
Crosstalk: A Scalable Cross-Protocol Monitoring
System for Anomaly Detection

Andrea di Pietro§ Felipe Huici§ Diego Costantini§ Takahide Sugita‡ Saverio Niccolini§

§NEC Europe, Heidelberg, Germany‡NEC Corporation

Abstract—Monitoring is crucial both to the correct operation of
a network and to the services that run on it. Operators perform
monitoring for various purposes, including traffic engineering,
quality of service, security and detection of faults and mis-
configurations. However, the relentless growth of IP traffic
volume renders real-time monitoring and analysis of data a very
challenging problem.

In this paper we introduce Crosstalk, a scalable and efficient
distributed monitoring architecture that uses cross-protocol cor-
relation to detect network anomalies. While applicable to awide
range of applications such as botnet detection, spam mitigation
and mis-configurations, we pick a point in this application space,
concentrating on VoIP attacks. We present extensive simulation
results based both on generated calls and on millions of Call
Data Records (CDRs) from a large VoIP operator to show our
approach’s performance and effectiveness.

I. I NTRODUCTION

Monitoring is crucial both to the correct operation of a
network and to the services that run on it. While operators
perform monitoring for various purposes, one of the more
important ones is detecting anomalies in the network, both
in terms of attacks and mis-configurations. Indeed, reportson
malicious activity such as botnets, spamming and Denial-of-
Service attacks [1][2], as well as problems arising from mis-
configuration of hardware and firmware [3][4] are common-
place.

Monitoring large networks in order to detect such anomalies
is inherently difficult for several reasons. First, many of these
anomalies require cross-protocol correlation in order to be
detected. Botnets, for example, often use several protocols to
coordinate activities and to carry out attacks (e.g., IRC for
control and SMTP to send out spam) [5][6]. Another example
where cross-protocol detection is needed is VoIP, since calls
tend to be split into signaling and media traffic, as is the case
with SIP and RTP.

In addition to cross-protocol correlation, monitoring needs
to be done in a distributed fashion, since traffic from a par-
ticular attack or a mis-configuration may cross different mon-
itoring points in the network. Making matters more difficult
is the relentless growth of IP traffic volume, nearly doubling
every two years [7]; this growth raises serious scalabilityissues
when designing a system that not only needs to monitor large
quantities of traffic in real-time, but also to aggregate results
in order to provide network-wide anomaly detection.

In this paper we introduce Crosstalk, a scalable architecture
that gathers data from a potentially large set of distributed
monitoring probes, and performs cross-protocol correlation to
detect network anomalies. While previous work has looked

into the area of cross-protocol detection [8][9], it has focused
on single-point solutions, and so did not scale nor could it cor-
relate attack traffic traversing more than one monitoring point.
In [10] the authors implement a distributed system, but its
evaluation does not show how it would scale under heavy load
and a large number of monitoring probes. SDIMS [11] presents
a scalable infrastructure leveraging Distributed Aggregation
Trees (DATs), but again does not evaluate its performance
under heavy load nor does it look at ways of reducing
messaging and data transmission overheads.

As mentioned, several anomalies can be detected using
cross-protocol correlation. For the purposes of evaluating
Crosstalk’s scalability and performance, we pick one pointin
this application space and focus on SIP-based VoIP attacks.
In section II we describe the general Crosstalk architecture,
including its use of DATs and probabilistic data structuresto
achieve its performance goals; section III then describes our
implementation of a VoIP attack detection application using
Crosstalk’s mechanisms; section IV evaluates the performance
of such a system and finally section V provides conclusions
and a brief description of future work.

II. CROSSTALK’ S ARCHITECTURE

Crosstalk’s architecture consists of three main features that
allow it to perform distributed detection in a scalable way:
leveraging Distributed Aggregation Trees (DATs), taking ad-
vantage of probabilistic data structures (e.g., Bloom filters),
and using a novel mechanism calledbacktracking(BT).

