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Abstract—Network Function Virtualization (NFV) decouples
network functions (NF) from the underlying middlebox hardware
and promotes their deployment on virtualized network infras-
tructures. This essentially paves the way for the migration of NFs
into clouds (i.e., NF-as-a-Service), achieving a drastic reduction
of middlebox investment and operational costs for enterprises. In
this context, service chains (expressing middlebox policies in the
enterprise network) should be mapped onto datacenter networks,
ensuring correctness, resource efficiency as well as compliance
with the provider’s policy. The network service embedding (NSE)
problem is further exacerbated by two challenging aspects:
(i) traffic scaling caused by certain NFs (e.g., caches, WAN
optimizers) and (ii) NF location dependencies. Traffic scaling
requires resource reservations different from the ones specified
in the service chain, whereas NF location dependencies, in
conjunction with the limited geographic footprint of NF providers
(NFPs), raise the need for NSE across multiple NFPs.

In this paper, we present a holistic solution to the multi-
provider NSE problem. We decompose NSE into (i) NF-graph
partitioning performed by a centralized coordinator and (ii)
NF-subgraph mapping onto datacenter networks. We present
linear programming formulations to derive near-optimal solu-
tions for both problems. We address the challenging aspect of
traffic scaling by introducing a new service model that supports
demand transformations. We also define topology abstractions
for NF-graph partitioning. Furthermore, we discuss the steps
required to embed service chains across multiple NFPs, using
our NSE orchestrator (Nestor). We perform an evaluation study
of multi-provider NSE with emphasis on NF-graph partitioning
optimizations tailored to the client and NFPs. Our evaluation
results further uncover significant savings in terms of service cost
and resource consumption due to the demand transformations.

Index Terms—Network Function Virtualization, network ser-
vice embedding, service chaining, orchestration.

I. INTRODUCTION

Middleboxes have become an indispensable component of

the network infrastructure. Middleboxes, such as firewalls,

intrusion detection systems, redundancy elimination boxes,

load balancers, proxies, application gateways, are prevelant in

enterprise networks, satisfying the increasing needs of network

operators in terms of security and access control [40]. Despite

their widespread adoption, middleboxes exhibit significant

limitations in terms of customization, resource efficiency, and

manageability [39], [40]. These limitations mainly stem from

the fact that middleboxes are built of specialized hardware; in

other words, a middlebox cannot be repurposed for another

packet processing functionality. This essentially leads to ap-

pliance sprawl, and, in turn, to substantial capital (CAPEX)

and operational expenses (OPEX) for enterprises.

To mitigate some of these problems, Network Function Vir-

tualization (NFV) promotes the deployment and consolidation

of network functions (NF) on platforms built of commodity

components [3], [5], [7], [6], [8]. This can lead to a reduc-

tion in OPEX and CAPEX, either by deploying consolidated

software middleboxes in virtualized network infrastructures

owned by the enterprise (i.e., private clouds) or by outsourcing

NFs to public clouds, based on emerging cloud computing

models, such as NF-as-a-service (NFaaS). The latter, espe-

cially, can result in substantially higher OPEX and CAPEX

savings, since NFaaS obviates the need to acquire, deploy, and

operate additional network appliances on clients’ premises,

whereas fault management and maintenance is also left to

the cloud operator. In fact, NFaaS is under way, as (mainly

tier-1) Internet Service Providers (ISPs) have started to use

existing micro-datacenters (DCs) for NFaaS offerings to their

clients [25]. NFaaS is expected to be even more appealing to

enterprises as the deployment of micro-DCs expands, offering

a wider range of NFV Points-of-Presence (PoP) to clients.

In this respect, NF-graphs expressing service chains (i.e.,

ordered sequences of middleboxes) should be mapped onto

datacenter networks, ensuring correctness and resource effi-

ciency, while complying with NF Provider (NFP) policies

(e.g., minimizing the embedding footprint to generate more

revenue in the long run). In fact, NFP policy may contradict

with the client’s objective function, i.e., the client will primar-

ily seek to minimize his expenditure whereas the provider’s

policy may not yield the “cheapest” embedding.

The network service embedding (NSE) problem is further

exacerbated by the location dependencies of certain NFs (e.g.,

proxies and caches should be placed in proximity to the

enterprise network, while packet filters should be deployed

close to traffic sources for increased bandwidth conservation

at the event of DoS attacks) and the limited footprint of NFPs.
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More precisely, a single NFP may not satisfy the location

constraints of all NFs in a service chain (i.e., the NFP may

not have NFV PoPs close to all end-points of the service

chain), raising the need for NSE across multiple providers.

Such embeddings should satisfy the objectives of clients

(e.g., expenditure minimization) and providers (e.g., revenue

maximization), whereas embedding methods should address

the intricacies of multi-provider aspects (i.e., restrictions in the

resource and network topology information disclosed by NFPs

to third parties) [21]. Existing solutions for multi-provider

virtual network (VN) mapping [21], [29] generate embeddings

based on VN graphs with specific bandwidth demands on

each edge. This highly abstract service model cannot represent

service chain resource demands, given the fact that certain NFs

(e.g., caches, redundancy elimination boxes) may compress

or amplify traffic, raising the need for resource reservations

substantially different from the demands specified in the chain.

In this paper, we present a holistic approach to multi-

provider NSE, addressing these issues. In particular, we

propose a network service embedding orchestrator (Nestor),

which generates efficient embeddings via network graph ren-

dering, service chain partitioning among DCs, and chain

segment mappings onto the DC networks. Nestor decouples

service chain partitioning from NFPs by interposing a net-

work service composition layer (NSCL) between the clients

and the NFPs. Essentially, NSCL comprises a separate layer

that handles the partitioning of service chains among NFPs,

eliminating the need for negotiation and contracting between

individual clients and multiple NFPs. Instead, a client merely

needs to establish a contract with a single NSCL for multi-

provider NSE. Such a layer is also employed in network

virtualization architectures, e.g., in GENI [4], 4WARD [1],

[38], and CABERNET [47].

In this respect, our contributions are as follows:

• We derive linear programming formulations for service

chain partitioning. We particularly provide two variants

of a linear program (tailored to the client or the NFP)

to assign NFs to DCs and subsequently generate NF-

subgraphs (i.e., request segments) mappable to DC net-

works, by employing virtual gateways for inter-segment

traffic aggregation. To facilitate service chain partition-

ing, we define a topology abstraction that conceals all

information that is deemed confidential by NFPs.

• We introduce a new service model to simplify the speci-

fication of network service requests and deal with traffic-

scaling NFs. With respect to the latter, the service model

supports CPU and bandwidth demand transformations in

the service chain.

• We design a linear program for the mapping of service

chain segments onto DC networks (carried out by NFPs).

• We perform an evaluation study that sheds light into the

tussles between contrasting provider and client objective

functions.

In particular, the service model and service chain partition-

ing comprise novel aspects, as existing work on NSE does

not take into account the traffic scaling caused by certain

NFs, whereas most NSE methods are restricted to service

mapping onto one or multiple NFV PoPs owned by the same

NFP [19], [35], [37]. This paper extends our previous work

in [20], by providing linear programming formulations for

service chain partitioning and segment mapping to reduce

the time complexity of the integer linear programs presented

in [20]. We also provide a more elaborate NSE problem

description, additional evaluation results, and extensive related

work discussion.

