-
namic Time Warping could be furthermore used, as the one proposed by Ra-
heja et al. [20]. Alternatively, a promising approach of Conversive Hidden non-
Markovian Models has recently been developed that can explicitly consider in-
formation about the speed of a movement [5]. With this approach, it would
be possible to recognize movements which differ in execution speed even more
accurately. For further improvements, calibration may also be necessary.

Additionally, since we want to reduce the sensor amount (currently using five
VR tracking devices in addition to the HMD), only the position and orientation
of the extremities (e.g., hands and feet) are known. To additionally track other
joints (e.g., elbow and knee) we do not need to increase the number of sensors. By
solving the Inverse Kinematics (IK), the position and orientation of every joint
can be estimated. Using the IK solution we could distinguish between different
full-body movements, where the positions/orientations of a large number of joints
are crucial.

7 Conclusion

In this paper, we present a concept to recognize full-body movements in VR using
only a small number of VR devices: a HTC Vive HMD, two Vive Controllers and
three Vive Trackers which have to be attached to the body. Thus, the head, both
hands, and both feet, as well as the upper body, are tracked. The positions of
all these body parts are important for the motion recognition. Furthermore, the
students get immediate feedback about the motion performance and can thus

12 https://tzuchanchuang.itch.io/gesture-recognition-input-method-for-ar, last visited
on June 6th, 2018

https://tzuchanchuang.itch.io/gesture-recognition-input-method-for-ar
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easily improve their execution. Further work could include extended feedback,
describing the detailed improvements for the movement.

Our approach allows to train the model for various full-body gestures/poses
easily and without much extra effort. The trained model is independent of the
player’s movement speed and it provides similar results regardless of the player’s
height. The evaluation showed that we can recognize a full-body movement, such
as yoga Warrior I, with an accuracy of 88.75%. However, we evaluated our HMM
with only one pose. In the future work, various additional movements should be
trained, e.g. dancing or gestures for locomotion (walking in place, swimming).

Further research will focus on optimizing HMM parameters to improve the
average recognition rate. We also want to improve the VR experience. For a
better visual performance, a virtual mirror could be used so that the student
can see her or his movements as well as the movements of the teacher. The
movements can be represented through an avatar using IK approaches to provide
real-time feedback.
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