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Abstract—The advent of the Internet of Things (IoT), with
modern sensors and sensor-based devices, will significantly
stimulate the development of context-aware applications. An
effective means to extract higher-level contextual information
from sensor data is distributed complex event processing (CEP),
which facilitates the analysis of real-time data streams coming
from heterogeneous and distributed sources. Considering that
user context is inherently sensitive information, the preservation
of privacy is critical once the processing of user context takes
place over several (possibly malicious) devices, especially in
collaborative scenarios.

In this paper, we tackle this issue by introducing a trust-based
approach for the placement and execution of CEP operators
in a distributed environment. We propose a trust management
model based on communication interactions among the users.
Furthermore, we incorporate trust recommendations using a
cosine-based similarity check in order to overcome collusion and
on-off attacks. We developed a smartphone-based distributed
CEP system called TrustCEP to evaluate our approach for trust
management. Based on the evaluation of TrustCEP, we observe
that our approach induces a minimal increase in average battery
consumption compared to privacy-negligent approaches.

Index Terms—Complex Event Processing, Privacy-aware Op-
erator Placement, Trust Management, D2D Communication

I. INTRODUCTION

With the advent of the Internet of Things (IoT), the paradigm

shift towards interconnected devices allows for an improved

platform to gather more information about the environment

from heterogeneous sources and to exchange information with

the real world [1]. This can be especially attributed to the

proliferation of sensor-fitted devices (e.g., smartphones) and

other sensors in the environment. Consequently, the IoT sets up

the pedestal for a renewed form of context-aware computing,

where applications interact with the user, and adapt their

services based on the prevailing user context.
Complex event processing (CEP) provides a cogent means

to discover patterns in event streams (e.g., sensor data), and

hence, enables the extraction of higher-level contextual infor-

mation with high performance and accuracy. Computing mod-

ules, often called operators, analyze input event streams using

functions, such as filtering, and aggregation [2]. Directed,

acyclic graphs called operator graphs connect the producers

(i.e., sources of data) and consumers (i.e., those interested

in higher-level context) through event streams, such that they

dictate the order in which the operators are to be executed [3].

Recent research has seen a growing interest in the dis-

tributed nature of data sources as well as consumers of

the information. In one such distributed system, each CEP

operator can be placed on one of many potentially capable

nodes (e.g., user smartphones), such that different devices take

over—through device-to-device (D2D) communication [4],

[5]—different parts of the operator graph to collaboratively

process the required higher-level contextual information. Gen-

erally, the processing of user context entails the analysis

of large data volumes coming from heterogeneous sources,

necessitating a high amount of resource usage (e.g., battery

power, memory space, etc.). Depending on the application at

hand, the placement algorithm may need to uphold stringent

requirements, such as performance optimization in terms of

latency, bandwidth, and energy consumption [6], [7], or high

availability and reliability [8].

However, one of the primary aspects that is often neglected

during operator placement and the dissemination of events is

data privacy. User context is inherently sensitive information—

e.g., location, co-location, activity, mood, etc. Thus, data

privacy becomes a critical issue once user context needs to

be processed in a distributed manner over several (possibly

malicious) devices. Having said that, the need for collabora-

tion among the participating devices entails the disclosure of

certain possibly sensitive data, to receive the services offered

by the supporting application. Therefore, there is a need for

a privacy-aware placement mechanism, which adapts event

dissemination to the prevailing privacy constraints of the users

involved, while still allowing for collaboration.

Let us consider an example scenario to better understand

the main problem. Mark and Carl are attending an important

release meeting at a business firm. They use a smartphone

application, ContextApp, to adapt their smartphone experience

to their availability based on their context. To recognize the

type of meeting, ContextApp incorporates the different sound

levels—obtained from smartphone microphone sensors—in

the meeting room, as well as the location and accelerometer

readings of the participants [9]. These raw data are processed

on the available user smartphones to obtain the higher-level

information (e.g., a calm meeting) using appropriate filtering

and aggregation operators, as dictated by rules based on the

principles of CEP. Mark is very careful about revealing his
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sensitive information—microphone data or his mental state—

to Carl, fearing that the information may land in unauthorized

hands. He fears that his microphone readings in combination

with (fine-grained) location or accelerometer information, seen

over time, can reveal sensitive information such as his stress

level [10], [11]. How can Mark (and the others) process their

context in a distributed manner, without revealing their private

information to unauthorized users?

To answer this, we propose the incorporation of user trust

levels during the placement of CEP operators. Our approach

leverages the concept of trust in supply chain management,

where the information shared between two users depends on

their trust level [12]. By allowing the users to define the

sensitivity levels for their generated events and by comparing

the trust levels towards other users against the event sensitivity

levels, it is possible to control operator placement and thus,

event dissemination.

Our main contribution is a (decentralized) trust management

model to adapt event dissemination and the placement of op-

erators for distributed CEP. We focus on D2D-based networks,

where dynamic changes and resource constraints play a key

role. The prime challenges for any trust-based approach is

the evaluation and quantification of user trust, and also the

robustness of such an approach against attacks. To this end:

• We introduce a trust management model based on user

relationships and their communication interaction history;

• We present a robust trust recommendation scheme using

the cosine similarity measure that is shown to overcome

various attacks on privacy; and

• We implement our trust-based approach within TrustCEP,

which sets up a D2D-based distributed CEP system, and

analyze battery consumption and network data exchange.

Next, we present the exact problem statement in Section II.

