
Virtual Collaboration and Media Sharing using COSMOS

VASILIOS DARLAGIANNIS and NICOLAS D. GEORGANAS
Multimedia Communications Research Laboratory

School Of Information Technology and Engineering
University of Ottawa,

161 Louis Pasteur, Ottawa K1N 6N5, Ontario,
CANADA

[bdarla, georganas]@mcrlab.uottawa.ca http://www.mcrlab.uottawa.ca

Abstract: Collaborative Virtual Environments (CVE) are providing a powerful mechanism to companies, for

training staff and customers in their products, improving their productivity, as well as reducing the cost of
product development at the same time. Enhanced with their integration with media streams like audio and
video, they can become the main way of collaboration among co-workers.
But, the realization of such a system is not a trivial task. Many issues like scene description, session

management, stream sharing and synchronization are hard topics that require the development of a framework.
COSMOS is such a framework that is based on the new multimedia standard, the MPEG-4 and the state-of-the-
art development technologies, like Java 3D and JMF. In this paper, we describe the design and implementation
issues of COSMOS and how it is integrated with collaborative applications.

Keywords: MPEG-4, BIFS, DMIF, VRML, RTP, Collaboration, Multicast, Virtual Reality

1 Introduction
COSMOS (COllaborative System based on MPEG-4

Objects and Streams) is an object-oriented framework
that augments the rapid development of collaborative
applications. Collaboration demands a set of
requirements that have to be fulfilled in order to
become acceptable. Some of those requirements are
interactivity, short response times, robustness, and
consistency. COSMOS offers the base for building
new collaborative applications, with reusable,
modular and extensible components, that fulfill the
aforementioned requirements.
The MPEG-4 [6] [7] [8] [10] standard specifies a

novel encoding technique, based on object
description of audio-visual scenes. It specifies the
scene description and its updates over time, the
linking with media streams, and very efficient
techniques to compress audio and video objects.
COSMOS has been implemented using the Java

language. The Java Media Framework (JMF) is used
for the encoding and decoding of the media streams
(audio, video). It provides a set of encoders and
decoders for the most popular encoding formats, as
well as an implementation of the RTP protocol. The
rendering of the 3D graphics is implemented using
the Java 3D API. In addition, since VRML [9] is a

very popular format, which is used to describe 3D
worlds, a VRML parser has been developed using Java
Compiler-Compiler (JavaCC), which is a Java-based
parser generator tool.
In this paper, we present the architecture, network

configuration, protocols, design and implementation
issues of COSMOS. Our prototype contributes in the
development of collaborative systems, by providing a
framework implementation based on MPEG-4
technology. We describe how to develop MPEG-4
components with Java-based software technology.
Also, we describe the structure of an example-
application to show how COSMOS is integrated with
other, collaboration-based applications.
The rest of this paper is organized as follows: Section

2 provides a short overview of MPEG-4. Section 3
describes the overall framework architecture and
section 4 the session management issues. Section 5
provides the way a scene is represented in the system
and section 6 the stream delivery issues. Section 7 gives
some hints on the way applications should be developed
over COSMOS and finally, section 8 summarizes the
contribution of this paper.

 2

2 MPEG-4 Overview
MPEG-4 is a new multimedia standard, much more

powerful than the previous MPEG standards. It
provides an object-based description of content, both
naturally captured and computer generated. It
specifies a set of video codecs for arbitrary shape of
display to enable the extraction of visual objects from
a scene. Also, it defines a set of audio codecs to cover
every possible need of applications for trade-off
between quality and compression rate.
MPEG-4 defines the Delivery Multimedia

Integration Framework (DMIF) [2] [5 [7] [8].
DMIF is a framework that abstracts the delivery
mechanisms from the applications. For example,
multimedia applications require to access data from
either a local hard disk, or from a network source
with interaction, or even from a broadcast or
multicast source. DMIF provides a unique API to the
applications, through which they can request content
or services. They don’t have to “worry” where those
data are. This API, called DMIF Application
Interface (DAI), works with URLs, which specify the
appropriate delivery mechanism. URLs can also
specify the required network protocol, which
provides a protocol abstraction for the applications.
Quality of Service (QoS) requirements can be passed
as arguments through this interface. DAI is language
and platform independent. In addition, DMIF defines
an informative DMIF-Network Interface (DNI) for
the network related scenarios. DNI enables a
convenient development of a framework that can
easily change its signaling mapping to different
protocols.
Moreover, MPEG-4 defines a way to describe the