The remainder of the paper is organized as follows. Sec-

tion II describes the NSE problem. In Section III, we intro-

duce our service model and topology abstractions for NSE.

Section IV provides an overview of Nestor and discusses the

steps required for the embedding of a service chain across

multiple NFPs. In Sections V and VI, we present methods

for NF-graph partitioning and the mapping of NF-subgraphs

onto DC networks, respectively. In Section VII, we present

our evaluation results and discuss the efficiency of Nestor.

Section VIII discusses related work. Finally, in Section IX,

we highlight our conclusions.

II. PROBLEM DESCRIPTION

Service chaining is a common abstraction for the expression

of network service requirements [26], [36]. A service chain

represents the exact sequence of NFs traversed by one or mul-

tiple flows. Fig. 1 illustrates an example of service chaining. In

this example, two different groups of enterprise network users

at one site (e.g., front-desk and sales) access a web server

cluster and a database server residing in another site. Traffic

from both groups traverses a cache, firewall, and a redundancy

elimination (RE) appliance, whereas the traffic of “Group A”

is sent through a load balancer and a web application firewall.

A service chain can be expressed as an NF-graph. Each

vertex in the graph represents an NF or an end-point, whereas

each edge represents a virtual link connecting a pair of NFs or

an NF with an end-point. Each vertex representing an NF is

associated with a CPU demand and, possibly, with a location

constraint (e.g., relative to the location of an end-point). Each

edge is also associated with a bandwidth demand.

NSE consists in mapping such NF-graphs across multiple

DCs, such that all location constraints and resource demands

are satisfied (Fig. 2). NSE optimization is subject to provider

policies and Service Level Agreements (SLA) between NFPs

and clients. In this paper, we are dealing with service mapping

across DCs operated by multiple NFPs, since the footprint of

individual NFPs may not satisfy the location dependencies of

all NFs in the NF-graph.

In this respect, we decompose multi-provider NSE into two

sub-problems: (i) NF-graph partitioning among DCs and (ii)

NF-subgraph mapping onto a DC network. This approach

to the NSE problem is mainly driven by the multi-provider

intricacies. More specifically, we expect that NFP policies

will be governed by today’s ISP policies, i.e., NFPs will

restrict information disclosure and interoperability with third

parties and especially competitors, such as other NFPs. Hence,

NF-graph partitioning should be performed based on an ab-

stract network view, i.e., topology information which is not

considered confidential by NFPs (we discuss such topology
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Fig. 1. Service chain example.

abstractions in Section III-B). To this end, we interpose a

network service composition layer (NSCL) between the clients

and the NFPs. In particular, the NSCL receives service chain

specifications (i.e., NF-graphs) from the client and partitions

each NF-graph into NF-subgraphs assigned to separate DCs.

We consider NSCL as a separate role from the NFP. As such,

the NSCL is likely to be operated by a different organization.

However, we do not preclude a single organization (e.g., an

ISP) fulfilling the roles of a NSCL and an NFP at the same

time.

In the following, we delve into these NSE sub-problems

from the perspective of policy and associated optimization

objectives:

NF-graph partitioning. As NF-graph partitioning assigns

NFs to DCs, NFPs will seek to balance the load across

their DCs or will prefer to use DCs that can be reached

through underutilized paths. In Section III-B, we discuss how

NFPs can disclose DC preferences to the NSCL, allowing

NSCL to optimize NF-graph partitioning according to the

NFP policy (e.g., DC load balancing). Furthermore, in Section

VII-B we show that this NF-graph partitioning optimization

generates more revenue for NFPs in the long run. On the

other hand, a client will be mainly interested in minimizing

his expenditure. Assigning NFs to underutilized DCs may not

necessarily generate “cheap” embeddings for the client, as

these DCs may have to be reached through longer and/or

more expensive paths. The tussles between these different

objective functions are of particular interest in our study. In

this respect, in Section VII-B we investigate the impact of

these two different objective functions on client’s expenditure

and NFPs’ cumulative revenue.

NF-subgraph mapping. This consists in mapping NF-

subgraphs (generated in the previous step) onto DCs networks

(i.e., the placement of NFs onto servers and the assignment

of NF-subgraph edges onto physical network paths). The

mapping should satisfy all resource requirements (i.e., CPU,

bandwidth) expressed in the NF-subgraph. Since the mapping

is performed by the NFP (who has complete knowledge of

the network topology and resource availability in his network),

NF-subgraph mapping optimization will be based on the NFP

policy. In this respect, we consider the minimization of the

embedding footprint as the primary objective sought by the

NFP. Since this minimizes the amount of resources reserved

(as the heavily communicating components are placed in the

same rack or server if possible), this will also incur low

expenditure for the client. As such, in contrast to NF-graph

partitioning, the objective functions of the NFP and the client

are inline.

III. SERVICE MODEL AND TOPOLOGY ABSTRACTIONS

In this section, we discuss two critical aspects of multi-

provider NSE: (i) the suitability of existing service models

for service chain specification and embedding, and (ii) NFP

policy-compliant topology abstractions for NF-graph partition-

ing.

A. Service Model

Existing VN embedding techniques (e.g., [20], [29]) operate

on a level of abstraction which is not suitable for NSE. The

key difference lies in the particular information required for

generating correct embeddings in both cases. In the case of

VN embedding, existing solutions rely on VN graphs at which

vertices represent virtual nodes, whereas edges express virtual

links associated with a bandwidth demand. However, in the

case of NSE, an embedding requires a NF-graph that takes

the order and NF-specific bandwidth demand transformations

into account.

These bandwidth demand transformations are associated

with traffic-scaling NFs. More precisely, certain NFs, such as

REs and caches, compress traffic, whereas other NFs (e.g.,

packet multiplication, encryption) amplify traffic. The level of

traffic scaling depends on various factors, such as the size and

hit ratio for caches, the amount of duplicate content for RE,

and the volume of traffic filtered by firewalls and intrusion

detection systems (IDS). In this respect, Table I summarizes

the traffic scaling of widely-used NFs, based on various studies

[43], [12], [44]. A traffic scaling factor less than 1 implies

traffic compression, whereas a traffic scaling factor greater

than 1 entails traffic amplification.

Traffic-scaling NFs introduce complexity in NSE, as the

bandwidth reservation on the ingress or egress link of a traffic-

scaling NF may have to be different from the bandwidth de-

mand specified in the chain. This effect will further propagate

to subsequent NFs in the chain. For instance, assume traffic

from a remote web server is sent through a firewall and a

web cache (both hosted and operated by a NFP on behalf of

a client), before it reaches a client. Web caching will reduce

the bandwidth required both at the ingress link of the cache

and the firewall.

Traffic-scaling NFs raise the need for demand transfor-

mations not only for bandwidth but also for CPU. More

NFP 1

DC DC

DC

DC

DC
DC

DC

DC

DC

NFP 2

NFP 3

NFP 4

NF2 NF3 NF4

NF5

NF1

Fig. 2. Network service embedding.
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TABLE I
TRAFFIC SCALING BY NETWORK FUNCTIONS.