Section III describes the system fundamentals, focusing on

the models and assumptions used in the system. This lays

the foundation for our approach for trust-based distributed

CEP, described in detail in Section IV. The results for the

evaluation of the trust management model as well as TrustCEP

are presented and discussed in Section V. Section VI presents

some of the existing work related to our research and finally,

Section VII concludes the paper and presents future work.

II. PROBLEM STATEMENT

The placement of CEP operators on the appropriate devices

is the prerequisite to the execution of an operator graph

in a distributed manner. This entails determining the right

candidate devices for the sensing and processing tasks. Given

that the collaboration of data and processing power among the

available devices is necessary for the proper functionality of

any context-aware application, it is paramount that the privacy

constraints of the users be considered during the (distributed)

processing of their (sensitive) sensor data. More specifically,

the placement of the CEP operators and the dissemination

of the individual events have to be adapted to the privacy

constraints posed by the individual sensor data sources (here,

primarily, user smartphones). Addressing privacy in distributed

CEP systems in D2D-based user environments requires con-

sidering the following key aspects.

Event Sensitivity. CEP is largely based on the observation

and interpretation of patterns in historical situational infor-

mation of atomic (e.g., sensor data) and intermediate events.

This involves the storage on, and streaming of the events

to the respective processing devices. CEP operator graphs

may need to access sensitive user information in order to

obtain higher-level situational information. Each event can

have a different sensitivity level, depending on user privacy

constraints. While the final output events (e.g., meeting or

not) may not enable an adversary to draw any inference

on influential events, the intermediate events (e.g., filtered

microphone readings) can allow inference of sensitive user

information, e.g., stress level [10], [11]. Therefore, operator

placement has to be done in accordance to the user privacy

constraints and the corresponding event sensitivity levels.

Presence of Adversaries. Given the inadvertent presence of

adversaries, one of the main problems in distributed processing

is the difficulty to track the path of the events after their

dissemination and monitor the actions of other users [13]. For

example, in the motivating scenario, Carl can share Mark’s

data with any of his friends without Mark’s knowledge. Ad-

versaries may share information amongst themselves to infer

more sensitive information out of the combination of event

streams. Given the lack of system overview in a D2D based

network, relying on knowledge gathered from the network

does not entirely mitigate these security threats.

Dynamic Environments. The execution of the operator

graphs varies with changes in the available sensor data as

well as the available processing devices. Each user may have

different privacy constraints for operator placement. It is nec-

essary to account for the different user privacy constraints to

prevent the unwarranted exposure of sensitive user information

to adversaries. Furthermore, the number of adversaries in

the network can vary with time. While obfuscation measures

(c.f. Schilling et al. [14]) in fixed CEP systems allow for

preventing unlawful access to sensitive data, it is a significant

challenge to carry out these measures in a scalable manner

over multiple devices in a dynamic user environment.

Consequently, the envisaged distributed CEP system must

deal with varying user privacy constraints in a possibly hostile

environment but still facilitate flexible collaboration amongst

the available devices. In our approach, we employ the concept

of user trust to facilitate the implementation of one such

system. Trust describes the level of confidence a person

places in another person for a particular action, without them

having the ability to directly control its execution [15], [16].

The management of trust in a distributed environment entails

accounting for trust evaluation as well as its evolution with

time. In the following sections, we show how we incorporate

trust in privacy-aware operator placement for distributed CEP.

III. PRELIMINARIES

Before describing our approach, we provide an overview of

the fundamentals behind it, including the main assumptions
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Fig. 1: Illustration of a CEP Operator Graph and System Model

and concepts that play a key role. We shall delve briefly into

the CEP model and the proposed system model, including the

adversary models considered in our approach.

A. CEP Model

In general, a CEP system constitutes of a set of producers

P and consumers C that are connected to each other through

a directed, acyclic operator graph. Each operator graph com-

prises a set of correlation operators Ω. The operators are the

fundamental computing modules of a CEP system, performing

filtering, aggregation, logical, and other rule-based functions.

These dictate the path of the events E in the system, such that

E ⊆ (P ∪ Ω)× (Ω ∪ C).
Each operator ω ∈ Ω accepts incoming events Iω , processes

them based on the operator logic and sends the resulting

complex events Oω to the next operator in the operator graph.

For example, as seen in Figure 1, the main operators used

to satisfy the meeting query are ωL (to determine the logical

location from GPS or Wi-Fi fingerprinting), ωM (to determine

the decibel level in the room based on microphone readings),

ωC (to combine the output events of ωL and ωM , and analyze

the user movements based on the accelerometer readings), and

ωF (to obtain the final higher-level context based on the output

events of ωC).

For a given operator ω, each (outgoing) event e ∈ E has

a certain sensitivity level Se, indicating how private it is to

the corresponding user. We assume that each user sets their

event sensitivity levels by themselves based on their privacy

constraints and the query at hand. If the trust towards a user A
is τ , then event e is disseminated to A iff τ ≥ Se. Accordingly,

the corresponding operator ω can be placed on user A’s device.

B. System Model

Figure 1 shows an overview of the system model considered

in our work. We mainly focus on a system comprising user

smartphones and external environmental sensors (see Fig-

ure 1), which provide for the sensing and/or processing facili-

ties required for context recognition. We focus on application

scenarios where it is more practical to process the information

locally amongst the devices, instead of using an external

cloud-based service. Such scenarios encourage collaboration

amongst the devices in the form of exchanging information

and processing power, leading to a more efficient and lower-

latency system.