A. Distributed Aggregation Trees

The simple approach of exporting data from several moni-
toring probes to a centralized location clearly does not scale.
In order to cope with this scalability issue, efforts both in
the research and standardization communities have focused
on creating tree-based hierarchies, whereby monitoringprobes
export measurements to intermediate nodes calledmediators.
These in turn perform some sort of data reduction operation
(e.g., aggregating packet counts) and export the results upthe
tree hierarchy. In the final step the root, which is a special
mediator called acollector, stores the aggregated results.

Ideally we would like to have a way of deriving such a
tree-based topology dynamically in order to adapt to traffic
conditions. This is precisely the goal of DATs, which cre-
ate this structure on top of a peer-to-peer network such as
Chord [12], thus providing the best from both worlds: the
scalability (and resilience) of p2p networks with that provided
by the aggregation mechanism of a tree structure.

rst
Textfeld
Andrea Di Pietro, Felipe Huici, Diego Costantini, Takahide Sugita, Saverio Niccolini:
Crosstalk: A Scalable Cross-Protocol Monitoring System for Anomaly Detection. In: Proceedings of the IEEE International Conference on Communications, p. 1 - 6, May 2010. ISBN 978-1-4244-6402-9.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

2

(a) Chord fingers for all nodes to node N24. (b) Same Chord fingers, this time shown as a tree.

Fig. 1. Example of a Distributed Aggregation Tree built on top of Chord with node N24 as the root.

The basic insight behind a DAT is that Chord’s fingers
already provide a tree structure. In order to illustrate this,
figure 1(a) shows a regular Chord network with dotted lines
representing the path from each node to node N24 (perhaps the
responsible node for a particular key); figure 1(b) then shows
these same connections but this time drawn as a tree. As can
be seen, for any given key, Chord naturally builds a tree rooted
at the node responsible for that key. In this way, each key has
its own DAT, with all the DATs sharing the same peer-to-peer
infrastructure. Within each DAT, intermediate nodes (i.e., all
nodes except the leaves of the tree) can aggregate data as it
travels towards the root, thus providing scalability.

B. Probabilistic Data Structures

Clearly nodes in the DAT will need to export information
about the monitored data, and this will consume bandwidth.
Another consideration for real-time monitoring and detection
is being able to perform the cross-protocol correlation quickly.
To achieve both of these goals we rely on probabilistic data
structures, and more specifically Bloom filters (BFs)1.

The details of what a Bloom filter represents are application-
specific, but generally we use one filter per protocol. For
instance, in the case of VoIP attacks presented later in the
paper, we use one filter for SIP traffic and another one for
RTP, with an entry in a filter denoting a SIP identifier such as
the SIP dialog id.

This compressed representation of the data consumes little
bandwidth when transmitted, and it allows us to perform
aggregation and correlation (since they are based on fast
bitwise operations) very quickly. Probabilistic data structures
do carry a cost in the form of false negatives/positives; next
we introduce a mechanism to deal with this and in section IV
we evaluate their impact.

1While Crosstalk can function with more advanced probabilistic data
structures such as sketches, Bloom filters are simpler and provide all the
necessary mechanisms.

C. Backtracking

While some applications might be content to only receive
the summarized data from a DAT’s collector, others will use
such summarized data as a trigger for retrieving more detailed
information (e.g., packet headers) at the monitoring probes,
perhaps to determine the cause of the trigger. In addition,
Bloom filters carry a low but non-negligible probability of
false positives, and so we need a way to verify whether a
result is valid or just a false positive.

In order to accomplish these goals we introduce a mecha-
nism calledbacktracking. The idea behind it is simple: when
exporting Bloom filters to nodes in the DAT, keep a copy of
them locally so that the system can track back to the original
probes that monitored the traffic.

Figure 2 shows the process in greater detail. Probes P0 and
P3 monitor traffic and export data about it in the form of
Bloom filters, depicted as a set of squares with each square
representing a bit in the filter (note that the figure is simplified
for explanatory purposes: normally an entry in the Bloom filter
would use up several bits, and more than one Bloom filter
would be used to represent the protocols to be correlated). In
addition, probes, as well as mediators, keep a local copy of
exported Bloom filters, shown in the figure in grey. As the
exported filters travel up the tree, mediators perform a bitwise
operation to combine the filters, which eventually reach the
collector C.

