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Abstract—Monitoring is crucial both to the correct operation of  into the area of cross-protocol detection [8][9], it hasused
a network and to the services that run on it. Operators perfom  on single-point solutions, and so did not scale nor coul@ii ¢
monitoring for various purposes, including traffic engineaing, re|ate attack traffic traversing more than one monitorinigrpo
quality of service, security and detection of faults and mis In 1101 th h imol distributed but i
configurations. However, the relentless growth of IP traffic nl ]_t e authors imp ement. a distributed system, but its
volume renders real-time monitoring and analysis of data a ery ~ €valuation does not show how it would scale under heavy load
challenging problem. and a large number of monitoring probes. SDIMS [11] presents

In this paper we introduce Crosstalk, a scalable and efficieh g scalable infrastructure leveraging Distributed Aggtiega
distributed monitoring architecture that uses cross-probcol cor-  Treeg (DATSs), but again does not evaluate its performance

relation to detect network anomalies. While applicable to awide . .
range of applications such as botnet detection, spam mitigian under heavy load nor does it look at ways of reducing

and mis-configurations, we pick a point in this application ace, Messaging _and data transmission _overheads. _
concentrating on VoIP attacks. We present extensive simulian As mentioned, several anomalies can be detected using

results based both on generated calls and on millions of Call cross-protocol correlation. For the purposes of evalgatin
Data Records (CDRs) from a large VoIP operator to show our  crosstalk’s scalability and performance, we pick one pwint
approach's performance and effectiveness. this application space and focus on SIP-based VoIP attacks.
In section Il we describe the general Crosstalk architegtur
including its use of DATs and probabilistic data structutes
Monitoring is crucial both to the correct operation of achieve its performance goals; section Ill then descrihgs o
network and to the services that run on it. While operatofgplementation of a VoIP attack detection application gsin
perform monitoring for various purposes, one of the morgrosstalk’s mechanisms; section IV evaluates the perfocma
important ones is detecting anomalies in the network, bogh such a system and finally section V provides conclusions
in terms of attacks and mis-configurations. Indeed, repmits and a brief description of future work.
malicious activity such as botnets, spamming and Denial-of

I. INTRODUCTION

Service attacks [1][2], as well as problems arising from-mis Il. CROSSTALK'S ARCHITECTURE
configuration of hardware and firmware [3][4] are common- Crosstalk’s architecture consists of three main featuras t
place. allow it to perform distributed detection in a scalable way:

Monitoring large networks in order to detect such anomaligsveraging Distributed Aggregation Trees (DATS), takirdy a
is inherently difficult for several reasons. First, manyliése vantage of probabilistic data structures (e.g., Bloomrfilte
anomalies require cross-protocol correlation in order ¢ land using a novel mechanism calledcktracking(BT).
detected. Botnets, for example, often use several pratdool
coordinate activities and to carry out attacks (e.g., IRE fé\- Distributed Aggregation Trees
control and SMTP to send out spam) [5][6]. Another example The simple approach of exporting data from several moni-
where cross-protocol detection is needed is VoIP, sincs cabring probes to a centralized location clearly does nolesca
tend to be split into signaling and media traffic, as is theecaim order to cope with this scalability issue, efforts both in
with SIP and RTP. the research and standardization communities have focused
In addition to cross-protocol correlation, monitoring dee on creating tree-based hierarchies, whereby monitqrioges
to be done in a distributed fashion, since traffic from a paexport measurements to intermediate nodes caflediators
ticular attack or a mis-configuration may cross differentnmo These in turn perform some sort of data reduction operation
itoring points in the network. Making matters more difficul{e.g., aggregating packet counts) and export the resultbaip
is the relentless growth of IP traffic volume, nearly douglintree hierarchy. In the final step the root, which is a special
every two years [7]; this growth raises serious scalabidisyes mediator called aollector, stores the aggregated results.
when designing a system that not only needs to monitor largeldeally we would like to have a way of deriving such a
quantities of traffic in real-time, but also to aggregateultss tree-based topology dynamically in order to adapt to traffic
in order to provide network-wide anomaly detection. conditions. This is precisely the goal of DATs, which cre-
In this paper we introduce Crosstalk, a scalable architectwate this structure on top of a peer-to-peer network such as
that gathers data from a potentially large set of distriduteChord [12], thus providing the best from both worlds: the
monitoring probes, and performs cross-protocol corratato  scalability (and resilience) of p2p networks with that pdad
detect network anomalies. While previous work has lookdry the aggregation mechanism of a tree structure.
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(a) Chord fingers for all nodes to node N24. (b) Same Chord fingers, this time shown as a tree.

