September 2012. ISBN: 978-1-4503-1638-5.

Renato Dominguez Garcia, Matthias Bender, Mojisola Anjorin, Christoph Rensing, Ralf Steinmetz
FReSET - An Evaluation Framework for Folksonomy-based Recommender Systems
Proceedings of the 4th ACM RecSys Workshop on Recommender Systems and the Social Web (RSWeb '12), pp. 25 - 28, ACM,

FReSET - An Evaluation Framework for Folksonomy-based
Recommender Systems

Renato Dominguez

Garcia
renato@kom.tu-
darmstadt.de

Christoph Rensing
rensing@kom.tu-
darmstadt.de

ABSTRACT

FReSET is a new recommender systems evaluation frame-

work aiming to support research on folksonomy-based rec-

ommender systems. It provides interfaces for the implemen-

tation of folksonomy-based recommender systems and sup-

ports the consistent and reproducible offline evaluations on

historical data. Unlike other recommender systems frame-

work projects, the emphasis here is on providing a flexible

framework allowing users to implement their own folksonomy-
based recommender algorithms and pre-processing filtering

methods rather than just providing a collection of collabora-

tive filtering implementations. FReSET includes a graphical

interface for result visualization and different cross-validation
implementations to complement the basic functionality.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
filtering

General Terms

Algorithms, Experimentation, Measurement

1. INTRODUCTION

The amount of documents and information on the Inter-
net is growing steadily. In particular through Web 2.0 ap-
plications more and more information is made available to
users. A lot of this information can be interesting or helpful
to users, but due to information overload it can be diffi-
cult for them to find relevant items. Recommender systems
can be used for automatic filtering of relevant information.
Therefore the research on recommender systems is getting
more and more important for Web 2.0 communities. A lot

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Matthias Bender
mbender@
darmstadt.de

Ralf Steinmetz
ralf.steinmetz
darmstadt.de

Mojisola Anjorin
anjorin@kom.tu-
darmstadt.de

kom.tu-

Multimedia Communications Lab
TU Darmstadt

kom.tu- 64283 Darmstadt, Germany

of these communities are social resource sharing networks:
They can be used to share bookmarks like delicious®, to
share photos like flickr? or to share music listening habits
like Last.fm®. Even if the type of the shared resources are
different, all these networks are very similar: users can add
resources to the network and tag the resources with arbi-
trary words. In this way so-called Folksonomies emerge.
Folksonomies are defined as the collection of users, tags and
resources in a community. In the last years, a lot of re-
search in folksonomy-based recommender systems has been
done [4, 6]. However, if we take a look on existing rec-
ommender system frameworks like Cofi*, LensKit[2] or rec-
ommenderlab®, we see that these frameworks focus on the
development and applications of collaborative filtering tech-
niques, which are very simple and effective. However, these
frameworks cannot be applied directly to support research
on folksonomy-based recommender systems. Folksonomies
differ in essence from traditional recommender data mod-
els by the use of tags and the non-existence of ratings, i.e.
whereas traditional recommender systems usually operate
over 2-dimensional data arrays, folksonomies are represented
as graphs with edges denoting (user, resource, tags) triples.
Furthermore, in folksonomy-based recommender systems we
are interested not only in content, but also in tags and even
other users. Additionally, tagging can be extended to se-
mantic tagging, where tags are enriched by semantics, e.g.
describing their type [1].

FReSET® aims to close this gap by providing interfaces
and methods to implement, analyze and compare recom-
mender systems. FReSET also offers a graphical interface
in order to get a better visualization of the evaluation data.
In the next sections we will describe the functionality to
pre-process, evaluate and visualize the data in the evalua-
tion framework.

2. THE FRAMEWORK

http:/ /www.delicious.com (accessed 08.06.2012)
*http://www.flickr.com (accessed 08.06.2012)
Shttp://www.lastfm.com (accessed 08.06.2012)
“http://www.nongnu.org/cofi (accessed 08.06.2012)
®http://lyle.smu.edu/TDA /recommenderlab (accessed
08.06.2012)

5Folksonomy-based REcommender System Evaluation Tool

without the explicit permission of the copyright holder.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a
non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here
electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted

2.1 Architecture

Our framework consists of four main packages that en-
capsulate different parts of its functionality. These packages
shall be described in detail in the following sections.

2.1.1 Folksonomy Data Model and File Format

In our framework, folksonomies are designed as a graph
consisting of vertices and edges connecting them. The pack-
age folksonomy contains all classes needed. The central
functionality of the data structure can be found in the ab-
stract class Vertex. It simply has a set of edges (represented
by the class Edge) and through them knows about its neigh-
bors. The classes Resource, Tag, and User extend it. In
order to use them effectively there is the class Folksonomy.
It not only gives access to all vertices and edges but manages
adding, connecting and removing them.