Network function Traffic scaling Traffic scaling factor (ϕ)

Flow monitoring No -
Load balancer No -
NAT No -
RE Yes 40–70% [43], 59–74% [12]
VPN (IPsec) Yes 105–228% (for 64–1500-byte

packets) [44]

specifically, the CPU demand for each NF can be derived

based on the inbound traffic rate and the resource profile of

each NF (i.e., CPU cycles per packet). Resource profiles are

available for a wide range of NFs [23], [22], while existing

profiling echniques [45] can be applied to any flow processing

workloads whose computational requirements are not known.

Traffic scaling will affect the CPU resource reservations in the

subsequent NFs in the chain. In the previous example, web

caching will lower the CPU cycles needed for the firewall,

since a fraction of HTTP traffic will be fetched from the cache.
In the following, we define a service model that enables

resource demand transformations, simplifying the estimation

of CPU and bandwidth demands. To this end, we initially

introduce the traffic scaling factor ϕi
p, which is defined as

the ratio of outbound traffic at port p of NF i over the

aggregate inbound traffic at all ports. We particularly use

the scaling factor per output port, since traffic may be split

between multiple output ports depending on the outcome of

packet processing. Our network service model consists of a

NF-graph at which each vertex (corresponding to an NF) i is

associated with a traffic scaling factor ϕi
p per port p (Fig. 3).

Essentially, ϕi
p is used for the estimation of the bandwidth

demand over each link, given the aggregate inbound traffic rate

at each NF. The adjustment of ϕi
p for a traffic-scaling NF can

be derived based on traffic statistics from middleboxes with

the same functionality, deployed on the client’s premises. In

case such information is not available, ϕi
p can be adjusted

based on statistics available from middlebox studies [43],

[12], [44] or other network operators. Since achieving a very

accurate estimation of ϕi
p may be difficult, ϕi

p can be set to the

lowest traffic compression level or the highest level of traffic

amplification (assuming a known range of traffic scaling, as

shown in Table I). This approach ensures that bandwidth

allocation will be sufficient, while any spare bandwidth can

be distributed proportionally to the clients. After ϕi
p has been

adjusted for each NF in the service chain, the client simply

needs to specify the rate of the traffic generated at each end-

point. CPU demands do not need to be specified in this service

model, as they can be directly computed based on the inbound

traffic rate and the resource profile of each NF, as explained

above.

B. Topology Abstractions

Topology abstractions are a prerequisite for NF-graph par-

titioning, since the NSCL will not have access to detailed

substrate topology information. In this respect, we seek to

identify topology abstractions that conceal any information

deemed as confidential by NFPs. To this end, we take into

account information disclosed by ISPs and cloud providers.
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Fig. 3. Service model (R represents the traffic rate generated at an end-point
and ϕi

p denotes the outbound to inbound traffic ratio at the port p of the NF i).

For example, ISPs often publish simplified PoP-level topolo-

gies [42], whereas cloud providers advertise resource types

across different availability zones [2].

We depart from a PoP-level topology view that includes

the Internet access points, NFV PoPs (i.e., DCs), and peerings

with neighbouring networks. Fig. 4(a) depicts such a topology

spanning four NFPs and two ISPs. Since the end-points (i.e.,

e1,e2) are fixed, we need a network view that simplifies

the estimation of the link costs between the end-points and

the DCs. Based on Fig. 4(a), we derive an abstract network

view that obscures the Internet access points and represents

(i) a full mesh of DCs and peering nodes within each NFP

(each link connecting a DC with a peering node or a pair

of peering nodes corresponds to the shortest path between

the respective nodes), and (ii) the peerings among NFPs (Fig.

4(b)). This topology abstraction combined with NF and link

costs provides the required information for the estimation of

the overall embedding cost.

The edges of this topology graph can be annotated with

weights assigned by each NFP, according to the NFP’s policies

(e.g., load balancing), similarly to the Multi Exit Discriminator

(MED) attribute of the Border Gateway Protocol (BGP). A

NFP may wish to incorporate DC utilizations into the weights

of the adjacent links, avoiding the explicit advertising of

DC utilization information. We particularly consider a link

weight offset which is dynamically adjusted according to the

DC utilization level. Link weights are used by our NF-graph

partitioning formulation variant which is tailored to NFPs

(Section V).

IV. NESTOR OVERVIEW AND MODEL

In this section, we provide an overview of Nestor and

discuss the sequence of steps for service chain embedding. We

further introduce the network model used in our formulations

in the following sections. Nestor processes and embeds NF-

graphs specified based on the service model presented in Sec-

tion III-A. The topology abstraction in Section III-B represents

the view of the NSCL on the substrate network topologies.

To embed service chains, Nestor implements a NSE control

plane, which is distributed across the NSCL, the NFPs, and

the DCs deployed by each NFP. In our embedding framework,

we assume trustworthy NFPs that disclose correct resource and

topology information.

In the following, we discuss the steps for service chain

embedding by Nestor:
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Fig. 4. Topology abstraction for request partitioning.

Graph Rendering. Graph rendering consists in the trans-

formation of detailed topology graphs into topology abstrac-

tions that facilitate NF-graph partitioning while obscuring any

confidential information for NFPs. Each NFP generates the

topology abstraction for his own network and subsequently

annotates the edges of the graph with the link costs (e.g.,

cost per bandwidth unit) and optionally with weights rep-

resenting link and DC preferences. The NSCL collects the

graphs from all participating NFPs and stitches them together

constructing an abstract network view that spans all NFPs (i.e.,

Fig. 4(b)). Since NFPs may adjust link weights differently or

pick weight values from different intervals, the NSCL uses

min-max normalization to normalize the weights advertised

by each NFP. This ensures that weights across different NFPs

are comparable, when the NSCL partitions NF-graphs using

weight minimization (see below). New topology abstractions

are generated upon significant substrate topology changes or

the participation of new NFPs1. Link weights are updated on

the existing network graphs in response to changes in resource

utilization levels or NFP policies.

NF-Graph Partitioning. NF-graphs are partitioned among

NFPs, when there is no single NFP that satisfies the location

dependencies of all NFs in the service chain. More precisely,

the NSCL identifies a list of candidate DCs2 for each requested

NF by matching NF location constraints against each NFP’s

footprint. Subsequently, the NSCL uses two variants of a linear

program (LP) for NF-graph partitioning, tailored to (i) the

client (i.e., expenditure minimization) or (ii) the NFPs (i.e.,

weight minimization) based on the weights disclosed by NFPs.

1In our implementation, the amount of data required to encode the data
structure used for the NFP topology (with 5 DCs), peerings, costs, and weights
into an XML message is 2.6-2.8 KB.

2DCs with cheap NF offerings and scarce resources may lead to request
rejections, as such DCs are likely to be chosen for NF placement during the
NF-graph partitioning step. This problem can be rectified by requiring from
NFPs to stop advertising resources from highly utilized DCs.
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NF1 e2e1
100 100 80 60
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60
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DC1 DC2

80

(a) Assignment of NFs to DCs

NF1, NF2, NF3 NF4, NF5e1
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80 80

DC1 DC2

(b) Bandwidth demand aggregation

NF4 NF5

VGW

60 60 20 20

80 80

NF1 NF3

VGW

100 80

NF2
100 80

100 80

(c) Generation of subgraphs with virtual gate-
ways (VGW)

Fig. 5. NF-graph partitioning.

The NF-graph partitioning formulations are discussed in

detail in Section V.