Fig. 1. Example of a Distributed Aggregation Tree built op tf Chord with node N24 as the root.

The basic insight behind a DAT is that Chord’s finger€. Backtracking

already provide a tree structure. In order to illustrates,thi \while some applications might be content to only receive
figure 1(a) shows a regular Chord network with dotted lingfie summarized data from a DAT's collector, others will use
representing the path from each node to node N24 (perhapsdfien summarized data as a trigger for retrieving more aetail
responsible node for a particular key); figure 1(b) then $hovhiormation (e.g., packet headers) at the monitoring pspbe
these same connections but this time drawn as a tree. As PBPhaps to determine the cause of the trigger. In addition,
be seen, for any given key, Chord naturally builds a treeetotg|oom filters carry a low but non-negligible probability of

at the node responsible for that key. In this way, each key h@gse positives, and so we need a way to verify whether a
its own DAT, with all the DATs sharing the same peer-to-peggsy|t is valid or just a false positive.

infrastructure. Within each DAT, intermediate nodes (iadl In order to accomplish these goals we introduce a mecha-
nodes except the leaves of the tree) can aggregate data agsih calledbacktracking The idea behind it is simple: when

them locally so that the system can track back to the original
B. Probabilistic Data Structures probes that monitored the traffic.

Clearly nodes in the DAT will need to export information Figure 2 shows the process in greater detail. Probes PO and

about the monitored data, and this will consume bandwidtRS monitor traffic and export data about it in the form of
Another consideration for real-time monitoring and detect /00 filters, depicted as a set of squares with each square
is being able to perform the cross-protocol correlatiorckjyi  '€Presenting a bit in the filter (note that the figure is sifigri
To achieve both of these goals we rely on probabilistic daf@d’ €xPlanatory purposes: normally an entry in the Bloonefilt
structures, and more specifically Bloom filters (BFs) would use up several bits, and more than one Bloom filter
The details of what a Bloom filter represents are applicr:ttiowou.lc.j be used to represent the protocols to be correlatad). |
specific, but generally we use one filter per protocol. F(?rdd't'on’ probes, as well as m§d|ators_, keep a local copy of
instance, in the case of WoIP attacks presented later in twéoorted Bloom filters, shown in the _flgure In grey. As_ the
paper, we use one filter for SIP traffic and another one fS%port_ed filters trayel up the_ tree, me_d|ators perform aibéw
RTP, with an entry in a filter denoting a SIP identifier such ayperation to combine the filters, which eventually reach the

the SIP dialog id. collector C. .
. . ... Upon receiving all the combined data, C correlates Bloom
This compressed representation of the data consumes Il}ltllte

bandwidth when transmitted, and it allows us to perform ers frOT" different protoco!s and, depending on _the apph
. . : capon, triggers a backtracking request to all its immexiat
aggregation and correlation (since they are based on fds

bitwise operations) very quickly. Probabilistic data stures mediators, in this case M4 and M5. The request includes

. . o the collector’'s Bloom filter (shown in white), which the
do carry a cost in the form of false negatives/positives; nex

we introduce a mechanism to deal with this and in section I@ediators use to compare it with their locally stored state b
we evaluate their impact performing a bitwise operation: if the number of set bits in

the resulting filter is higher than a user-defined threshibie,
, _ _ . backtracking request is propagated to all of the mediator’s

IWhile Crosstalk can function with more advanced probahiligiata hild - oth . | b ist in thi o
structures such as sketches, Bloom filters are simpler aadider all the children; otherwise, no re.evant pro e$ _eX'St In this area o
necessary mechanisms. the DAT and the backtracking process finishes. Eventuadly th



I\cll::(r:r?::;gt%rr the probes’ clocks is certainly acceptable; consequetitéy,

P: probe 0, probe synchronization requirement can be simply met bygusin
protocols like NTP, with no need for special-purpose hargwa

The monitored data is used to fill two Bloom filters:

match{ }“: ) « A Bloom filter for keeping track of the end-points of the
mate media traffic corresponding to SIP calls that have been
(9 terminated (or redirected) within the last measurement
[o[1ToJofoo[o]o] [o]o]1]ofo]0]o]o] iod
tch match perlo ’ . . .
m & & ® & « A Bloom filter for keeping track of the end-points of the
[0]4]0]0 o[o[o]0] [0]0[i o] oo[o]0] RTP sessions that have been terminated (or redirected)

within the last measurement period.