FReSET input files follow a simple plain-text format. Each
line in the file represents one post. A post consists of a re-
source 7, the user u who added the resource and all tags
t that the user has assigned to r. The elements (resource,
tag(s), user) are delimited using TAB. The first string rep-
resents the URL of a resource (e.g. bibsonomy.org), the
second the tag(s) separated by comma (e.g. bookmark-
ing,social) and the third the user who has tagged the
resource (e.g. matthiasb). Optionally, a fourth string rep-
resenting the date the resource was added can be specified
too. In Table 1 is an example of a folksonomy represented
in our file format:

bibsonomy.org bookmarking,social matthiasb
flick.com action:tagging, media:social renato
youtube.com media:videos,tagging,social moji

Table 1: A very simple FReSET input file

Furthermore, folksonomy graphs can be extended using
edges between any two vertices, for example to represent
friendship relationships between users, similarity measures
between resources or semantic relations between tags. The
input format for these relations consists of a capital letter
representing the vertex type, i.e. resource (R), tag (T) and
user (U) followed by its name. An example for additional
edges is shown in Table 2:

Tfotos Tvideos
Tsocial Rbibsonomy.org
Umatthiasb Urenato

Table 2: A very simple FReSET input file for addi-
tional edges

2.1.2 Recommendation Tasks

The framework supports three types of recommendation
tasks which are given as interfaces in the package recom-
mender:

1. The tag recommendation task, which finds the best
fitting tags for a given user. It is represented by the
interface TagRecommender.

2. The resource recommendation task, which calculates
a list of resources for a given user described by the
interface ResourceRecommender.

3. The user recommendation task that returns users sim-
ilar to a given user. The interface UserRecommender
defines this recommendation task.

Each interface inherits the Recommender interface which de-
fines a recommender by one method. This method gets a
folksonomy and a user and will return a list of vertices. In
order to evaluate a recommender, this method has to be im-
plemented as one of the three previously described recom-
mendation tasks. Figure 1 gives an overview of all interfaces.

. =<<Interface>> :{’ ”””
| Recommender :
: [+recommend (folksonomy :Folksonomy, user:User) : List<T> |
[,',\ . !
1 <shind=z | [.S<bindz>_1
T=User h <<bipd>> |T=Resource
1 T=Tag 1
1 1 1
1 1 1
<<Interface>> =<<Interface>> <<Interface>>
UserRecommender TagRecommender ResourceRecommender

Figure 1: Modular structure of recommenders

2.1.3 Evaluation

All functionality needed in order to evaluate recommenders
can be found in the package evaluation. The framework
focuses its evaluation techniques on an abstract concept we
call evaluators. An evaluator is defined by the abstract class
Evaluator. This class provides the basic structure to imple-
ment different types of evaluations on a single recommender.

In general, recommender systems are evaluated using eval-
uation metrics like precision, recall or mean absolute error,
which are implemented in FReSET. Thus the primary out-
put of an evaluator has to be numeric. However for plotting
graphs or integrating these values into some sort of summary
text, the results have to be more complex. For this reason,
the method evaluate which gets a recommender and a folk-
sonomy will return an instance of EvaluationResult. In its
most basic form it simply provides a summary string and a
list of graphical representations.

The technique used most often to evaluate recommender
systems is Cross-validation [5]. Since a folksonomy cannot
easily be split into n folds of equal sizes, a variant of a Leave-
One-Out Cross-validation is applied. Thus, the most impor-
tant extension of Evaluator may be the class CrossValida-
tion. It is the generic and abstract implementation of a per-
user Cross-validation. Most of the types of Cross-validation
on folksonomies can be reduced to this basic algorithm. The
algorithm calculates for every user in the folksonomy, a list
of folds. A fold consists of two parts: the list of edges and
vertices removed from the folksonomy and the list of ver-
tices to validate the recommendation against. For any of
these folds, a single evaluation of a recommender is now ap-
plied. Currently the following variations of Cross-validation
are already implemented:

Leave-Post-Out: This method removes in each fold for a
user one of his resources as well as the concurrent edges of
the resource

Leave-Tag-Out: Analogue to the Leave-Post-Out Cross-
validation the Leave-Tag-Out Cross-validation can be ap-
plied to resource recommenders. Instead of iterating over
all resources, it leaves each tag connected to a user out and
validates against the resources connecting the user and tag

Evaluator

#logger: Logger

+<<Constructor>> Evaluator()

+evaluate(r:Recommender<T>, f:Folksonomy) : EvaluationResult
+evaluate(r:Recommender<T>,dm:DataModel): EvaluationResult
+setloglevel(level:Level)

CrossValidation

#initData()