Given the decentralized nature of the information sources,

the system model is built around a D2D network that spans

a set of users’ smartphones. Thus, the CEP operator graphs

can be executed in a distributed manner on the available

devices. We assume that the devices keep track of other

sensing and processing devices in their vicinity, as well as the

context queries that the neighboring users are interested in.

This is based on the assumption that each user is interested in

estimating their own context, so as to optimize the obtained

services, accordingly. We assume that there is a consensus

beforehand on the user—called the initiator (based on, e.g.,

available battery level or network connectivity)—who initiates

the deployment of the operator graph, depending on the

context query at hand. We account for the privacy constraints

of the initiator as well as the neighboring collaborators to

establish a privacy-aware placement of the operators and event

dissemination. In turn, we assume that the underlying network

is governed by reliable communication primitives, and that all

the participating devices are visible to each other at all times

(i.e., no hidden node problem).

Furthermore, we assume that the movement of the user de-

vices is dynamic but not highly mobile (i.e., quasi-stationary).

For the purpose of our work, we assume that the devices

remain available for the entire course of execution of (at least)

one operator graph. Additional mechanisms are necessary to

deal with dynamic changes by incorporating the migration of

CEP operators to appropriate devices during runtime [3], [17].

C. Adversary Model

Distributed systems can face a variety of security/privacy

threats. In our work, we focus on honest-but-curious adver-

saries that perform their delegated tasks—the execution of

the CEP operators—compliantly, but may try influencing the

system to obtain as much sensitive information as possible

from the other benign users in the environment. Consequently,

it is necessary to place the operators only on the authorized

devices, such that they may not derive any sensitive infor-

mation from the transmitted events. Other adversary models

can be combated through appropriate security measures, as

established in related literature [18].

We consider two types of honest-but-curious attacks: col-
lusion attacks where a set of adversaries conspire together

to try and manipulate the system functionality to suit their

needs; and on-off attacks where adversaries behave benignly

for a while, gathering trust as they do so, and then turn

malicious. Our system is based on the concept of trust levels

and recommendations between users (see Section IV). In the

context of our work, colluding adversaries tend to manipulate

their trust recommendations to improve their reputation in the

system. Such adversaries practice collusion by providing either

high trust levels (i.e., ballot-stuffing) or low trust levels (i.e.,

bad-mouthing) to other users.

IV. TRUST-BASED DISTRIBUTED CEP

We now present our approach for privacy-aware placement

of the CEP operators in a distributed user environment by

accounting for the trust levels between the participating users.
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We also detail our approach for trust establishment and op-

erator placement in distributed CEP, showing its robustness

towards privacy attacks.

A. Approach Overview

Our proposed approach for a privacy-aware adaptation

of distributed CEP comprises a trust management model—

the evaluation of direct trust between users as well as its

evolution—and its incorporation in a privacy-aware operator

placement algorithm. The key aspects are:

1) To measure direct trust relations, we build upon the

interaction history between the users on synchronous

and asynchronous channels, accounting for the behavioral

aspects of user trust (see Section IV-B);

2) To enable trust evolution and to reduce the impact of

adversaries, we develop an approach that accounts for

trust recommendations from other users in the environ-

ment (see Section IV-C). This comprises, (i) the ex-

change of recommendation messages between users, (ii)

a similarity-based approach to evaluate the credibility of

the received recommendations, and (iii) countermeasures

to combat privacy attacks mentioned earlier;

3) In Section IV-D, we describe the algorithm to apply local

trust for privacy-aware operator placement.

B. Estimating Direct Trust

It is long established in the field of sociology that the type

and strength of a user relationship have a strong correlation

with the trust level between the users, and thus with the

amount of shared information. Granovetter [19] established

the concept of tie strength, or the closeness within a user

relationship, citing interaction intensity and reciprocity as

two main factors. Related research work has since proved

that communication characteristics—basically, the interaction

history on the synchronous (e.g., calls) and asynchronous (e.g.,

instant messaging) channels—between two users can be used

to estimate their tie strength (and type) [20]–[22], and in turn,

their trust level (also termed behavioral trust [16], [23]).

We consider the number of synchronous and asynchronous

communication events, denoted s and a respectively, as a

measure of intensity. For example, the higher the number of

calls and/or messages between two users, the higher their trust

level. We also consider features which describe distinct usage

patterns on the channels. For example, the duration of calls

made d and the number of emoticons e in messages are shown

to be influential features [21], [22]. Further, we incorporate the

degree of reciprocity ρ ∈ [0, 1] between the users to account

for different levels of communication involvement by the users

on each channel, denoting the outgoing and incoming events

by o and η, respectively (e.g., calls initiated/received). Each

feature can have different effects on user trust, and should

thus be combined, appropriately. We consider a weight factor

w ∈ [0, 1] for each feature, e.g., ws,o is the weight factor for

the number of outgoing synchronous communication events.

For user υi, the synchronous and asynchronous components

of behavioral trust towards user υj are therefore given by the

following equations (for sake of clarity, user indices are left

out of the equations below).

τs =
ρs · (ws,oso + wd,odo) + (1− ρs) · (ws,ηsη + wd,ηdη)

so + sη + do + dη

τa =
ρa · (wa,oao + we,oeo) + (1− ρa) · (wa,ηaη + we,ηeη)

ao + aη + eo + eη
(1)

Therefore, the direct trust value of υi towards υj is given

by,
τυi
υj

= α τs + (1− α) τa (2)

where α balances between the synchronous and asyn-

chronous trust values. If Υ = (υ1, υ2, . . . , υn) are the set of

n users, we define the trust vector of user υi as T υi

Υ , a set of

trust levels towards other users τυj
∀ υj;j �=i ∈ Υ. The weight

parameters—w, ρ, and α—may be correlated to each other;

the users have the convenience of manipulating the variables

by themselves to set up the right trust values. This method

facilitates the estimation of the initial trust values.