Fig. 2. Example of backtracking. Each set of squares reptese Bloom  Clearly, the hash functions associated with these BFs must
filter. A dark Bloom filter represents stored state, while dtevione informa- ’ . . .
tion sent with the backtracking request. Here the matchindane using a P€ the same so that the RTP and SIP en(.ipomFs. associated with
bitwise “AND". the same call are hashed into the same bit positions. Onse the

backtracking message arrives at the probes, in this case P are created, they are exported to the nearest mediator (i

and P3. In section IV we provide an evaluation of the costd€ parent of the probe in the DAT). The mediator then joins

associated with this mechanism and show its applicabiligne all of the SIP BFs and all the RTP BFs received from its sons
in large networks. by performing a bitwise “OR”, thus obtaining two summarized

BFs that it forwards to its own mediator. Each mediator along
I11. APPLICATION: VOIP ATTACK DETECTION the way caches a copy of the last BFs it has sent up the DAT
order to support possible backtracking requests.
The detection of the anomalous behavior is achieved by a
e in the DAT performing a bit-wise “XOR” of the RTP and
BFs: if two bits in the same position are different, that
means that either the data stream or the control stream have
Hgt been terminated. In that case, all of the node’s children
receive a backtracking request which includes the indides o
the unmatched bits (i.e., the set bits that appeared in one BF
but not the other). Each intermediate node then checks such
ﬁ)'éts against its cached aggregated BFs, and, if at least one
ong those is set, it propagates the BT request to its ehildr

In order to evaluate the performance of Crosstalk, we intl”
plemented an application over it aimed at detecting SIRdbas
\VoIP attacks. Several types of attacks on SIP and its rela
media protocol, RTP, exist. In [13], for example, the ausho
describe billing frauds whereby a legitimate host is seratka f
SIP BYE message causing its call to be hijacked so that t
attackers are using the operator’s resources while thamvist
being billed for the communications. The work in [8] desesb
an attack targeted at fooling the billing system into thimtka
call is over by prematurely sending a SIP BYE message wh
keeping the corresponding RTP media traffic going. Furthé&f, . . :
SIP communications are also vulnerable to Denial-of-®ervi uch a procedure is repeated recursively until all the probe

attacks such as BYE and CANCEL attacks, as well as cgffpc';h have Iogglglfac-i relevgﬂt w;}formaﬁuo_n ar:e I;eFached.
hijacking based on fake REINVITE messages [10]. course, coflisions with other calls in the ©S may prevent
tg[e detection of such an event (a false negative); howeser, a

The common thread among all of these attacks is th il show in the followi i th A b
the RTP session keeps flowing (at least in one directio will show n the following sections, the system can be
Hwensmned in order to keep this probability arbitraribyvl

even though the SIP control session has been torn do the other hand. the fal i te is al i iaib
or redirected. As a result, Crosstalk can be used to detgdi | Other hand, the 1aiSe posilive rate 1S aimos nedigi

such attacks by detecting a live RTP flow correspondigq;this system: as collisions on the BF; cannot generase fal
to a recently terminated (or redirected) SIP session. Aft rms, these events cgn happen only in very rare cases:
this detection, backtracking can be used to reveal the lactuas When, upon detection of an actual anomalous event, the
nature of the anomaly, to pinpoint the malicious users, and t ~ backiracking requests reach some probes which did not
discard false positives. We use the remainder of the settion |09 relevant information

describe the application’s implementation details, aralate ~ * When the terminations of the media and control flows
its performance in the next section. happen so close to the boundary between two measure-

Our attack detection app”cation works as follows: each of ment intervals that the two events are recorded in different

the probes monitors all the ongoing SIP and RTP traffic. The time windows.
SIP messages are parsed and, for each call, the two end-pointn both cases, false alarms are easily spotted: in the former
of the media traffic are located by examining the SDP datidie post-event analysis (perhaps looking at logs) allows to
as for the RTP traffic, the two end-points simply correspordiscard pointless requests, while in the latter it is enough
to the source and destination addresses of the messages.to match two adjacent time windows. We point out that,
Our method assumes the probes to synchronously and pari-case a system cannot tolerate any missed detections, a
odically export their probabilistic summaries of the mon#td minor modification to our system allows us to fulfill this
traffic. Thanks to the large time granularity involved in e®i requirement: use the RTP BF to record the end-points of the
traffic (seconds), an offset of tens of milliseconds amormangoing (instead of those of the terminated) media flows, and



detect anomalies by looking for matching bits between the tvand scalability. Crosstalk’s VolP application depends on a
aggregated BFs by performing a bitwise “AND”; this changaumber of different parameters:
comes at the the cost of increased utilization of network, Bloom filter size, which affects several factors such as

resources (larger BFs are in general needed). the missed detection rate, the bandwidth consumed and
IV. EVALUATION how much state nodes in the DAT keep.
The call rate, in other words, how much traffic the
system needs to monitor, export, and correlate.
« The measurement interva) which determines how long
the probes keep data locally before exporting (longer in-
tervals result in lower overheads but increase the detectio