#calculateFolds(f:Folksonomy,u:User): Collection<Fold<T>>
#evaluatePerUser(u:User, fold:Fold<T>, recommended:List<T>)
#generateResul ts(r:Recommender<T>, f: Folksonomy): CrossValidationResult
+evaluate(r:Recommeder<T=, f:Folksonomy): CrossValidationResult

<<bind>> <<bind>>
T=Tag T=Resource

|LeavePostOutCrossValidation| | LeaveTagOutCrossValidation |

[NFoldPostcrossvalidation| [NFoldTagcrossvalidation|

Figure 2: Examples of classes inheriting Evaluator

N-Folds-per-User: Another approach ensures there are a
maximum of N folds used for each user. Again there are two
variations: one using posts for tag recommenders NFold-
PostCrossValidation and another that leaves tags out for
resource recommenders NFoldTagCrossValidation.

2.2 Features

In the following section we elaborate some of the other
functions the framework offers. These parts mostly exist in
order to make the framework more accessible and create an
environment in which experiments can be performed.

2.2.1 Pre-processing and Parameterization

Typos in vertex names often lead to vertices having very
few connections to other vertices in the folksonomy. This
influences the evaluation of recommenders since there is no
way those vertices could be predicted. These and other influ-
ences often make it necessary to pre-process the data before
using it to evaluate a recommender. Inspired by the concept
of filters in Weka [3], we introduce a similar concept in our
framework. The interface Filter can be found in the pack-
age preprocess. It declares a method filterFolksonomy
which gets a folksonomy and returns the modified object.
As simple as that, it can basically perform every possible
operation on folksonomies.

The only restriction to this concept is the lack of dynam-
ics. Whenever a filter needs more information than the folk-
sonomy alone can provide, this concept will no longer work.
In order to fix this, we introduce the package parameter-
ization. It adds a class Parameter and an immutable list
ParameterList that also serves as a type of map by enabling
the direct search for a parameter given its name. A param-
eter has a type, a name, and a default value. Right now
there are only four types available: String, Integer, Float
and Boolean. Additionally, an event based system exists
that can be used to ensure a parameter fulfills certain con-
straints. Even though it is not primarily needed there, eval-
uators and recommenders also benefit from the parametriza-
tion concept. Figure 3 visualizes these relationships.

2.2.2 Graphical User Interface

Even though the framework can directly be used as a li-
brary in Java or to implement own experiments, there is

=<Interface=>
Parametrizable

[varaater] - - - - >

+getParameters(): ParameterList

A

4L:T: ‘ix:te:"?f*: \Ee:r EEE‘ : <<Interface>>
<<Interface>> Filter
Recommender -
+TilterFolksonomy(): Folksonomy

Figure 3: The parameterizable interface and where
it’s applied

an additional package containing a graphical user interface.
It provides an environment that leads step by step through
the evaluation process. This user interface consists of three
parts which shall now be discussed in detail:

The first part when starting the program is the pre-processing

panel shown in Figure 4. It gives access to the functional-
ity needed to load folksonomies into the program, to modify
them and to write them back to a file. After opening a
file, some statistics about the current folksonomy will be
shown at the bottom of the tab. The middle part allows
modifications through the filters described earlier. Having

SO0 RecEval - Recommender Evaluation Framework
Preprocess | Recommendation | Visualization
Add additional data

Open datafile... Save datafile...

Filker

Post Filter - Apply
Parameter Value
Level |10 |

Current data stats

Dataset: delicious_tags.dat 09/09/2008
Edges: 9225 Posts: 2747
Users: 2388 Tags: 1466

Resources: 67

Figure 4: The pre-processing panel

prepared a folksonomy, the recommender selection panel can
now be opened. This panel allows to perform the evaluation
experiments and to display textual results. At first the rec-
ommender has to be selected and configured. After that the
evaluation method can be selected. The panel will log the
texts and and all results are displayed in a list. This is shown
in Figure 5. Whenever an evaluation method produces nu-
merical results, these are displayed on the last panel (see
Figure 6). Its sole purpose is the visualization of the evalu-
ation results. The graphs will also be grouped according to
what they display.

2.2.3 Example

Listing 1 gives an example of how to use the FReSET
framework for evaluating an implemented recommender on
a given folksonomy. The first step is to instantiate the rec-
ommender. In our case we create an instance of a simple
tag-recommender. Since every evaluation has to be based
upon a dataset, the second step is to load a folksonomy
from a file that has the format described earlier.