Upon receiving all the combined data, C correlates Bloom
filters from different protocols and, depending on the appli-
cation, triggers a backtracking request to all its immediate
mediators, in this case M4 and M5. The request includes
the collector’s Bloom filter (shown in white), which the
mediators use to compare it with their locally stored state by
performing a bitwise operation: if the number of set bits in
the resulting filter is higher than a user-defined threshold,the
backtracking request is propagated to all of the mediator’s
children; otherwise, no relevant probes exist in this area of
the DAT and the backtracking process finishes. Eventually the

3

Fig. 2. Example of backtracking. Each set of squares represents a Bloom
filter. A dark Bloom filter represents stored state, while a white one informa-
tion sent with the backtracking request. Here the matching is done using a
bitwise “AND”.

backtracking message arrives at the probes, in this case P0
and P3. In section IV we provide an evaluation of the costs
associated with this mechanism and show its applicability even
in large networks.

III. A PPLICATION: VOIP ATTACK DETECTION

In order to evaluate the performance of Crosstalk, we im-
plemented an application over it aimed at detecting SIP-based
VoIP attacks. Several types of attacks on SIP and its related
media protocol, RTP, exist. In [13], for example, the authors
describe billing frauds whereby a legitimate host is sent a fake
SIP BYE message causing its call to be hijacked so that the
attackers are using the operator’s resources while the victim is
being billed for the communications. The work in [8] describes
an attack targeted at fooling the billing system into thinking a
call is over by prematurely sending a SIP BYE message while
keeping the corresponding RTP media traffic going. Further,
SIP communications are also vulnerable to Denial-of-Service
attacks such as BYE and CANCEL attacks, as well as call
hijacking based on fake REINVITE messages [10].

The common thread among all of these attacks is that
the RTP session keeps flowing (at least in one direction)
even though the SIP control session has been torn down
or redirected. As a result, Crosstalk can be used to detect
such attacks by detecting a live RTP flow corresponding
to a recently terminated (or redirected) SIP session. After
this detection, backtracking can be used to reveal the actual
nature of the anomaly, to pinpoint the malicious users, and to
discard false positives. We use the remainder of the sectionto
describe the application’s implementation details, and evaluate
its performance in the next section.

Our attack detection application works as follows: each of
the probes monitors all the ongoing SIP and RTP traffic. The
SIP messages are parsed and, for each call, the two end-points
of the media traffic are located by examining the SDP data;
as for the RTP traffic, the two end-points simply correspond
to the source and destination addresses of the messages.

Our method assumes the probes to synchronously and peri-
odically export their probabilistic summaries of the monitored
traffic. Thanks to the large time granularity involved in voice
traffic (seconds), an offset of tens of milliseconds among

the probes’ clocks is certainly acceptable; consequently,the
probe synchronization requirement can be simply met by using
protocols like NTP, with no need for special-purpose hardware.

The monitored data is used to fill two Bloom filters:

• A Bloom filter for keeping track of the end-points of the
media traffic corresponding to SIP calls that have been
terminated (or redirected) within the last measurement
period.

• A Bloom filter for keeping track of the end-points of the
RTP sessions that have been terminated (or redirected)
within the last measurement period.

Clearly, the hash functions associated with these BFs must
be the same so that the RTP and SIP endpoints associated with
the same call are hashed into the same bit positions. Once these
BFs are created, they are exported to the nearest mediator (i.e.,
the parent of the probe in the DAT). The mediator then joins
all of the SIP BFs and all the RTP BFs received from its sons
by performing a bitwise “OR”, thus obtaining two summarized
BFs that it forwards to its own mediator. Each mediator along
the way caches a copy of the last BFs it has sent up the DAT
in order to support possible backtracking requests.

The detection of the anomalous behavior is achieved by a
node in the DAT performing a bit-wise “XOR” of the RTP and
SIP BFs: if two bits in the same position are different, that
means that either the data stream or the control stream have
not been terminated. In that case, all of the node’s children
receive a backtracking request which includes the indices of
the unmatched bits (i.e., the set bits that appeared in one BF
but not the other). Each intermediate node then checks such
bits against its cached aggregated BFs, and, if at least one
among those is set, it propagates the BT request to its children.
Such a procedure is repeated recursively until all the probes
which have logged relevant information are reached.