The obtained normalized trust values range from 0 to 1, with

0 representing complete distrust, 1 for complete trust, and 0.5

for trust neutrality. The interpretation of the trust values is

dependent on the application at hand. In general, the farther

from 0.5 the trust value lies, the more (un-)trustworthy the

corresponding user is.

C. Recommending Trust

The (initial) direct trust τυi
υj

of user υi towards user υj is

solely based on their previous interaction patterns. However,

τυi
υj

is also dependent on trust recommendations from other

users, τυt
υj
∀υt;t�=i,j , especially when υi and υj have hardly

interacted. A lack of trust recommendations minimizes system

scope to a limited set of devices and increases the probability

of attacks, given the minimal system overview of each user.

In our work, we primarily focus on how a benign user

should perceive the received trust recommendations to fa-

cilitate privacy-aware distributed CEP among the available

devices. In this context, we propose an approach to allow a

user to, (i) determine the credibility of the received recommen-

dations, (ii) detect any changes in the behavior of the other

users, e.g., from benign to malicious, and (iii) update existing

trust values based on the received recommendations.

We address the credibility of received recommendations in

the form of a similarity measure, sim , based on the cosine

distance between the received trust vectors. Furthermore, we

propose a conservative approach for modifying the trust values

towards other users, where (suspected) adversaries are penal-

ized strongly. We detail each of these aspects in the following.

Incorporating Trust Recommendations. We define trust

recommendations as the trust vector Rυi

Υ (not necessarily equal

to T υi

Υ ) provided by user υi to the other users, so that the

other users may adapt their trust vectors, accordingly. Each

user provides their trust recommendations to other users during

each round. We define a ‘round’ as a specific interval in time

(e.g., 1 day), which is again application-dependent. The trust

recommendation vector of user υi, Rυi

Υ , sent to user υj is

3333



modified such that rυi
υi,j

= ∅, considering that mutual trust

values are private information.

Given that the trust recommendations assist the users in

updating trust towards (relatively) unknown users, it is es-

sential to incorporate them appropriately. First and foremost,

each user checks the similarity measure, sim , of the trust

recommendations amongst themselves (to detect colluding

users; discussed later), as well as with their own trust values.

If similar, the divergence, δ, of the recommended trust values

from the current trust values is measured, to indicate if current

trust values need to be adjusted. To this end, we employ a

conservative additive increase, multiplicative decrease princi-

ple (similar to that used for TCP congestion control) for trust

updates, depending on the valency of the divergence. This

allows the benign users to improve the trust evaluation of the

other users, and also mitigate the effects of adversaries.

Trust Similarity Check. The measure of similarity allows

a user to determine two main aspects about trust: (1) The

credibility of the recommendations of other users, and (2) the

level of trust they can assign to (relatively) unknown users. In

our approach, each user first considers the trust recommenda-

tion vectors sent by the highly trusted users. Further, each user

uses the cosine similarity measure between the remaining trust

recommendation vectors and their own trust vector to find out

the semantically similar recommendations [24]. The similarity

measure, simυi
υj
∈ [0, 1] between the trust vector of υi, T

υi

Υ ,

and the recommended trust vector of υj , R
υj

Υ , is given by the

cosine of the angle between the two vectors, as in (3). This

indicates the extent of divergence between trust vectors.

simυi
υj

=
T υi

Υ ·Rυj

Υ

|T υi

Υ | · |Rυj

Υ |

=

∑n
t=1;t �=i,j τ

υi
υt
· rυj

υt√∑n
t=1;t �=i(τ

υi
υt )

2 ·
√∑n

t=1;t�=j(r
υj
υt )

2

(3)

Although mathematically inconsequential, the dot product

is not applied for t = i, j due to the semantics of trust

recommendation mentioned above. The premise behind the

cosine-based approach is the relative proclivity of a user

towards the other users. Even if a user has different ways

to estimate their direct trust towards the other users, leading

to different trust values, the relative proclivity of the user

determines how comparable these values are. For example,

if user υi’s trust vector contains T υi

Υ = [0.4; 0.8] and user υj
recommends the trust values R

υj

Υ = [0.3; 0.7], then both the

users have a similar proclivity towards the others but different

trust estimation weights, as seen in the small angle between

these two vectors, with cos−1(simυi
υj
) = 3.82◦.

In turn, each user measures the mean divergence (dis-

placement) of the recommended trust values from their own.