content of a scene with the Binary Format for Scene
(BIFS). BIFS [1] [6] [14] [15] is based on VRML,
which it extends to cover both 2D and 3D
descriptions. In contrast to VRML - which is text-
based - BIFS is providing a binary description of the
nodes. Nodes are the basic entities, which construct a
directed acyclic graph to represent the content of
scene. Examples of nodes are Box, Transform, Shape
or Group. BIFS enables the update of the content of a
scene, as well as the animation of the objects with
two protocols: BIFS-command and BIFS-anim. The
information that BIFS provides is compressed and
can be easily streamed among peers.
MPEG-4 is defined in two versions. MPEG-4

version 1 provides a basic set of tools and
specifications, while MPEG-4 version 2 provides

some more advanced and, hence, hard to be
implemented features.

3 Framework Architecture
The general architecture of COSMOS is shown in Fig.

1 using a UML class diagram; it gives the big picture of
the system. The focus of this figure is to show the way
an application can access the functionality of each
subsystem through the offered interfaces. It does not
intend to provide all the details. Each subsystem is
analyzed in the following sections.

The Application in this figure can have access to a
configurable MPEG-4 Browser, that enables the
navigation in a shared 3D world and the interaction
with it. The MPEG-4 Browser communicates with an
instance of the DMIFFilter. The DMIFFilter provides
the DMIF Application Interface (DAI) to applications
for the control of the establishment and release of the
multicast sessions (DMIFSession). On the other hand,
MPEG-4 Browser implements a DAI callback interface
for the DMIFFilter (ApplicationSession). The
DMIFFilter is responsible for handling all the requests
for media access.

The MPEG-4 Browser encapsulates an instance of
the SceneManagerImpl, which implements the
SceneManager interface. The SceneManager interface
provides a set of methods to manipulate the content of
the scene, like adding or deleting a node, or modifying
the value of a field. The SceneManagerImpl
encapsulates a VRMLParser object that parses a VRML
file and creates the corresponding directed acyclic
graph. This graph is provided to the
SceneManagerImpl. Similarly, the SceneManagerImpl
has a BIFSEncoder to create streamable representations
of the scenes and a BIFSDecoder object to generate
scenes, which are encoded in BIFS format. The
JMFCodec class is an abstract class that represents the
set of encoders / decoders of JMF that encodes or
decodes the multimedia streams.
The SessionManagerImpl implements the

RTPSessionManager interface provided by JMF, to
handle each media stream. It communicates with the
DMIFFilter, which is making requests for new
connections. The SessionManagerImpl encapsulates a
set of RTPReceivers and RTPTransmitters to handle the
details of receiving and transmitting RTP streams,
respectively. The data from the RTP streams are
provided to decoders, or retrieved from the encoders.

 3

4 Session Management
The design of the DMIF subsystem that we

implemented, is shown in Fig. 2, where the basic
objects and interfaces, as well as their relationships
are described using a UML class diagram.
Every MPEG-4 Application that uses the DMIF

framework, must implement the ApplicationSession
interface. It should also have access to a DMIFFilter
instance, which provides the DAI by implementing
the DMIFSession interface. The DMIFFilter informs
the MPEG-4 Application for every change in the
group state through the ApplicationSession callback
interface.
DMIFFilter encapsulates the DMIF Instances that

can handle specific DMIF scenarios. In the case of
the multicast scenarios, those objects can be either
GroupDCDTInstance or GroupDPDTInsta-nce,
which represent a Data Consumer or a Data Producer,
respectively.
Each of those objects encapsulates an IPMulticast

object, which is responsible for the communication
over the UDP/IP multicast protocol. IPMulticast
implements the DNI interface, which is divided in
two others, the DNIConsumer and DNIProducer.
These interfaces define a set of methods for the
respective type of DMIF terminal. IPMulticast uses a
UDPSocket object to send and receive messages over
UDP. Also, it requests from the TransactionManager
to generate a transaction id and a Transaction object
to handle the message exchange-based transactions.
GroupDPDTInstance and GroupDCDTInstance

communicate with the RTPSessionManager to
request the creation of specific transport channels.