Of course, collisions with other calls in the BFs may prevent
the detection of such an event (a false negative); however, as
we will show in the following sections, the system can be
dimensioned in order to keep this probability arbitrarily low.
On the other hand, the false positive rate is almost negligible
for this system: as collisions on the BFs cannot generate false
alarms, these events can happen only in very rare cases:

• When, upon detection of an actual anomalous event, the
backtracking requests reach some probes which did not
log relevant information

• When the terminations of the media and control flows
happen so close to the boundary between two measure-
ment intervals that the two events are recorded in different
time windows.

In both cases, false alarms are easily spotted: in the former,
the post-event analysis (perhaps looking at logs) allows to
discard pointless requests, while in the latter it is enough
to match two adjacent time windows. We point out that,
in case a system cannot tolerate any missed detections, a
minor modification to our system allows us to fulfill this
requirement: use the RTP BF to record the end-points of the
ongoing (instead of those of the terminated) media flows, and

4

detect anomalies by looking for matching bits between the two
aggregated BFs by performing a bitwise “AND”; this change
comes at the the cost of increased utilization of network
resources (larger BFs are in general needed).

IV. EVALUATION

In this section we provide extensive simulation results to
show the performance of Crosstalk, and in particular that ofthe
VoIP attack detection application. Please note that throughout
this section we use the term report to mean the Bloom filters
exported between probes and mediators as a result of the
monitoring and aggregation process.

A. Setup

In order to assess the performance of our solution, we
evaluated several performance parameters through extensive
simulations. In greater detail, we extended the Oversim overlay
network simulator [14] by implementing a new application
module with Crosstalk’s basic functionality and which runs
on top of the Chord.

The input to the simulation consists of Call Data Records
(CDRs), in order to match the format used by our VoIP
data set (a CDR is a short record of a VoIP communication,
including fields like caller, callee, and call duration). Tohave
control over their distribution, CDRs are fed to the simulated
monitoring probes by a centralized CDR dispatcher module:
each node is assigned a given range of the overall hash ID
space and each CDR is handed over to the responsible node
(based on its source address).

In order to simulate the fact that RTP and SIP traffic for the
same call may traverse different paths, two separate copiesof
the same CDR, representing in turn the RTP and SIP traffic
associated with a given call, are assigned to two distinct probes
by using two independent hash functions. Such a choice is
rather conservative, since in a significant fraction of the real
cases, the two traffic streams are likely to follow the same
path, but this approach is still useful to show that our system
can cope with even this extreme case. It is worth noting that
the simulated probes are actually nodes on the DATs, meaning
that they can act as probes for one key but as mediators (and
even collector) for others simultaneously.

Regarding CDR generation, we took two approaches. First,
we generated CDRs randomly by setting the timestamps
and the call durations according to a Poisson process (such
a simple model has been extensively used in the field of
telephone traffic measurement). The purpose here was to be
able to effectively tune and change the simulation parameters
to show the performance of the system. In the second approach
we relied on an extensive data set gathered from a large VoIP
operator in order to demonstrate Crosstalk’s applicability to a
real world scenario. In both cases we modified the CDRs at
a certain rate (set as a percentage of the total CDRs) in order
to simulate malicious calls.

B. Performance Analysis

In this section we present simulation results based on
generated CDRs in order to assess the system’s performance

and scalability. Crosstalk’s VoIP application depends on a
number of different parameters:

• Bloom filter size, which affects several factors such as
the missed detection rate, the bandwidth consumed and
how much state nodes in the DAT keep.

• The call rate, in other words, how much traffic the
system needs to monitor, export, and correlate.

• The measurement interval, which determines how long
the probes keep data locally before exporting (longer in-
tervals result in lower overheads but increase the detection
delay).

• The anomaly rate, or percentage of malicious calls,
which increases the costs associated with backtracking
requests.

• The number of probes, equal in our case to the number
of nodes in the p2p system, affecting the DAT’s topology
and therefore the messaging overhead, the amount of
aggregation, and the detection delay.