NF-graph segments are computed by the LP solver output

with NF-to-DC assignments (Fig. 5(a)). First, the NSCL

computes the total inbound and outbound bandwidth demand

for each segment (Fig. 5(b)). Next, the NSCL generates a NF-

subgraph, at which all inter-segment traffic traverses a virtual

gateway (VGW), as shown in Fig. 5(c). This NF-subgraph

allows the binding of the VGW with the DC network gateway,

augmenting the mapping of each subgraph onto the assigned

DC.

NF-Subgraph Mapping. Each NF-subgraph is mapped onto

the assigned DC network by the corresponding NFP. This

process does not require any topology abstractions, since each

NFP has a complete view of the DC network topologies and

the utilization of servers and links. We particularly consider

2-level hierarchical DC network topologies that provide suffi-

cient capacity for data transfers between the few hundreds of

servers deployed within each micro-DC. Nevertheless, our NF-

subgraph mapping methods are also applicable to 3-layer fat-

tree topologies, used for larger DCs. We assign NF-subgraphs

to DC networks using an LP, which is discussed in detail

in Section VI. The objective of NF-subgraph mapping is

the minimization of the embedding footprint. We note that

Nestor can accommodate NF-subgraph mapping methods with

different objectives, in case an NFP wishes to exercise a

different policy (e.g., load balancing). Any such deviation from

the mapping method promoted by Nestor is not expected to

have system-wide implications. Instead, it will mainly affect

the resource efficiency of the NFP that uses his own mapping

algorithm.

In the following, we introduce models for the service chain

requests and the substrate network. Both models are based on

the abstractions presented in Section III.

Request Model. We use a directed graph GF = (VF ,EF) to

express a service chain request. The set of vertices VF includes
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all NFs and the end-points that comprise the request. Each NF

i is associated with an traffic scaling factor per port p, denoted

by ϕi
p. Each end-point is associated with a traffic generation

rate, which, combined with ϕi
p, gives the bandwidth demand

di j for each edge (i, j) ∈ EF . The computing demand di of

each NF is estimated based on the inbound traffic rate and the

NF resource profile (i.e., CPU cycles / packet).

Substrate Network Model. We specify topology abstractions

(Section III-B) and substrate network topologies using an

undirected graph GS = (VS,ES). We use αu and βuv to express

the monetary cost of NFs and links, respectively. As discussed

in Section III-B, each graph edge (u,v) ∈ ES is associated

with a weight, denoted by wuv, which is assigned by the NFP.

Furthermore, substrate nodes and links are associated with

their residual capacity, represented by ru and ruv, respectively.

We use λi to denote the distance tolerance of NF i, derived

from the NF location dependence. To enforce NF location

constraints, i.e., to take the limited geographic footprint of

NF providers into account, we further introduce li
u which

represents the distance between the preferred location (e.g.,

close to an end-point) and the DC u assigned to NF i.

With a slight modification to the definitions of λi, li
u, distance

tolerance could be also expressed in terms of number of hops,

if such information is disclosed. A list of all notations is given

in Table II.

TABLE II
NOTATIONS.

Symbol Description

αu monetary server cost at DC u in $/GHz

βuv monetary cost of link (u,v) in $/Mbps

di computing capacity demand of NF i in GHz

di j bandwidth demand of edge (i, j) in Mbps

EF set of service chain links
ES set of links of a substrate topology

f
i j
uv flow demand of edge (i, j) assigned to the intra-DC link (u,v) in Mbps

ϕi
p outbound/inbound traffic ratio per port p for NF i

li
u distance between the preferred location and the DC u assigned to NF i

in km

λi distance tolerance of NF i in km

ru residual capacity of server u in GHz

ruv residual capacity of link (u,v) in Mbps

VF set of NFs and end-points of a service chain request
VS set of DCs, peering nodes, end-points of a substrate topology or

servers and switches of a DC
wuv weight of link (u,v)
xi

u assignment of NF i to DC or server u

y
i j
uv mapping of NF graph edge (i, j) onto PoP-level graph edge (u,v)

zu assignment of any NF to server u

V. NF-GRAPH PARTITIONING

In this section, we present our NF-graph partitioning for-

mulations. We initially derive an integer linear programming

(ILP) formulation (Section V-A), which is subsequently trans-

formed into a linear programming (LP) formulation, using

relaxation and rounding techniques (Section V-B). In Section

V-C, we empirically quantify the suboptimality of the LP

formulation relative to the ILP formulation and discuss the

trade-off between optimality and solver runtime for NF-graph

partitioning.

A. Integer Linear Programming Formulation

Following the discussion on NF-graph partitioning objec-

tives in Section II, we consider two ILP variants that reflect
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Fig. 6. Examples of different convex link weight adjustment functions that
range from a simple linear mapping to an M/G/1 queueing inspired mapping.

the point of view of the client and of the NFPs, respectively.

The key difference in the formulations lies in the objective

function. For the client side, we minimize the overall service

cost (i.e., the client expenditure), whereas for the NFPs we

seek to balance the load across DCs within the NFP’s network.

More specifically, the first objective function, denoted as

Min-C, minimizes the overall monetary cost for the client, by

accumulating all the monetary NF and link costs. On the other

hand, the objective function Min-W minimizes a weighted

version of the overall network utilization, which essentially

incentivizes network-wide load balancing. The corresponding

link weights express a convex function of the utilization

of links and DCs mimicking, for example, the impact of

utilization on the average delay in simple queueing models

such as the M/G/1 model [17]. Fig. 6 depicts examples of

weight adjustments based on DC utilization. In principle, we

consider that these weights will be adjusted by NFPs based on

their policy, similar to the link weight adjustment performed

by ISPs for intra-domain routing.
In the ILP formulations, we use the binary variable xi

u

to express the assignment of NF i to the DC u. Similarly,

the binary variable y
i j
uv indicates whether the NF-graph edge

(i, j) ∈ EF has been mapped onto the PoP-level graph edge

(u,v) ∈ ES. The two NF-graph partitioning ILP formulations

are given in the following, where both resort to the same

constraints (3)-(7):

Min-C:

Minimize ∑
u∈VS

αu ∑
i∈VF

dixi
u + ∑

(u,v)∈ES
(u 6=v)

βuv ∑
(i, j)∈EF

di jyi j
uv (1)

OR

Min-W:

Minimize ∑
(u,v)∈ES
(u 6=v)

wuv ∑
(i, j)∈EF

di jyi j
uv (2)

subject to:

∑
u∈VS

xi
u = 1 ∀i ∈VF (3)

∑
v∈VS
(u 6=v)

(yi j
uv− yi j

vu) = xi
u− x j

u

i 6= j,∀(i, j) ∈ EF ,∀u ∈VS (4)
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li
uxi

u ≤ λi ∀i ∈VF ,∀u ∈VS (5)

xi
u ∈ {0,1} ∀i ∈VF ,∀u ∈VS (6)

yi j
uv ∈ {0,1} ∀(i, j) ∈ EF ,∀(u,v) ∈ ES (7)

Next, we briefly explain the ILP constraints. Constraint (3)

ensures that each NF i ∈ VF is mapped exactly to one DC.

Condition (4) preserves the binding between the NF and the

link assignments. More precisely, this condition ensures that

for a given pair of assigned nodes i, j (i.e., NFs or end-points),

there is a path in the network graph where the edge (i, j) has

been mapped. Condition (5) enforces NF location constraints.