5 Scene Representation
The inherited complexity of the scene management

subsystem is handled via a well-defined object-
oriented sub-framework, where a big number of
objects are defined, with specific responsibilities. Fig.
3 shows the UML class diagram of the basic objects
of this subsystem that we implemented.
The SceneManager class provides a set of methods,

which enable the management of the content of the
scene. SceneManager encapsulates three objects to
handle scene content represented either in BIFS

streams or VRML-like files. Two of them, the
BIFSEncoder and BIFSDecoder encodes and decodes
BIFS streams, respectively.
BIFSCodec encapsulates a static object, which is

called NodeDataTypeInfo. NodeDataTypeInfo is the
“gate” to a database, where information about the
encoding of each node or field is stored (Node Data
Types - NDTs and Node Coding Tables - NCTs).
NodeDataTypeInfo implements the NodeProvider
interface, to provide every node that is tagged with an
id or structures that describes the way nodes and fields
should be encoded/decoded. It encapsulates an object
called NDTTable. It identifies the NDTs and chooses
the right object. SFWorldNode is a special table, which
keeps the actual info for all the nodes. The rest of the
tables are referencing to this one. NodeData is a class
that encapsulates the information, which is required to
encode a node (an implementation of the NCT). Every
node is related to such an object. For example, the
TransformInfo object derives the NodeData object and
stores all the information for the Transform node.
Similarly, the FieldData object keeps information for
every field.
BIFSCodec encapsulates one more important object,

which is called BIFSScene. BIFSScene holds the
directed acyclic graph, which describes the
relationships of the nodes and a list, which includes all
the active ROUTEs. In addition, it encapsulates the
SFFieldTemplate objects. SFFieldTemplate is an
abstract class, which is being derived from a set of
objects responsible to encode fields of nodes.
SFFieldTemplate is implementing the Streamable
interface, which enables the output of the scene
description into a binary stream, as well as the reverse
procedure. A specific derived object, which is called
SFNode is responsible to encode/decode nodes.
The actual representation of the directed acyclic graph

is modeled with the Node objects and the corresponding
Fields. Fields are deriving from the Observable object
(observer pattern) to enable the sharing of the stored
information to other interested fields. They also
implement the Observer interface to be informed for
changes in other fields. This way, the implementation
of the ROUTEs is augmented.
In addition to the ability of encoding / decoding BIFS

streams, the system can “read” VRML files.
VRMLParser is responsible for that. It encapsulates a
set of rules to parse valid VRML files.

 4

6 Sharing of Media
As it has already been mentioned before, MPEG-4

content is described with a big number of elementary
streams, which are composed at the MPEG-4 terminal
to construct the rendering scene.
At the Delivery Layer, MPEG-4 does not define a

specific transport protocol for the transmission of the
elementary streams. Possible solutions are MPEG-2
TS, RTP, AAL2 ATM or H223. For transmission
over the Internet, the most appropriate solution is the
RTP [13] protocol or alternatively, with some
restrictions, directly over UDP.
The Sync Layer provides a means for synchronizing

the elementary streams, using timestamps and the
appropriate buffering mechanisms. Data are
forwarded for decoding at the correct time, and after
they are composed and render at the MPEG-4
terminal. JMF and Java 3D are used for the decoding
and the rendering of the media.

7 Implemented system
COSMOS has been developed using only the Java

language. The framework has been tested under the
Windows NT operating system, using Pentium
processors with very powerful graphics cards. The
rendering of the MPEG-4 content is handled by
mainly two components that cooperate with each
other. The 3D Renderer, which is a Java 3D
implementation of an MPEG-4 node browser and the
Video Renderer, which renders the decoded video
frames onto the surfaces of 3D objects.
JMF provides a set of encoders/decoders to

encode/decode video and audio streams, in many
popular encoding formats, such as H.263, MPEG-1,
AVI and Quick Time. The default rendering of the
video stream is taking part into rectangular frames. It
provides a variety of rendering implementations, such
as 100% Java-based, or ActiveX-based. New
rendering mechanisms have been implemented, by
extending the functionality of JMF to render the
video streams onto the surfaces of 3D objects.
The rendering of a 3D world, described with the

Java 3D API is taking place into the Canvas3D
object, which is a frame with 3D rendering
capabilities. The Canvas3D object is connected to the
Universe object, which is the top object in the
hierarchy of a Java 3D implemented environment. An