The difference of the recommended trust values from the

user trust values is passed through a weighting function,

dependent on the similarity measure with each recommender,

to obtain the trust divergence (4). If |δυi
υj
| ≥ δthreshold , then the

corresponding trust value τυi
υj

is modified based on the trust

Algorithm 1 Combating Privacy Attacks (w.r.t. User υi)

1: T υi

Υ ← current trust vector of υi
2: markedUsers, simR, recHist ← ∅

3: for roundNumber = 1 to N do
4: for j = 1 to n and j �=i do
5: function rcvRecommendations(R

υj

Υ ) 	 r
υj
υi,j=∅

6: if calcSim(R
υj

Υ , recHist [j]) < simthreshold then
7: if roundNumber > 1 then
8: markedUsers[j] += 1
9: end if

10: else if markedUsers[j] < mal threshold then
11: simυi

υj
← calcSim(T υi

Υ , R
υj

Υ )
12: end if
13: recHist [j]← R

υj

Υ

14: end function
15: end for
16: for j = 1 to n and j �=i do
17: for k = 1 to n and k �=i do
18: simR[j] += calcSim(R

υj

Υ , Rυk

Υ )
19: end for
20: end for
21: for j = 1 to n and j �=i do
22: if |(μsimR

− simR[j])| > σsimR
then

23: markedUsers[j] += 1
24: end if
25: end for
26: if roundNumber > Nwait then
27: for all j ∈ markedUsers < mal threshold do
28: markedUsers[j] −= 1 // loyalty-based trust

29: τυi
υj

+= τinc 	 max(τ) = 1
30: modifyTrustBasedOnDivergence(T υi

Υ , sim)
31: end for
32: for all j ∈ markedUsers > mal threshold do
33: τυi

υj
/= τdec

34: end for
35: end if
36: end for

increase/decrease coefficients τinc and τdec , as in (5).

δυi
υj

=

∑n
t=1;t �=i,j σ

υi
υt
· (τυi

υj
− rυt

υj
)∑n

t=1;t �=i,j sim
υi
υt

(4)

τυi
υj

=

{
τυi
υj

+ τinc , if δυi
υj

< 0

τυi
υj
/τdec , otherwise

	 |δυi
υj
| ≥ δthreshold (5)

Combating Privacy Attacks. Apart from the above ap-

proach to modify the trust vectors, each user should also

penalize the users that provide falsified trust values. Given

the adversary models in Section III, we now describe how our

approach deals with such privacy attacks (see Algorithm 1).

Collusion Attacks: In our work, adversaries try to manipu-

late the system by colluding with other adversaries and sending

falsified trust recommendations to other users. To combat

such attacks, each user analyzes the similarity among the
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incoming trust recommendations and detects the users that

provide uncorrelated values (Line 23). Such recommendations

are discarded and, to thwart such future attempts, in each

round, these users are marked as adversaries. Rather than

risk marking possibly benign users, each user waits a few

rounds, Nwait , before analyzing the behavior of the other

users. If the number of marks exceeds the malicious threshold,

mal threshold , the corresponding users are considered malicious

and their trust levels are decreased (Line 34). A large value

for mal threshold will leave adversaries undetected for longer

periods of time; a small value may classify benign users as

malicious. Conversely, each user also employs a loyalty-based

trust model, where the trust value of the users who remain non-

malicious (below mal threshold ) for the waiting period, Nwait ,

is increased (Line 30). This allows for the increase of the trust

value towards falsely-labelled benign users.

On-off Attacks: In our adversary model, adversaries can

behave benignly for a number of rounds, Nbenign , before

turning malicious. This intermittent malicious behavior can be

very hard to handle, especially when the occurrence of these

aberrations is frequent. While there have been dedicated ways

to prevent such attacks proposed in related literature [25], we

mainly deal with such attacks by enforcing a high penalty on

adversaries (τdec in (5)). Aberrations in trust recommendations

are handled by checking the similarity between past recom-

mendations (Lines 7–9). If sim < simthreshold , these users

are marked and handled just as described above.

D. Trust-based Operator Placement

Algorithm 2 describes our approach for trust-based place-

ment of CEP operator graphs. Initially, user υi searches for

neighboring users and sets up the trust vector T υi

Υ based on the

interaction history as well as current trust recommendations

RΥ from other users (see Algorithm 1). Based on the context

query at hand, the initiator (see Section III) sets up the

event sensitivities with respect to their privacy constraints and

creates the required operator graph (Lines 7–9; c.f. [2], [3]).

If no neighboring users are detected, the operator graph is

executed on the initiator’s own device. Otherwise, the initiator

sets up the placement graph (Line 13) based on the trust vector

and the received recommendations, and delegates the operators

to the collaborating users by sending placement requests. Upon

reception of a request message, the users check if the request

violates their privacy constraints based on their trust vector as

well as their event sensitivity values. If so, they send a conflict

message CΥ back to the initiator and notify, if available, any

substitute user who can take over the conflicted path (Line 18).

The initiator then modifies the placement graph and resends

the new requests. Once the trust negotiations are complete, the

initiator starts the operator graph execution.

V. EVALUATION SETUP AND RESULTS

The evaluation of our proposed approach comprises two

parts—the analysis of the proposed trust management model in

terms of its efficacy, and the evaluation of its applicability in a

distributed CEP system for privacy-aware operator placement.

Algorithm 2 Trust-Based Operator Placement (υi as Initiator)

1: Υ← findNeighboringUsers()
2: if Υ �= ∅ then
3: T υi

Υ ← evaluateDirectTrust(Υ)
4: RΥ ← obtainTrustRecommendations(Υ)
5: T υi

Υ ← modifyTrustValues(T υi

Υ , RΥ)
6: end if
7: function rcvQuery(Q)
8: S ← setupEventSensitivity(Q)
9: O ← establishOperatorGraph(Q,S)

10: if Υ = ∅ then
11: executeOperatorGraph(O)
12: else
13: P υi

Υ ← establishPlacementGraph(O, T υi

Υ , RΥ)
14: sendPlacementRequests(P υi

Υ ,Υ)
15: end if
16: end function
17: function rcvResponse(Υ, CΥ)
18: if CΥ �= ∅ {// trust conflict} then
19: P υi

Υ ← modifyPlacementGraph(P υi

Υ , CΥ)
20: sendPlacementRequests(P υi

Υ ,Υ)
21: else
22: executeOperatorGraph(P υi

Υ )
23: end if
24: end function

We analyze the efficacy of the trust management model by

simulating the behavior of the adversaries, depending on the

type of attacks, and observing the changes to the (average)

trust level towards the users in the system. To evaluate the ap-

plicability of the proposed trust-based approach, we designed

a smartphone-based distributed CEP system called TrustCEP
that allows the users to communicate with each other using

Bluetooth and process the operator graphs in a distributed

manner. In turn, we measure the battery consumption incurred

upon the smartphones as well as network data exchange, by de-

ploying our trust-based approach for collaborative processing.