Finally, the conditions (6) and (7) express the binary domain

constraints for the variables xi
u and y

i j
uv, i.e., the assignment of

NFs to DCs and the mapping of NF edges to PoP-level graph

edges. In addition, we require fixing the end-points k in the

request to the respective locations u by setting xk
u← 1.

B. Linear Programming Formulation

In the following, we reduce the time complexity of the

preceding NF-graph partitioning ILP formulation. To this end,

we transform the ILP into an LP formulation by relaxing the

integer domain constraints (6) and (7), as follows:

xi
u ≥ 0 ∀i ∈VF ,∀u ∈VS (8)

yi j
uv ≥ 0 ∀(i, j) ∈ EF ,∀(u,v) ∈ ES (9)

Now, the NF-graph partitioning LP formulation consists of

the objective functions (1) or (2), the constraints (3) – (5)

from the original ILP formulation and the two new domain

constraints (8) and (9). The relaxation of (6) and (7) requires

additional steps to preserve the correctness of the other prob-

lem constraints.

To this end, we introduce a rounding algorithm (Algo-

rithm 1) to derive near-optimal solutions for the NF-graph

partitioning problem. Algorithm 1 iteratively steps through

all the remaining mapping combinations that contain non-

integer values. The algorithm continuously chooses mapping

combinations which have the highest xi
u values, which can be

interpreted as a high probability of successful mapping, i.e.,

choosing max xi
u. This mapping combination is fixed for the

following iterations of the algorithm if the location constraint

is satisfied. The algorithm stops when a solution with only

integer values is found and returns a near-optimal NF-graph

partitioning solution or it terminates with a rejection of the

request if no more solutions can be found.

C. NF-Graph Partitioning Comparison

Next, we compare the ILP and LP-based partitioning in

terms of the two objective functions, i.e., cost minimization

for Min-C and weight minimization for Min-W. To this end,

we partition 25K service chains among 50 DCs. The rest of the

evaluation parameters are shown in Table III (this microbench-

mark is independent of the evaluation in Section VII).

Fig. 7 illustrates the normalized resource unit costs (i.e.,

for CPU, bandwidth) after NF-graph partitioning with Min-C.

According to Fig. 7, CPU cost is almost equal for both

Algorithm 1 Request Partitioning with LP

1: repeat

2: {xi
u,y

i j
uv}← Solve LP(..)

3: X ← {xi
u | x

i
u /∈ {0,1}}

4: if X 6= /0 then

5: {i f x,u f x}← argmax{i∈VF ,u∈VS}X

6: if l
i f x
u f x
≤ λi f x then

7: Add LP Constraint(”x
i f x
u f x

= 1”)
8: else

9: Add LP Constraint(”x
i f x
u f x

= 0”)
10: end if

11: end if

12: until (X = /0)∨NoFeasibleSolutionLP

13: return {xi
u,y

i j
uv}

variants (ILP and LP), whereas LP yields 4.4% higher median

bandwidth cost compared to the ILP solution. Similarly, Fig. 8

illustrates the sum of weights associated with ILP and LP,

in the case of Min-W. NF-graph partitionings with ILP and

LP achieve a mean sum of weights per service chain of

358.5 and 360.5, respectively. As such, the LP variant yields

only marginal suboptimality compared to the original ILP.

However, the LP solver runtime is one magnitude lower than

the ILP solver runtime, irrespective of the substrate network

size (Fig. 9).3 This outweighs the possible LP suboptimality.

VI. NF-SUBGRAPH MAPPING

In this section, we discuss the NF-subgraph mapping. We

first present a mixed integer programming (MIP) formulation

in Section VI-A. Subsequently, we transform this MIP model

into an LP model to reduce the MIP solving time complexity

(Section VI-B). In Section VI-C, we compare the two variants

(MIP and LP) in terms of optimality and solver runtime.

A. Mixed Integer Programming Formulation

In the following, we derive a MIP formulation for the

problem of NF-subgraph mapping onto DC networks with the

aim of minimizing the embedding footprint. This is essentially

associated with the minimization of allocated servers and

inter-rack traffic. Especially, the latter objective is critical for

datacenters with high oversubscription ratios. Hence, we use

the binary variable zu to indicate whether any NF has been

assigned to server u, i.e., zu = 0 when there is no NF assigned

to server u; zu = 1 otherwise. Note that the variable zu depends

on xi
u, i.e., the assignment of NF i to server u.

In the following, we use the variable di j to express the

bandwidth demand between a pair i, j of NFs. In this context,

the flow variable f
i j
uv denotes the amount of flow bandwidth

(i.e., in bandwidth units) the DC link (u,v) carries for the

NF-graph edge (i, j) ∈ EF . The MIP formulation has the

objective function given in (10), which consists of two terms,

i.e., the number of assigned servers and the accumulated

flow bandwidth divided by the total NF bandwidth demand.

3We conducted microtests with substrate topologies with 5, 10, and 15
NFPs, each one spanning 5 DCs. Tests were carried out on a server with Intel
Xeon CPU at 2.53 GHz,.using a single CPU core.
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Essentially, the second term yields 1 if all NF-graph edges

(i, j) ∈ EF are mapped onto single-hop paths.

Minimize

∑
u∈VS

zu +
1

∑
(i, j)∈EF

di j
· ∑
(u,v)∈ES
(u 6=v)

∑
(i, j)∈EF

f i j
uv (10)

subject to:

∑
u∈VS

xi
u = 1 ∀i ∈VF (11)

∑
v∈VS

f i j
uv− ∑

v∈VS

f i j
vu = di j(xi

u− x j
u)

i 6= j,∀i, j ∈VF ,u 6= v,∀u ∈VS (12)

∑
i∈VF

dixi
u ≤ ru · zu ∀u ∈VS (13)

∑
i, j∈VF

f i j
uv ≤ ruv ∀(u,v) ∈ ES (14)

xi
u,zu ∈ {0,1} ∀i ∈VF ,∀u ∈VS (15)

f i j
uv ≥ 0 ∀(i, j) ∈ EF ,∀(u,v) ∈ ES (16)

Next, we explain the constraints (11)–(16) of our MIP

formulation. Condition (11) ensures that each NF i ∈ VF is

mapped exactly to one server. Constraint (12) enforces flow

conservation, i.e., the sum of all inbound and outbound traffic

in switches and servers that do not host NFs is zero. The

constraints (13) and (14) ensure that the allocated computing

and bandwidth resources do not exceed the residual capacities

of servers and links, respectively. Condition (13) is further

used for the binding between the two binary variables zu

and xi
u. Finally, condition (15) expresses the binary domain

constraint for the variables xi
u and zu, while constraint (16)

ensures that the flows f
i j
uv are always positive. We further

assume that the first element in VF represents the virtual

gateway which we bind to the physical gateway GW by setting

x
VF (1)
GW ← 1.

B. Linear Programming Formulation

In the following, we describe a transformation of the above

MIP model to an LP model by relaxing the integer domain

constraints. Specifically, we replace Equation (15) by:

xi
u ≥ 0 ∀i ∈VF ,∀u ∈VS (17)

zu ≥ 0 ∀u ∈VS (18)

Existing constraints could be violated after the relaxation of

xi
u and zu thus yielding infeasible solutions. Such solutions

can be iteratively excluded by re-running the LP solver after

rounding variables. This iterative reduction of the solution

space will finally exclude all non-binary solutions that are

returned by the LP solver, similarly to the LP-based NF-graph

partitioning of Section V-B. Nevertheless, the ILP formulation

of the NF-subgraph mapping requires additional modifications.