MPEG-4 node is a structure that keeps information
regarding the values of the fields. It does not provide
visual implementation by itself. For this reason, each
MPEG-4 node is related to a Java 3D structure to
enable the rendering of the information. This Java 3D
structure can be either a Node or a NodeComponent. A
Node can be either a Group node, such as BranchGroup
or TransformGroup, or a Leaf Node, such as Shape3D
or Light.
A representative example of a geometry node is the

IndexFaceSet node. The IndexFaceSet node
encapsulates the JMIndexFaceSet object, which is an
implementation of the IndexFaceSet object, using Java
3D to render its geometry. It encapsulates a
GeometryArray object (it is an object provided by
Java3D API), to define the geometry of the node. In
addition, it encapsulates information regarding the color
of the node, as well as the normals and the some
possible texture information. Similarly, other geometry
nodes encapsulate the corresponding implementation
nodes with Java 3D components.

8 Conclusions
In this paper, we presented COSMOS, a framework to

support collaborative applications, based on the MPEG-
4 standard. We show how to fill the gaps between the
standard specifications and the prototype
implementation. We show how to use the state of the
art software development technologies, like Java 3D
and JMF, to realize the MPEG-4 tools. We present a
complete architecture for the description of the shared
scene and the management of the sessions among the
participants. Also, we describe how to deal with the
elementary streams, according to their specific QoS
requirements, to enable their multicasting. Finally, we
give some hints on the way applications should be
integrated with framework.

References:

[1] O. Avaro, A. Eleftheriadis, C. Herpel, G. Rajan, L.

Ward, “MPEG-4 Systems: Overview”, Image
Communication Journal, August 1999
[2] G. Franceschini, “The Delivery Layer in MPEG-

4”, Image Communication Journal, August 1999
[3] C. Guillemot, S. Wesner, P. Christ, “Integrating

MPEG-4 into the Internet”, ECMAST 99, 1999

 5

[4] C. Herpel, A. Eleftheriadis, “MPEG-4 Systems:
Elementary Stream Management”, Image
Communication Journal, August 1999
[5] J. Huard, A. Lazar, K. Lim, G. Tselikis,

“Realizing the MPEG-4 Multimedia Delivery
Framework”, IEEE Network, July 1998
[6] ISO/IEC 14496-1 IS (MPEG-4), “Information

Technology – Coding of audio-visual objects, Part 1:
Systems”, http://flavor.ee.columbia.edu/docs/,
January 1999
[7] ISO/IEC 14496-6 FCD (MPEG-4), “Information

Technology – Coding of audio-visual objects, Part 6:
DMIF”, http://drogo.cselt.it/mpeg/public/mpeg-
4_fcd, May 1998
[8] ISO/IEC 14496-6v2 (MPEG-4), “Information

Technology – Coding of audio-visual objects, Part 6:
DMIF version 2”, 1999
[9] ISO/IEC 14772-1:1997, “Information technolo-

gy -- Computer graphics and image processing -- The
Virtual Reality Modeling Language (VRML) -- Part

1: Functional specification and UTF-8 encoding”, 1997
[10] R. Koeman, “MPEG-4, Multimedia for our

time”, IEEE Spectrum, http://drogo.
cselt.it/mpeg/koenen/mpeg-4.htm, February 1999
[11] T. Liao, “Light-weight Reliable Multicast

Protocol as an Extension to RTP”, 1997
[12] S. McCanne, “Scalable Multimedia Communi-

cation: Using IP Multicast and Lightweight Sessions”,
IEEE Internet Computing, March/April 1999
[13] H. Schulzrinne, S. Casner, R. Frederick, V.

Jacobson "RTP: A Transport Protocol for Real Time
Applications" draft-ietf-avt-new-00, Internet Enginee-
ring Task Force, ftp://ftp.is.co.za/rfc/, Dec. 1998
[14] J. Signes, Y. Fisher, A. Eleftheriadis, “MPEG-4:

Scene Representation and Interactivity”, Multimedia
Systems, Standard, Networks, 1999
[15] J. Signès, Y. Fisher, A. Eleftheriadis, “MPEG-4’s

Binary Format for Scene Description”, Image
Communication Journal, August 1999

Fig. 1 Framework architecture

Fig. 2 DMIF architecture

Fig. 3 Scene management architecture