In this section we provide extensive simulation results to °
show the performance of Crosstalk, and in particular thétef
\VoIP attack detection application. Please note that thnougy
this section we use the term report to mean the Bloom filters
exported between probes and mediators as a result of the

o i delay).
monitoring and aggregation process. « The anomaly rate or percentage of malicious calls,
A. Setup which increases the costs associated with backtracking

In order to assess the performance of our solution, we r€quests.
evaluated several performance parameters through eweensi » The number of probes equal in our case to the number
simulations. In greater detail, we extended the Oversimlaye of nodes in the p2p system, affecting the DAT's topology
network simulator [14] by implementing a new application —and therefore the messaging overhead, the amount of
module with Crosstalk’s basic functionality and which runs ~ aggregation, and the detection delay.
on top of the Chord. Bloom filter size and call rate: For the first experiment we

The input to the simulation consists of Call Data Recordsok a look at the first two parameters and their relationship
(CDRs), in order to match the format used by our VolR false negatives and positives. In other words, given a
data set (a CDR is a short record of a VoIP communicatiocgrtain call rate, how would an operator deploying Crokstal
including fields like caller, callee, and call duration). lave dimension the Bloom filter size (which affects things like
control over their distribution, CDRs are fed to the simetht bandwidth consumption) so that the false negative andipesit
monitoring probes by a centralized CDR dispatcher moduletes are relatively low? To this end, consider that missed
each node is assigned a given range of the overall hash dBtections (i.e., false negatives) happen when a colligion
space and each CDR is handed over to the responsible node BF causes a match with a “true” set bit in the other BF,
(based on its source address). resulting in the “XOR” matching operation to return 0 (the

In order to simulate the fact that RTP and SIP traffic for thenisdetection). Because the cause is the collision withirFa B
same call may traverse different paths, two separate copiesall the well-known results about BF performance evaluation
the same CDR, representing in turn the RTP and SIP trafiad dimensioning apply to our system. In particular, as the
associated with a given call, are assigned to two distirab@s number of keys in the BFs equals the call ratdimes the
by using two independent hash functions. Such a choicengasurement periofl, the missed detection (md) probability
rather conservative, since in a significant fraction of thalr can be expressed as:

cases, the two traffic streams are likely to follow the same 1 KT
path, but this approach is still useful to show that our syste Pmd)=(1—(1—- =) )K ~ (1_3*%?)K
can cope with even this extreme case. It is worth noting that M

the simulated probes are actually nodes on the DATs, meanigereM stands for the BF size (in bits) ahdfor the number

that they can act as probes for one key but as mediators (&hdnash functions (which is set to an optimal value depending

even collector) for others simultaneously. on the other parameters). In order to dimension the BF size fo
Regarding CDR generation, we took two approaches. Firgtgiven missed detection probability, the following inelifya

we generated CDRs randomly by setting the timestam@an be leveraged:

and the call durations according to a Poisson process (such

a simple model has been extensively used in the field of M > AT log,(e) IOQZ(W)

telephone traffic measurement). The purpose here was to be . _ )
able to effectively tune and change the simulation pararseté'S for the false positives, they are mainly due to backtragki

to show the performance of the system. In the second appro&gi) messages reaching probes which did not log any relevant
we relied on an extensive data set gathered from a large V&¥ENt: However, since BT requests are triggered only when an
operator in order to demonstrate Crosstalk’s applicatitita 2ctual anomaly is detected, the probability of such eveats (

real world scenario. In both cases we modified the CDRs #fomaly happening and a request reaching a wrong probe) is

a certain rate (set as a percentage of the total CDRs) in orgéfinitely low. During our simulations we never observed enor
to simulate malicious calls. than a dozen such events, even when generating hundreds of