For xi
u < 1 or if zu > 1 the node capacity constraint (13) could

be violated. On the contrary, if zu < 1, nodes with sufficient

capacity could be ignored which yields merely suboptimal but

feasible solutions. Hence, we modify the domain constraint of

zu in (18) to:

0≤ zu ≤ 1 ∀u ∈VS (19)

while adding the following constraint

zu ≥ xi
u ∀i ∈VF ,∀u ∈VS, (20)

which yields the correct number of servers in the objective

function after the rounding of all corresponding xi
u.

In conclusion, the LP formulation of the NF-subgraph

mapping model consists of the objective function (10) and

the constraints (11)–(14), (17), (19), (20).

LP solutions may contain non-binary values for xi
u and zu,

which we handle using a rounding algorithm (Alg. 2). This

algorithm iteratively fixes the most probable assignment of

a NF to a server (i.e., xi
u) and repeats LP solver runs as

long as there are feasible LP solutions and non-binary xi
u.

If a NF-subgraph mapping becomes infeasible due to the

already assigned demand, the corresponding mapping will be

precluded by setting xi
u← 0.

C. NF-Subgraph Mapping Comparison

Next, we investigate the suboptimality of the LP-based

mapping compared to the MIP formulation in terms of NF-

graph mapping efficiency. To this end, we assign 25K NF-

graphs onto a DC, using both mapping variants. Each NF-

graph contains 3 to 20 NFs. The remaining evaluation param-

eters used for this test are identical to the NSE evaluation in
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Algorithm 2 NF-Subgraph Mapping with LP

1: repeat

2: {zu,x
i
u, f

i j
uv}← Solve LP(..)

3: X ←{xi
u | x

i
u /∈ {0,1}}

4: if X 6= /0 then

5: {i f x ,u f x}← argmax{i∈VF ,u∈VS}X

6: if ∑
i∈{VF |xi

u f x
=1}

di +di f x ≤ ru f x
then

7: Add LP Constraint(”x
i f x
u f x

= 1”)
8: else

9: Add LP Constraint(”x
i f x
u f x

= 0”)
10: end if

11: end if

12: until (X = /0)∨NoFeasibleSolutionLP

13: return {zu,x
i
u, f

i j
uv}

Section VII (see Table III). We note that this microbenchmark

is independent of the evaluation in Section VII.
For comparison between the two variants we stress the

system at a level at which the original MIP variant starts

dropping incoming requests due to resource shortages. There-

fore, we set the request arrival rate to 10 per hour which in

turn yields a mean acceptance rate of 99.87% and 99.86%

for the MIP and LP variant. We further aim at comparing the

resource efficiency of both NF-graph mapping variants. In this

respect, Fig. 10 illustrates the number of allocated servers and

racks for the LP variant relative to the MIP variant. The LP

formulation results in a marginally higher number of servers

and a negligibly higher number of racks. This is plausible since

the NF-graph mapping objective function aims at minimizing

link cost implicitly by co-locating NFs preferably in a single

server, if possible, or in a single rack otherwise.
We further investigate whether the LP variant generates ad-

ditional traffic within the DC, compared to the MIP. According

to Fig. 11, LP results in marginally higher volume of inter-rack

traffic and a more perceptible increase (i.e., 8 to 11%) in the

traffic within the racks. However, rack traffic is less expensive

than inter-rack traffic and as mentioned above, this does not

significantly impact the request acceptance rate and, therefore,

the generated revenue. Eventually, the LP variant yields only

marginal suboptimality compared to the MIP variant, whereas

the LP exhibits at least one order of magnitude lower runtime

compared to MIP as shown in Fig. 12.4 As such, similar to

NF-graph partitioning, we employ the LP-based solution for

NF-graph mapping.

VII. EVALUATION

In this section, we assess the efficiency of multi-provider

NSE with Nestor. We particularly consider an online scenario

at which we process and embed incoming requests one by one,

as they arrive. We mainly focus on NF-graph partitioning and

particularly on the impact of different partitioning objectives

on service cost, load balancing, request acceptance, and gen-

erated revenue. To this end, we rely on the two NF-graph

partitioning LP variants introduced in Section V-B. Upon

partitioning, the mapping of NF-subgraphs to DCs is computed

4Tests were carried out on a server with 2.53 GHz Intel Xeon CPU, using
a single CPU core.

using the LP presented in Section VI-B. In the following,

we present our evaluation environment (Section VII-A) and

discuss our evaluation results (Section VII-B).

A. Evaluation Environment

We have implemented an evaluation environment for multi-

provider NSE in C/C++. Our implementation includes the

Nestor NSE framework (Section IV), a service chain gen-

erator, and a substrate network topology generator. We rely

on CPLEX as optimizer for our LP/ILP models. Below, we

provide further details on the substrate network and service

chain specifications, as used in our evaluations.
Substrate Network. We generated a PoP-level substrate topol-

ogy with 12 NFPs covering a region of the size of California.

The substrate spans 50 homogeneous DCs, each one contain-

ing 200 servers in 10 racks. For each DC, we have generated

a 2-level hierarchical network topology. Additional evaluation

parameters (e.g., server/link capacities, resource pricing) ap-

pear in Table III. Resource pricing has been adjusted based

on information collected from major cloud providers (e.g.,

Amazon EC2 [2]) and Internet peering databases.
Service chains. Network service requests are generated based

on service chain templates. These templates are composed

of NFs that correspond to real middlebox applications (e.g.,

firewall, load balancing, RE). Each NF is associated with a

traffic scaling factor (ϕ), adjusted according to the statistics

summarized in Table I. The NF computational requirements

and bandwidth demands are derived from our network service

model (Section III-A), given the ϕ adjustments and the traffic

rate at the end-points. The traffic rate is randomly sampled

from a uniform distribution. The end-points are randomly

selected out of 50 possible locations with a minimum distance

of 250km to each other.
We present evaluation results with (i) a very large number

of non-expiring requests to assess efficiency at a wide range

of utilization levels and especially when our system is under

stress and (ii) expiring requests that arrive according to the

Poisson distribution with different arrival rates (i.e., 15, 20,

25 requests per min.) in order to investigate the system

convergence to a steady state. Expiring requests are associated

with a duration between 1 hour and 1 week, sampled from a

uniform distribution.
We use the following metrics for the evaluation of NSE

efficiency:

• Service cost represents the client’s expenditure for the

network service.

• DC load balancing level is defined as the maximum

over the average server CPU load across the DCs. Lower

values represent better load balancing, whereas a value

of 1 designates optimal load balancing.

• Acceptance rate is the number of successfully embedded

requests over the total number of requests.

• Revenue accumulates the CPU and bandwidth units al-

located for service chain embedding.

B. Evaluation Results

We perform a comparative study between the two NF-

graph partitioning variants (Section V), i.e., embedding cost
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TABLE III
EVALUATION PARAMETERS.