// create a new instance of the recommender
TagRecommender r = new GetTags();

-8 RecEval - Recommender Evaluation Framework
Preprocess Recommendation | Visualization
Recommender Evaluation Output

[T]GetTags . | === Leave-Post-0ut Crossvalidation === | =
Recommender: GetTags

Evaluation: Folksonomy: delicious_tags.dat
Test Recommendation v .
Recall Precision F1 MAE
user | |
10,1826 0,2342 0,1937 0,0027
20,0863 0,1071 0,0861 0,0038
NFP-CV (GetTags) 30,0821 0,09 0,0798 0,0047
40,1112 0,0895 0,0906 0,0055
50,1086 0,0797 0,0847 0,0063
60,1114 0,069 0,078 0,0071
70,1245 0,0694 0,0817 0,008
80,1393 0,0645 0,0801 0,0088
90,1179 0,0551 0,0705 0,0095
10 0,127 00,0538 0,0706 0,0102 d

Run Evaluation!

Figure 5: The recommender selection panel

-8 RecEval - Recommender Evaluation Framework
Preprocess Recommendation| Visualization
F1 - F1
A I 0.20
® LPO-CV (GetTags) 01l 8
& MFP-CV (CetTags) o1s{ |
017 A
016
015
014
Ind 013
012
011
0l0 \
0.0 My o
0,07 -8
0,06
— . 1 2 3 4 5 & 7 B L] 10
R Number of Recommendations
[LPO-CV (GetTags) - NFP-CV (GetTags]]

Figure 6: The result visualization panel

// load folksonomy from file

FolksonomyParser parser = new SplittParser ();

Folksonomy f = parser.parseFolksonomyFile (
new File(”someFile.dat”));

// instantiate an evaluator
Evaluator<Tag> eval =
new LeavePostOutCrossValidation ();

// run the evaluation
EvaluationResult result = eval.evaluate(r, f);

// print summary string.
System.out.println (result.getSummaryString ());

Listing 1: An example evaluation that prints its re-
sults to the terminal

At this point we need to choose and instantiate an eval-
uation method. This evaluation method has to fit the type
of recommender and thus has to be an evaluator working
on tag-recommenders. Finally, the evaluate method can be
called which will return a result object. In the given exam-
ple, only the resulting object is used to print out a textual
summary of the results. But obviously it is also possible to
directly access the resulting values.

2.2.4 Demostration and Download

The demostration will show the different features of FRe-
SET by implementing on-the-fly a simple filter and a sim-
ple recommender. After that the simple recomemender will
be evaluated and compared with a standard collaborative

filtering recommeder system. If you are interested in ob-
taining the FReSET framework, please send an e-mail to
renato@kom.tu-darmstadt.de. From August, it is planned
to offer a download link at http://www.kom.tu-darmstadt.de/
en/research-results/downloads/software/.

3. CONCLUSION AND FUTURE WORK

In this paper, we described the FReSET framework which
supports the evaluation and comparison of folksonomy-based
recommender systems. The framework allows the implemen-
tation of recommenders and filters for pre-processing data
using given interfaces. It provides additionally a GUI for the
visualization and comparison of evaluation results. In the fu-
ture we will implement additional standard algorithms like
variants of collaborative filtering implementations, graph-
based approaches like FolkRank and pre-processing filters.
Further, we plan to add more possibilities for the parametriza-
tion of recommender systems, for example to not only recom-
mend resources, users or tags taking a single user as input,
but also taking resources or tags or combinations of these as
multi-input recommendation tasks. Finally, we will intro-
duce more visualization possibilities like ROC curves and
significance tests.

4. REFERENCES

[1] D. Béhnstedt, L. Lehmann, C. Rensing, and
R. Steinmetz. Automatic identification of tag types in a
resource-based learning scenario. In Towards Ubiquitous
Learning, volume 6964 of LNCS, pages 57—70. Springer
Berlin, 2011.

[2] M. D. Ekstrand, M. Ludwig, J. Kolb, and J. Riedl.
Lenskit: a modular recommender framework. In
B. Mobasher, R. D. Burke, D. Jannach, and
G. Adomavicius, editors, RecSys. ACM, 2011.

[3] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data mining
software: an update. SIGKDD FExplor. Newsl.,
11(1):10-18, 2009.

[4] R. Jaschke, L. Marinho, A. Hotho, L. Schmidt-Thieme,
and G. Stumme. Tag recommendations in folksonomies.
In J. Kok, J. Koronacki, R. Lopez de Mantaras,
S. Matwin, D. Mladenic, and A. Skowron, editors,
Knowledge Discovery in Databases: PKDD 2007,
volume 4702 of LNCS, pages 506-514. Springer, 2007.

[5] L. Liu and M. T. Zsu. Encyclopedia of Database
Systems. Springer Publishing Company, Incorporated,
1st edition, 2009.

[6] L. B. Marinho, A. Hotho, R. Jischke, A. Nanopoulos,
S. Rendle, L. Schmidt-Thieme, G. Stumme, and
P. Symeonidis. Social tagging systems. In Recommender
Systems for Social Tagging Systems, Springer, pages
3-15. Springer US, 2012.