In the following, we detail the test cases for each evaluation

step and discuss the results obtained.

A. Evaluation of Trust Management Model

First, we evaluate our trust management model, focusing

on collusion and on-off attacks. For the collusion attacks, the

adversaries adjust the trust values by increasing/decreasing

them by 0.5 subject to τ ∈ [0, 1]. For the on-off attacks, the

adversaries behave benignly for Nbenign rounds before starting

to collude. The initial trust vectors of each user were generated

randomly between 0.5 and 1 using a uniform distribution

function. We ran each of the simulations for a fixed number

of rounds and observed the trust levels held by benign users

towards the other users. Table I shows the default values of

the system parameters used in our experiments.

Case 1: Collusion Attacks. Figures 2a and 2b show the

results of the collusion attacks analysis. The box plots provide

the median as well as the 25th and 75th percentiles of the trust
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(a) Collusion Attack Analysis:
10 Users; 4 Adversaries; 6 Benign

(b) Collusion Attack Analysis:
10 Users; 7 Adversaries; 3 Benign

(c) On-off Attack Analysis:
10 Users; 4 Adversaries; 6 Benign

(d) On-off Attack Analysis:
10 Users; 7 Adversaries; 3 Benign

Fig. 2: Trust Evaluation Analysis for Collusion and On-off Attacks

value distribution over the different rounds. Figure 2a shows

the distribution of the trust values towards the benign users

and the adversaries, with 40% adversaries. We notice a clear

decrease in the trust value obtained by adversaries after Nwait ,

with 75% of the adversaries below trust neutrality by round

10. The variance in their trust value distribution also reduces

with time, given the multiplicative trust reduction. Further,

we observe that the trust value obtained by the benign users

increases, primarily due to the loyalty-based trust model.

Contrarily, in Figure 2b, we observe that the high number of

adversaries (70%) leads to a converse effect to the trust values.

While over 50% of the adversaries obtain a near-average trust

value of 0.7 or lower, the trust value obtained by the benign

users decreases considerably. This can be attributed to the

similarity-based analysis, where the benign users are assumed

to be providing falsified recommendations. It should be noted

that this phenomenon occurs primarily when the adversaries

provide falsified recommendations to all benign users.

Case 2: On-off Attacks. For the on-off attack analysis,

we used the same initial trust values as in each case for the

collusion attack analysis. Here, unlike above, the adversaries

start colluding after Nbenign = 10 rounds and provide falsified

trust recommendations to only a (randomly) selected set of

benign users. We observe in Figure 2c, for the case with

40% adversaries, the trust value obtained by the adversaries

decreases rapidly after they switch behavior. The converse is

observed in the trust value obtained by benign users, where

their trust value improves after a few rounds, despite being

negatively affected in the beginning. In Figure 2d, we observe

that the trust value obtained by the adversaries decreases

below trust neutrality 6 rounds after Nbenign . This attributes

to the above-mentioned fact that the trust recommendations

of the adversaries do not reach all benign users, facilitating

their detection based on the similarity measure, sim . We also

observe that the on-off nature of the adversaries affects the

trust values obtained by the benign users, leading to a longer

delay in obtaining the true trust values.

Case 3: Waiting Period. We also analyzed the effects of

the waiting period, Nwait , in case of on-off attacks with 40%

adversaries. In Figure 3a, with Nwait = 0, we observe that

TABLE I: Default Parameters for Trust Evaluation

Parameter Value
No. of users, n 10
% Adversaries 40, 70

Similarity threshold, simthreshold 0.95
Divergence threshold, δthreshold 0.1

Malicious threshold, mal threshold 5
Trust increase coefficient, τinc 0.5
Trust decrease coefficient, τdec 0.75

the adversaries obtain a very high trust value before their true

identities are uncovered (Nbenign = 10). Furthermore, some

benign users are also marked as malicious, resulting in a lower

trust value towards them. In Figure 3b, if Nwait = 10, we

observe that the adversaries obtain a lower trust value im-

mediately after switching behavior. However, we observe that

the benign users obtain a relatively mixed trust value, which

is attributed to the longer period of non-malicious behavior

necessary for loyalty-based trust increase (see Algorithm 1).

Discussion. We observe that our approach combats col-

lusion and on-off attacks when the adversaries are in the

minority. Even in case of a majority, the adversaries can be

detected if they do not infiltrate the entire network. Overall,

τinc and τdec should be chosen appropriately, such that the

higher trust levels are achieved only after substantial amount

of time. It is necessary to adjust the event sensitivity levels

accordingly, so that only the highly trusted receive sensitive

data. Since adversaries are only detected after a few rounds, it

is advisable to wait a few rounds before employing the trust

values for operator placement. This can also be addressed by

adapting the application logic, accordingly. For example, in the

motivating scenario, location or microphone events primarily

become sensitive after certain rounds of operation due to

the presence of historic information. By adapting the event

sensitivity levels and/or by randomizing the event recipients

in each round, one can avoid serious privacy violations.