Bloom filter size and call rate: For the first experiment we
took a look at the first two parameters and their relationship
to false negatives and positives. In other words, given a
certain call rate, how would an operator deploying Crosstalk
dimension the Bloom filter size (which affects things like
bandwidth consumption) so that the false negative and positive
rates are relatively low? To this end, consider that missed
detections (i.e., false negatives) happen when a collisionin
one BF causes a match with a “true” set bit in the other BF,
resulting in the “XOR” matching operation to return 0 (the
misdetection). Because the cause is the collision within a BF,
all the well-known results about BF performance evaluation
and dimensioning apply to our system. In particular, as the
number of keys in the BFs equals the call rateλ times the
measurement periodT, the missed detection (md) probability
can be expressed as:

P(md) = (1− (1−
1
M

)
KλT

)K
∼ (1−e−

KλT
M)K

whereM stands for the BF size (in bits) andK for the number
of hash functions (which is set to an optimal value depending
on the other parameters). In order to dimension the BF size for
a given missed detection probability, the following inequality
can be leveraged:

M ≥ λT log2(e) log2(
1

P(md)
)

As for the false positives, they are mainly due to backtracking
(BT) messages reaching probes which did not log any relevant
event. However, since BT requests are triggered only when an
actual anomaly is detected, the probability of such events (an
anomaly happening and a request reaching a wrong probe) is
definitely low. During our simulations we never observed more
than a dozen such events, even when generating hundreds of
thousands of calls.

In order to verify this model’s accuracy, we ran simulations
to evaluate the missed detection probability for two different
BF sizes and call rates ranging from 10 to 1,000 calls per

5

second, plotting the measured results against the model’s
expected values (see figure 3). As shown, the model can, to a
fairly high degree, predict the actual system behavior.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700 800 900 1000

M
is

se
d

de
te

ct
io

n
pr

ob
ab

ili
ty

Call rate (calls/sec.)

Expected M=12000
Expected M=36000
Measured M=12000
Measured M=36000

Fig. 3. Measured and expected missed detection probabilities for different
call rates and BF with sizes of 12,000 and 36,000 bits.

To get a feel for the system’s performance we rely on this
model and on our CDR database, which shows a peak call
rate well below 100 calls per second. Even if we assume
that since more and more users are migrating from PSTN to
VoIP such a figure will increase in the future by an order of
magnitude, our system can handle the resulting traffic volume
(1,000 calls/sec.): exporting data every 10 seconds and using
17KB-wide BFs yields a target missed detection probability
of 10−3, while using 34KB-wide BFs yields a target missed
detection probability of 10−6. For a measuring infrastructure
made up of 1,000 probes thetotal reporting traffic adds up to
only few MB/sec.
Measurement interval: If the BF size does not vary, a longer
measurement period implies a larger number of keys in the
BF, and, in turn, an increased missed detection probability.
On the other hand, of course, this involves a lower bandwidth
consumption, as data summaries are exported less frequently.
Depending on the operational constraints, the previously pre-
sented mathematical model allows to find out a good trade-off;
we do not present more extensive results here due to space
constraints.
Anomaly rate: The next parameter we looked at was the
anomaly rate, and in particular how it affects the costs related
to backtracking (BT). Backtracking is triggered by either
a detected anomaly or a false positive. Assuming a well-
dimensioned system with a low false positive rate (e.g., less
than 1%) and no anomalies, simulation results show about an
order of magnitude difference between export messages and
BT messages.

Arriving at more precise figures is difficult since the actual
number of backtracking messages generated depends on the
number of probes which have to be reached by a BT request
and on the topology of the tree. Having said that, we ran a
simulation to get a feel for the effects of the anomaly rate
on the system, and in particular the cost of backtracking (see
figure 4).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

B

T
 m

es
sa

ge
s

/ #
 r

ep
or

t m
es

sa
ge

s

maliciuos calls / # total calls

100 nodes
1000 nodes

Fig. 4. Rate between backtracking and report messages in DATs made up
of 100 and 1,000 probes with a varying anomaly rate.