Substrate network (PoP-level topology)

NFPs / DCs 12 / 50
DCs per NFP 4–5
Peerings per NFP 2–4 (mean: 3.1)
Intra-domain link cost unif. distrib. [0.002, 0.006] $/Mbps
Peering link cost unif. distrib. [0.006, 0.018] $/Mbps
Server cost unif. distrib. [0.05, 0.10] $/GHz
Inter-DC link capacity 100 Gbps

Substrate network (DC network topology)

Root switches / racks per DC 5 / 10
Servers per rack 20
Server capacity 16 · 2 GHz
ToR-to-server link capacity 4 Gbps
Inter-rack link capacity 16 Gbps

Service chains:

Number of NFs uniform distrib. [10, 20]
Traffic generation rate uniform distrib. [10, 100] Mbps

minimization (Min-C) and link weight minimization (Min-W).

In addition, we use a greedy algorithm as baseline. This

algorithm binds each NF with one of the end-points, depending

on the NF location constraint (e.g., NFs that are required to

be close to the server or the client) or their order in the

service chain (for NFs without location dependencies), and

assigns each NF to the DC which is most proximate to the

corresponding end-point. In case the closest DC does not have

sufficient resources, the algorithm seeks to place the respective

NF on the second most proximate DC and so forth, till all NFs

have been assigned.

Fig. 13 illustrates the evolution of the cumulative service

cost with 250K non-expiring requests. Both Min-W and the

greedy algorithm yield a higher service cost than Min-C,

which is optimized for service cost minimization. In particular,

Min-W exhibits an increase in the service cost (relatively to

Min-C) with the number of requests, eventually converging to

20% additional service cost, which is steadily incurred by the

greedy algorithm.

The boxplots in Fig. 14 illustrate the decomposition of

service cost into the CPU and bandwidth cost, normalized per

resource unit. The lower service cost of Min-C stems from

the significantly lower bandwidth cost (Fig. 14), considering

that in absolute terms the fraction of bandwidth cost is one

magnitude higher than the fraction of CPU cost. Essentially,

Min-C achieves cost savings with the selection of DCs which

are reachable over less costly paths. The greedy algorithm

yields an average CPU cost of 0.075$/GHz, which corresponds

to the average CPU cost across all NFPs, since DC selection

is bound to randomly assigned end-points.
So far, Min-C appears very appealing for clients, since

it minimizes their expenditure. However, Min-C may entail

suboptimality for NFPs which we investigate in the following.

In this respect, Fig. 15 depicts the evolution of load balancing

level across the DCs. According to Fig. 15, Min-W converges

to near-optimal load balancing after 100K requests, exploiting

the DC utilization levels disclosed via the link weights. In

comparison, Min-C yields worse load balancing. For instance,

after 250K requests the highest server load is 5.3% and 18.2%

above the average DC utilization, for Min-W and Min-C,

respectively. On the other hand, the greedy algorithm yields a

high degree of load imbalance, since it selects DCs close to

the end-points.
Fig. 16 shows the request acceptance rates for the three NF-

graph partitioning methods. Optimizing DC selection based

on the disclosed weights (i.e., Min-W) inhibits the assignment

of NF-subgraphs to highly utilized DCs, which usually leads

to request rejections. As such, Min-W yields a higher request

acceptance rate. Specifically, after 100K requests (which corre-

sponds to a server utilization level of 80% across DCs), Min-W

can embed 23% more requests than Min-C. On the other hand,

the greedy algorithm suffers from a large number of rejections,

due to the restrictions in DC selection. In this respect, Fig.

17 shows the acceptance rate versus the server utilization

for the three partitioning variants. Fig. 17 corroborates the

high resource efficiency of Min-W that exhibits the highest

acceptance rate compared to Min-C and the greedy variant,

while utilizing up to 88% of the server capacity.
Figs. 16 and 18 show a strong correlation between the

acceptance rate and generated revenue. The LP variants gen-

erate substantially higher revenue from CPU and bandwidth,

compared to the greedy algorithm. For Min-W, the highest

acceptance rate is translated to a higher revenue, i.e., up to

14% more than Min-C. This essentially designates Min-W as

the preferred NF-graph partitioning method for NFPs.
In addition, we measure the acceptance rate of Min-W with

250K expiring requests and diverse arrival rates. Figs. 19(a)

shows that acceptance rates converge to a steady state, ir-

respective of the arrival rate. Fig. 19(b) further depicts the

acceptance rates for the three different arrival rates at steady

state. In addition, a load balancing level between 1.1 and 1.4
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Fig. 14. Normalized service cost with cost-
minimized, weight-minimized, and greedy
NF-graph partitioning.
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Fig. 15. Load balancing level with cost-
minimized, weight-minimized, and greedy
NF-graph partitioning.
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Fig. 16. Acceptance rate with cost-
minimized, weight-minimized, and greedy
NF-graph partitioning.
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Fig. 17. Acceptance rate vs. server
utilization with cost-minimized, weight-
minimized, and greedy NF-graph partition-
ing.
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is achieved, depending on the request arrival rate, as shown

in Figs. 20(a) and 20(b). These results further indicate the

efficiency of the proposed LPs for NF-graph partitioning and

NF-subgraph mapping.

We also investigate the gains from the demand transfor-

mations with our service model (Section III-A). Specifically,

we analyze the savings in terms of service cost and resource

consumption using the Min-C and Min-W NF-graph parti-

tioning variants, respectively. To this end, we process and

embed the same set of requests (i.e., service chains) with

and without demand transformations. Each chain includes a

random number of traffic-scaling NFs, and particularly NFs

that compress traffic.

Fig. 22 depicts the average service cost per service chain

with and without demand transformations. The two boxplots

in Fig. 22 illustrate the fraction of service cost associated with

CPU and bandwidth. We observe that demand transformations

lead to 30% savings in the median bandwidth cost. This is

translated into a significant reduction in the client’s expendi-

ture. There is also a perceptible CPU cost saving (Fig. 22),

albeit lower than the respective bandwidth cost saving. The

difference in the cost saving between CPU and bandwidth

stems from the fact that traffic-scaling NFs affect the CPU

demand of subsequent NFs in the chain, as opposed to traffic

compression which occurs at the egress link of the traffic-

scaling NF and propagates till the chain end-point.

We further discuss the resource savings for the NFPs, due

to the demand transformations in our service model. Fig. 23

consists of two boxplots that illustrate the CPU and overall

bandwidth consumption with and without demand transforma-

tions. Similarly to Fig. 22, we observe a substantially lower

bandwidth consumption and slightly lower CPU consumption

when demand transformations are in use. These resource

savings eventually lead to higher acceptance rates, as shown in

Fig. 21. Essentially, coupling Min-W partitioning with demand

transformations results in a significantly higher acceptance rate

and, consequently, more revenue for the NFPs.

Finally, we investigate whether Nestor places NFs in the

order specified in the service chain. In this respect, we measure

the number of DC traversals by each embedding, i.e., if each

DC is traversed only once, this implies correctness. According

to our results, in 89.3% of the embeddings, DCs are traversed

only once, whereas in 10.5% of the embeddings, certain DCs

are traversed twice. This occurs since chain partioning is

optimized for embedding cost or link weight minimization

(i.e., enforcing correctness as a constraint could exclude cheap

embeddings or lead to request rejections). Nevertheless, even

in this case, correctness can be attained using various tech-

niques such as tunneling, flow tagging [24], and NF-graph

transformations [26], [16].