B. Evaluation of TrustCEP

We designed TrustCEP to understand the applicability and

practicability of our trust-based approach in a real-life dis-

tributed CEP system. The conceptual design of our prototypi-

cal simulation environment concurs with modern research to-
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(a) 10 Users; 4 Adversaries;
6 Benign; Nwait = 0

(b) 10 Users; 4 Adversaries;
6 Benign; Nwait = 10

Fig. 3: Trust Evaluation for Different Waiting Periods w.r.t. On-off Attacks

wards D2D communication as part of the IoT [4], [5], such that

users can collaboratively extract contextual information from

the environment based on their needs. We chose Bluetooth as

the basis for D2D communication, given its ability to support

low-power data transmission (compared to other standards

like Wi-Fi Direct) and its ubiquitous availability [26]. For

the prototypical evaluation, we used five Google Nexus 5

smartphones (with Bluetooth 4.0), running Android 4.3 or

higher. To allow for Bluetooth communication, all the detected

smartphone devices were paired in advance.

Initially, TrustCEP allows users to set up the event sensitiv-

ity levels and the various weights needed for trust estimation

beforehand. For the evaluation, we generated the interaction

history between the users randomly, including users with high

and low communication intensity, and a few without any

(corresponding to trust neutrality). Based on the motivating

scenario, we consider low-level (atomic) events coming from

microphone, GPS, and accelerometer readings. Considering

that these atomic events are noise-ridden, they are each first

processed by a filtering operator. The filtered higher-level

events are then processed using additional operators (aggrega-

tion, composition, or derivation) as part of an operator graph,

as described in Section III (c.f. Figure 1). In total, we consider

7 operators in the operator graph. All events are modeled as

event objects, and appended with appropriate attributes for

further processing (e.g., time stamp, source node ID).

Our main goal is to understand the effects of our trust-

based approach on battery consumption and network data

exchange. For measuring battery consumption, we charge all

devices up to 100% beforehand and note down the end battery

level after 100 rounds. All other communication services are

blocked during the evaluation period. We focus on the battery

consumption at the initiator, given that the operator graph

deployment is primarily dependent on the trust management

model of the initiator. We compare our approach against

collaborative approaches without a trust model as well as non-

collaborative approaches, based on the following use cases.

Note that we speak of devices as an extension of the respective

users and their privacy constraints.

1) Use Case S: All the operators in the operator graph are

executed on a single device.

2) Use Case DT: The devices try discovering other devices

but distrust all of them, and thus, execute the entire op-

erator graph themselves (without the help of the others).

3) Use Case CT-A: The devices have absolute trust towards

each other. Here, the initiator primarily analyzes the

atomic events, while the higher level events are analyzed

by the other collaborating devices. Note that, as described

in Section IV-D, the initiator deploys the operator graph

among the available devices (including itself).

4) Use Case CT-H: Similar to use case CT-A. How-

ever, here, the initiator primarily analyzes the high-level

events, and the other devices analyze the atomic events.

5) Use Case TM: Here, the devices trust each other to dif-

ferent extents and collaborate to execute operators in the

operator graph based on the proposed trust management

model. For the sake of simplicity, we do not consider the

presence of any adversaries in this analysis.

Varying the Number of Devices. To understand the influ-

ence of multiple device collaboration on battery consumption,

we executed the complete trust use cases CT-A and CT-H for

100 rounds on 3 to 5 devices, by adjusting the trust levels

on all devices to the maximum. The results in Figure 4a

show that the analysis of the atomic events is battery-heavier

than the analysis of higher-level events. The average battery

consumption at the initiator in use case CT-H increases with

increase in the number of collaborating devices. This can

be attributed to the increase in number of control messages

exchanged between the devices for collaboration, depending

on the placement of the operators. Also, the average battery

consumption at the initiator decreases in use case CT-A,

primarily due to the availability of more processing devices

and the delegation of high-level operators to them.
Analysis of the Use Cases. We analyzed the battery

performance at the initiator for all use cases with 5 devices;

Figure 4b shows the average battery consumption for all

devices acting as an initiator in each use case. We observe

that the battery consumption is the least in use case S, where

there is no communication among the devices. This acts as

the baseline for our analysis of the collaborative scenarios.

For use case DT, we adjusted the trust values on all devices

to the minimum. Consequently, comparing to use case S,

we observe that, on average, 10.2% of the battery is spent

on discovering Bluetooth devices in the neighborhood. The

battery consumption in use case TM is marginally higher than

that in use cases CT-A and CT-H, by around 2% and 6%,

respectively. This is mainly attributed to the recommendation

and trust negotiation messages exchanged between the devices.
Network Data Analysis. Finally, we analyze the number

of bytes exchanged between devices in use case TM, for

different number of available devices as well as different

number of operators in the operator graph (Figure 4c). In

case of 5 operators, only microphone and location events

were considered; for 3 operators, only microphone events were

considered. We observe that there is an increase in the number

of bytes exchanged with increase in the number of operators
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(a) Average Battery Consumption at Initiator over
100 Rounds with Increase in Number of Devices

(b) Average Battery Consumption at Initiator over
100 Rounds for All Cases

(c) Average Bytes Exchanged per Round under
Varying Number of Operators and Devices

Fig. 4: Evaluation Results of TrustCEP in Terms of Battery Consumption and Network Data Exchange

as well as the number of available devices. The additional

number of messages can be attributed to the increase in con-

trol messages (recommendations, trust negotiations, operator

placement messages) as well as the different number and size

of data messages for the different atomic events. The use of

Bluetooth for transmitting the considerably small-sized event

and control messages contributes to the minimal additional

battery consumption using the trust management model.