The figure shows that, unless a very unrealistic scenario
is assumed (a network where one in ten calls is malicious),
the fraction of BT messages is small (usually an order of
magnitude smaller) with respect to the number of reports,
which proves that the BT mechanism can locate the relevant
probes without flooding the DAT with messages. Further, the
behavior of the system improves as the number of nodes
increases.

These figures can be even further improved by reducing
the size of each BT message. Observe that the Bloom filter
obtained through a bit-wise “XOR” of the aggregated SIP and
RTP reports must have a very limited number of set bits (in
fact, the number of such bits should be lower than the number
of malicious calls times the number of hash functions), which
lends itself to compression. In order to effectively compress
such a “sparse” bitmap, it is sufficient to include the indices of
the set bits within the BT message: the resulting message size
would be roughly some dozens of bytes, which is negligible
when compared to the bandwidth consumed by the reporting
messages. Even more efficient compression schemes for sparse
bitmaps can be adopted: Fastbit [15] is just an example of
a technique achieving good compression while still allowing
bitwise operations to be performed over the codified data.

Number of nodes:The number of probes does not affect the
accuracy of our system (that, in fact, depends on the overall
number of monitored calls) but rather the aggregation and
backtracking delay and the overall bandwidth consumption.
The former depends on the depth of the tree, which, in turn,
grows logarithmically with the number of probes. On the other
hand, the overall bandwidth consumption due to the report
messages grows linearly with the number of probes (each
additional probe corresponds to an additional edge on the
tree, which, in turn, corresponds to an additional report being
transmitted). As for the BT requests, their amount depends
on several variables, but we already showed their bandwidth
consumption to be negligible with respect to that of the report
messages.

6

calls/sec. P(md) P(fp) no. BT/ no. reports
30 0.0014782 0.0000316 0.2585591
34 0.0014215 0.0000632 0.258106
42 0.0033482 0.0000527 0.2986333
41 0.0016393 0.0000632 0.2970421
33 0.0021536 0.0000738 0.2561671
8 0.0000000 0.0000000 0.1249855

1.3 0.0000000 0.0000000 0.024015
0.5 0.0000000 0.0000000 0.0125396

Fig. 5. Crosstalk’s performance when using real-world datafrom a large
VoIP provider. Each row represents a different 30-minute time sample in our
data set.

C. Real-World Performance

In the previous section we looked at how Crosstalk behaves
when varying a number of different parameters in simulation.
To get a sense of how it would perform in a realistic scenario
we replaced the generated CDRs with those of an extensive
data set consisting of more than 100 million CDRs from more
than 15 million users collected over a period of more than 4
weeks. In order to test our system in different traffic scenarios
without having to face prohibitive simulation times, we ranour
experiments by using 30 minutes time slots that we sampled
out of our complete database. We assumed a system with 1,000
probes, 4KB BFs, a measurement interval of 20 seconds, and
a (quite conservative) anomaly rate of 3% (see figure 5). The
results clearly show that Crosstalk is more than able to cope
with this traffic, yielding very low false negative (md) and false
positive rates as well as a negligible number of backtracking
messages with respect to the number of reports. It is worth
noting that while the table lists figures from a few 30-minute
time samples in our data set (one per row), we ran simulations
for others and obtained similar results.

V. CONCLUSIONS ANDFUTURE WORK

We have presented Crosstalk, a scalable and distributed
monitoring system for detecting cross-protocol anomalies.
We have implemented a VoIP attack detection application
over it and presented extensive simulation results on a large
VoIP data set. In addition, we used a mathematical model
to show that Crosstalk performs well even when presented
with much higher loads than those conveyed by current VoIP
infrastructures.

The results confirm that Crosstalk can scale to a very large
number of monitoring probes, deal with a large call rate of
1,000 calls/sec and a high percentage of anomalous calls, all
while using small Bloom filter sizes of only dozens of KB. The
system can be easily tuned to achieve arbitrarily small missed
detection rates with a limited increase in terms of overhead.
Moreover, in case missing an anomaly is not acceptable, a
slight change in the system layout allows Crosstalk to fulfill
such a requirement.