VIII. RELATED WORK

In this section, we discuss related work on NSE. We

particularly discuss existing work on the two NSE aspects that

we address in this paper, i.e., (i) graph partitioning and (ii)

NF-graph mapping onto a DC network.

Graph partitioning. Authors in [29] and our previous

work [21] address the problem of multi-provider VN em-

bedding. Both papers propose a LP for graph partitioning

across multiple infrastructure providers (InPs). However, their
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Fig. 19. Acceptance rate with diverse arrival rates (AR) of expiring requests
and weight-minimized NF-graph partitioning.
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Fig. 20. Load balancing level with diverse arrival rates (AR) of expiring
requests and weight-minimized NF-graph partitioning.
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approach is only valid for VN topology partitioning, as their

request models cannot represent service chain specifications.

Furthermore, VN-graph partioning is executed based on only

an InP-level network view and the knowlegde of InP peer-

ings, and as such, the VN-graph is partitioned among a set

of InPs. In contrast, NF-graph partitioning generates NF-

subgraphs mappable to DCs, and thereby, requires DC-level

topology abstractions. Furthermore, Nestor provides NF-graph

partitioning optimizations both the client and the NFP (i.e., via

the disclosure of link weights expressing NFP preferances for

link and DC selection), as opposed to VN-graph partitioning

in [29], [21], which is optimized only for the client (i.e.,

expenditure minimization).

DistNSE [10] presents a distributed auctioning framework

to partition NF-graphs across NFPs. DistNSE’s main aim is

to preserve service chain correctness (i.e., a generated NF-

subgraph should include a subset of NFs in the same order

with the NF-graph) as well as the autonomy of each NFP (i.e.,

each NFP should be allowed to implement his own policy

in terms of NSE). In this respect, DistNSE does not seek

to achieve NF-graph partitioning optimality. Instead, DistNSE

enables NFPs to bid for NFs, according to their policy and

resource availability.

NF-graph mapping. Most existing work on NSE focuses

on mapping NF-graphs onto a single substrate network. The

works in [35], [27], [11] present a solution to the NF-graph

mapping problem, while considering different optimization

goals. The authors further define a model for NF-graph

transformations (i.e., NF reordering, replication, or merging)

to optimize the NF placement for the provider. Authors

in [37] investigate gains in terms NF-graph mapping by NF

decomposition (i.e., breaking down NFs into a set of packet

processing elements to facilitate mapping). Cohen at el. [19]

formulate NF placement as a facility location and generalized

assignment problem (GAP), without taking correctness into

account. The authors further investigate several variations

of the NF placement problem and propose approximation

algorithms aiming at latency and NF setup cost minimization.

Authors in [32] tackle a variant of the NF mapping problem,

i.e., the placement of NFs on a network while ensuring that

each path between a pair of end-points has at most one NF

assigned. The proposed approximation algorithm further facil-

itates the incremental deployment of NFs, such that additional

NFs can be rolled out without changes in NF placements. One

aspect which has not been taken into consideration in this

work is service chaining. In [33], the authors study the online

variant of the service mapping problem. In this respect, they

propose an exact method (based on an ILP) that maximizes

the request acceptance rate while fulfilling constraints in terms

of path length for the servic chain. Bari at el. [14] derive an

ILP formulation and heuristic algorithm for service mapping

with the objective of operational cost (i.e., energy cost, traffic

redirection cost and extra latency) and resource fragmentation

minimization. To simplify NF-to-node mapping, the authors

express each computing node capacity in terms of NF slots.

MIDAS [9] proposes an architecture for the coordination

of on-path flow processing setup, assuming the wide-scale

deployment of middleboxes in the network. In terms of

NF placement, MIDAS uses a heuristic algorithm for order-

preserving NF assignment, i.e., a first-fit placement followed

by an order-preserving worst-fit generates the NF assignment

per service chain. STRATOS [26] and CloudNaaS [16] pro-

pose heuristic mapping algorithms that seek to minimize inter-

rack traffic within DC networks. A similar approach is also
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taken by Oktopus [13], SecondNet [28] and CloudMirror [30]

for the assignment of virtual clusters to DCs. The authors in

[48], [34], [41] present frameworks for NFV orchestration

in different settings, i.e., over different providers, for 5G

mobile networks and over joint cloud and network resources,

respectively. In addition, [48] presents a framework for the

computation of all feasible mappings of service chains across

multiple providers. The authors show a practically acceptable

scaling behavior in the number of NFs despite an exponential

growth in the local computation time.

Additional studies have tackled the problem of embedding

VN- or NF-graphs onto a shared substrate network, relying

on heuristic algorithms [46], [49], [31], [15] or linear pro-

grams [18], [21], [29]. However, these embedding methods are

designed for arbitrary virtual and substrate network topologies,

and, hence, are not optimized for NF-graph mapping onto

DC networks. The work in [15] is a heuristic approach for

a coordinated composition and embedding of non-expiring

service chains. Furthermore, existing VN request models can

not express bandwidth demand transformations which are

required by traffic-scaling NFs.

Compared to all these approaches, Nestor provides a holistic

solution for the NSE problem across multiple NFPs, including

NF-graph partitioning, rendering of NF-subgraphs mappable to

DCs, and NF-subgraph mapping. According to our knowledge,

Nestor is the first NSE framework that takes traffic-scaling

NFs into account, introducing demand transformations that

alleviate the traffic scaling effects. Our evaluation study is

focused on multi-provider aspects (i.e., NF-graph partitioning)

and more specifically, on the impact of constrasting provider

and client objectives on NSE efficiency in terms of request

acceptance rate, generated revenue, service cost, and network

load balacing.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented Nestor, a NSE orchestrator, that

addresses the main challenges faced by the mapping of service

chains across multiple NFPs. In this respect, we decomposed

NSE into two problems (i.e., NF-graph partitioning and NF-

subgraph mapping), which we studied separately. For both

problems, we presented ILP formulations, and subsequently,

derived LP-based solutions for reduced time complexity and

better scalability. Especially for NF-graph partitioning, which

is the main focus of our study, we provided ILP/LP variants

optimized for the client and the NFP. This allowed us to

assess the impact of different partitioning optimizations on

embedding efficiency. In this respect, we uncovered a trade-off

between service cost minimization and revenue maximization.

In particular, service cost minimization can potentially lead

to cheaper NFaaS offerings, attracting more clients, but at

the same time generates suboptimal embeddings that restrict

the revenue of NFPs. Conversely, partitioning optimizations

driven by NFP policies yield resource efficiency, maximizing

the NFPs’ revenue, but also entail more expensive and, thus,

less competitive NFaaS offerings.

One of the most novel aspects of our work is the intro-

duction of demand transformations, as a feature of our new

service model for the specification of NF-graphs. The CPU and

bandwidth demand transformations alleviate the traffic scaling

effects, especially as they propagate across the NFs in the

service chain. Our evaluations show significant resource and

service cost savings, from which both the NFPs and the clients

benefit. The gains are particularly high for the NFPs who can

increase their revenue by embedding 10–15% more service

chains, according to our evaluation results.

In future work, we will investigate efficient techniques for

scaling existing service chain embeddings due to evolving

demands and changes in service chain specifications. This es-

sentially poses the need for coordination of NF placement, NF

state transfer, and netwok updates, to minimize configuration

overhead and network service disruptions.
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