Discussion. From the above analysis, we can ascertain

that TrustCEP is not practicable for applications, where user

context can be extracted from the sensor data available on

a single device, considering that the battery consumption for

single device execution is considerably lower (see Figure 4b).

However, for context-aware applications in the IoT with decen-

tralized sources of sensor data, TrustCEP allows for a feasible

privacy-aware collaboration amongst devices, consuming less

than 0.5% of smartphone battery for a complete execution

cycle (here, an operator graph). Of course, one such operator

placement approach must also consider other factors including

the resource availability and mobility patterns of the available

devices, apart from the privacy constraints of the users.

VI. RELATED WORK

Most existing approaches for distributed event processing

and operator placement neglect privacy altogether. Instead,

they concentrate on system optimization with respect to net-

work performance metrics, such as latency, bandwidth, and

network load [6]. For example, Ottenwälder et al. [3] consider

the case of latency for the placement of CEP operators in

the scope of mobile situation awareness (MSA) applications.

Towards energy-efficiency, Yang et al. [7] devise the CQP

framework for collaborative processing of complex queries

among user mobile devices, avoiding processing overhead due

to redundant data transmission. Thus, they reduce the average

energy consumption in the system. Starks et al. [27] present an

energy-efficient mechanism for distributed CEP in MANETs,

minimizing the energy consumption in resource-constrained

devices by limiting the data transmission costs and achieving

near-optimal operator placement.

The existing approaches towards privacy-preserving CEP

(PP-CEP) predominantly lay focus on static operator graphs

and/or scenarios with a low degree of dynamics. He et al. [28]

present a concept for PP-CEP by analyzing the implications

of event pattern reporting on user privacy. By grouping the

generated event patterns into public and private patterns—

those that should and should not be reported, respectively—

they propose a mathematical foundation for PP-CEP such

that private patterns can be suppressed intelligently without

compromising on the utility of the CEP system. Schilling et

al. [14] approach this issue by considering user access policies

that are used to obfuscate private event patterns over a chain

of dependent CEP operators. They mainly focus on developing

a scalable method to measure the obfuscation imposed by

the access policies. The above approaches, however, are not

feasible in dynamic scenarios where the a priori knowledge of

the producers, consumers, and intermediate processing devices

is not available. Furthermore, these approaches can be used in

parallel with ours, where we identify the trustworthiness of

the collaborating devices to establish the user access policies.

Trust has played a key role in pervasive and peer-to-

peer computing, generally based on the exchange of services

between devices and the quality experienced thereof [16].

Vidyalakshmi et al. [29] introduce a decentralized trust model

for access control in content sharing among mobile devices.

They build trust models based on categories and contexts for

files along with their perceived sensitivity, thus enabling a

more flexible way of access control. Quercia et al. [15] put

forth a computational trust framework for pervasive comput-

ing based on Bayesian formalization, by incorporating trust

dimensions of subjectiveness, time, and context.

Adversaries have been combated in different ways in trust-

related literature. Srivatsa et al. [30] propose a reputation

management system by incorporating historical reputations

and behavioral changes. To deal with colluding adversaries,

they propose a personalized similarity measure that accounts

for trust variance between two users. However, unlike our

approach, they do not account for the cold start problem,

where there is a lack of interaction between users. Sun et

al. [31] put forth a trust modeling framework for ad-hoc

networks, considering trust as a measure of uncertainty. Their

main focus lies in facilitating efficient packet routing using

the concept of trust propagation. Their approach separates
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action trust from recommendation trust, and mainly overcomes

bad-mouthing and Sybil attacks. Das and Islam [32] deal

with oscillating adversary behavior in multiagent systems

by introducing a feedback-based dynamic trust computation

model. Their approach is similar to ours but suffers from

infeasible computational delays, given the large number of

trust-related parameters to be evaluated.

VII. SUMMARY AND FUTURE WORK

The upcoming revolutionary technologies such as the IoT

and D2D communication provide for a promising future for

context-aware applications. Considering that user context is in-

herently sensitive information, the preservation of data privacy

is a key challenge to be addressed for such applications. Cur-

rent work on distributed complex event processing (CEP) often

neglects the effects of data privacy. To this end, we proposed

a trust-based approach for distributed CEP which leverages

the trust between users based on their interaction history as

well as user recommendations. Through experimental results,

we show that our trust management model is robust towards

collusion and on-off attacks when the adversaries are in the

minority. We implemented our approach within TrustCEP,

allowing for collaborative processing of CEP operator graphs

using D2D communication between smartphones. Based on

its evaluation, we assert its feasibility to enable privacy-

aware operator placement, with a negligible increase of 2–

6% in battery consumption compared to privacy-negligent

approaches.

As part of future work, we plan to apply our approach in

more dynamic and mobile environments where the migration

of CEP operators may be necessary. Operator migration can

be performed by transferring selected parts of an operator and

the associated events to a more capable device. Adapting user

access policies to such fine-granular cases can have a promis-

ing impact on future context-aware applications. Furthermore,

we plan to evaluate the usability and practicability of our trust

management model as part of a user study.
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