One of the topics we did not discuss due to space constraints
is tree topologies. The DATs we used relied on Chord’s
normal routing algorithm, which can result in unbalanced
trees, specially when the DAT contains a large number of
nodes. Towards a solution, previous work [16] modified Chord
to provide (almost) balanced binary trees. While certainlyan

improvement, what we would like is not only to have a mostly
balanced tree, but also the ability to control its depth; in other
words, controlling the trade-off between scalability through
aggregation (achieved with deeper trees) and aggregation delay
and messaging overheads (reduced by using shallower trees).
We are currently working on an algorithm to achieve this.

VI. A CKNOWLEDGEMENTS

This work was partly supported by the Japanese Ministry
of Internal Affairs and Communications (MIC).

REFERENCES

[1] The Economist, “A walk on the dark side,”
http://www.economist.com/displayStory.cfm?storyid=9723768, August
2007.

[2] Symantec Corporation, “Internet Security Threat Report Volume XI,”
http://www.symantec.com/enterprise/threatreport/index.jsp, March 2007.

[3] McPherson, D., “Internet Routing Insecurity: PakistanNukes
YouTube?” http://asert.arbornetworks.com/2008/02/internet-routing-
insecuritypakistan-nukes-youtube/, February 2008.

[4] Plonka, D., “Flawed routers flood university of wisconsin internet time
server,” http://pages.cs.wisc.edu/ plonka/netgear-sntp/, August 2003.

[5] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: clustering
analysis of network traffic for protocol- and structure-independent botnet
detection,” in SS’08: Proceedings of the 17th conference on Security
symposium. Berkeley, CA, USA: USENIX Association, 2008, pp. 139–
154.

[6] W. T. Strayer, D. Lapsley, R. Walsh, and C. Livadas, “Botnet detection
based on network behavior,” inBotnet Detection: Countering the Largest
Security Threat, W. Lee, C. Wang, and D. Dagon, Eds. Springer-Verlag,
2007.

[7] Cisco Systems, “Approaching the zettabyte era,”
”http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/
ns705/ns827/whitepaper c11-481374.pdf”, June 2008.

[8] Y.-S. Wu, S. Bagchi, S. Garg, N. Singh, and T. Tsai, “Scidive: A stateful
and cross protocol intrusion detection architecture for voice-over-ip
environments,” inDSN ’04: Proceedings of the 2004 International
Conference on Dependable Systems and Networks. Washington, DC,
USA: IEEE Computer Society, 2004, p. 433.

[9] B. Barry and A. Chan, “Towards intelligent cross protocol intrusion
detection in the next generation networks based on protocolanomaly
detection,” inThe 9th International Conference on Advanced Commu-
nication Technology, 2007, pp. 1505–1510.

[10] Y.-S. Wu, V. Apte, S. Bagchi, S. Garg, and N. Singh, “Intrusion detection
in voice over ip environments,”International Journal of Information
Security. [Online]. Available: http://dx.doi.org/10.1007/s10207-008-
0071-0

[11] P. Yalagandula and M. Dahlin, “A scalable distributed information
management system,” inSIGCOMM ’04: Proceedings of the 2004
conference on Applications, technologies, architectures, and protocols
for computer communications. New York, NY, USA: ACM, 2004, pp.
379–390.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM ’01: Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications.
New York, NY, USA: ACM, 2001, pp. 149–160.

[13] R. Zhang, X. Wang, X. Yang, and X. Jiang, “Billing attacks on sip-
based voip systems,” inWOOT ’07: Proceedings of the first USENIX
workshop on Offensive Technologies. Berkeley, CA, USA: USENIX
Association, 2007, pp. 1–8.

[14] I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay
Network Simulation Framework,” inProceedings of 10th IEEE Global
Internet Symposium (GI ’07) in conjunction with IEEE INFOCOM 2007,
Anchorage, AK, USA, May 2007, pp. 79–84.

[15] “Fastbit: An efficient compressed bitmap index technology.” [Online].
Available: http://sdm.lbl.gov/fastbit/

[16] M. Cai and K. Hwang, “Distributed Aggregation Algorithms with
Load-Balancing for Scalable Grid Resource Monitoring,”Parallel and
Distributed Processing Symposium, International, vol. 0, p. 123, 2007.