thousands of calls.
B. Performance Analysis In order to verify this model’s accuracy, we ran simulations
In this section we present simulation results based ¢m evaluate the missed detection probability for two défer
generated CDRs in order to assess the system’s performaBEesizes and call rates ranging from 10 to 1,000 calls per
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second, plotting the measured results against the model's 1000 node
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Fig. 3. Measured and expected missed detection probeilir different ~ The figure shows that, unless a very unrealistic scenario
call rates and BF with sizes of 12,000 and 36,000 bits. is assumed (a network where one in ten calls is malicious),
To get a feel for the system’s performance we rely on thtke fraction of BT messages is small (usually an order of
model and on our CDR database, which shows a peak aalhgnitude smaller) with respect to the number of reports,
rate well below 100 calls per second. Even if we assumehich proves that the BT mechanism can locate the relevant
that since more and more users are migrating from PSTN goobes without flooding the DAT with messages. Further, the
VoIP such a figure will increase in the future by an order diehavior of the system improves as the number of nodes
magnitude, our system can handle the resulting traffic velurmcreases.
(1,000 calls/sec.): exporting data every 10 seconds andj usi
17KB-wide BFs yields a target missed detection probabili(t%
of 103, while using 34KB-wide BFs yields a target misse
detection probability of 10°. For a measuring infrastructure

These figures can be even further improved by reducing
e size of each BT message. Observe that the Bloom filter
obtained through a bit-wise “XOR” of the aggregated SIP and
made up of 1,000 probes thetal reporting traffic adds up to RTP reports must have a very limited number of set bits (in

’ fact, the number of such bits should be lower than the number

only few MB/sec. g . . .
) ] . of malicious calls times the number of hash functions), Whic
Measurement interval: If the BF size does not vary, a longer

S . hends itself to compression. In order to effectively congsre
measurement period implies a larger number of keys in the ) ,o L . . -
tch a “sparse” bitmap, it is sufficient to include the indio¢

BF, and, in turn, an increased missed detection probabili A i : .
. . fhe set bits within the BT message: the resulting message siz
On the other hand, of course, this involves a lower bandwidth S22 7
uld be roughly some dozens of bytes, which is negligible

consumption, as data summaries are exported less fre .ueHYﬁ . .
D b . exp  1TeY when compared to the bandwidth consumed by the reporting
epending on the operational constraints, the previousdy p - :
essages. Even more efficient compression schemes foespars

sented mathematical model allows to find out a good trade_qgltmaps can be adopted: Fastbit [15] is just an example of

we do not present more extensive results here due to space ) o . : ) .
constraints a technique achieving good compression while still allgvin

Anomaly rate: The next parameter we looked at was thgltmse operations to be performed over the codified data.

anomaly rate, and in particular how it affects the coststeela Number of nodes: The number of probes does not affect the
to backtracking (BT). Backtracking is triggered by eitheaccuracy of our system (that, in fact, depends on the overall
a detected anomaly or a false positive. Assuming a welHumber of monitored calls) but rather the aggregation and
dimensioned system with a low false positive rate (e.gs lebacktracking delay and the overall bandwidth consumption.
than 1%) and no anomalies, simulation results show aboutBine former depends on the depth of the tree, which, in turn,
order of magnitude difference between export messages andws logarithmically with the number of probes. On the othe
BT messages. hand, the overall bandwidth consumption due to the report

Arriving at more precise figures is difficult since the actuahessages grows linearly with the number of probes (each
number of backtracking messages generated depends onaithditional probe corresponds to an additional edge on the
number of probes which have to be reached by a BT requéste, which, in turn, corresponds to an additional repoitidpe
and on the topology of the tree. Having said that, we rantansmitted). As for the BT requests, their amount depends
simulation to get a feel for the effects of the anomaly raten several variables, but we already showed their bandwidth
on the system, and in particular the cost of backtracking (seonsumption to be negligible with respect to that of the repo
figure 4). messages.



calls/sec. P(md) P(fp) no. BT/ no. reports]

20 0.00147821 00000316 09585501 improvement, what we would like is not only to have a mostly

34 0.0014215| 0.0000632 0.258106 balanced tree, but also the ability to control its depth;timeo

42 0.0033482| 0.0000527 0.2986333 words, controlling the trade-off between scalability thgh

41 0.0016393| 0.0000632 0.2970421 aggregation (achieved with deeper trees) and aggregatiay d

383 8883(1)888 8-8888888 8%2232& and messaging overheads (reduced by using shallower.trees)
13 0.0000000| 0.0000000 0.024015 We are currently working on an algorithm to achieve this.
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