Dwarakanath, R.; Koldehofe, B.; Steinmetz, R.: Operator Migration for Distributed Complex Event Processing in
Device-to-Device Based Networks. In ACM M4loT, 2016, pp. 13-18, ISBN: 978-1-4503-4663

Operator Migration for Distributed Complex Event
Processing in Device-to-Device Based Networks

Rahul Dwarakanath
Multimedia Communications
Lab (KOM), TU Darmstadt
Darmstadt, Germany
dwarakan@KOM.tu-
darmstadt.de

ABSTRACT

Recent times have seen a surge in the number of context-
aware systems, given the proliferation of sensors and sensor-
based devices, especially with the advent of new paradigms
such as the Internet of Things (IoT) and device-to-device
(D2D) communication. Complex event processing (CEP)
provides a cogent means to obtain higher-level context infor-
mation from low-level sensor data streams through operator
graphs, which dictate the order of event processing steps.
However, the reliable execution of these operator graphs in
a distributed manner becomes increasingly challenging in
dynamic D2D environments, especially when device avail-
ability fluctuates, necessitating efficient operator migration
strategies. In this paper, we first analyze the existing ef-
forts towards operator migration for their applicability in
D2D-based networks. Subsequently, we propose our initial
approach for reliable operator migration by exploiting the
intermediate states of the CEP operators.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]|: Distributed

Systems— Distributed Applications; C.4 [Performance of
Systems]: Reliability, Availability, and Servicability

Keywords

Complex Event Processing, Operator Migration, D2D, Re-
liability

1. INTRODUCTION

Over the recent past, there has been a rapid increase in
the number of context-aware user-centric applications, given
the steady proliferation of sensor-based devices (especially
handheld devices like smartphones, tablets, etc.) and other
sensors in the environment. The advent of the Internet of
Things (IoT) paradigm promises an increased availability of
information about the user environment. These applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MA4IoT 2016, December 12-16, 2016, Trento, Italy
© 2016 ACM. ISBN 978-1-4503-4663-4/16/12. .. $15.00
DOL: http://dx.doi.org/10.1145/3008631.3008634

Boris Koldehofe
Multimedia Communications
Lab (KOM), TU Darmstadt
Darmstadt, Germany
koldehofe@KOM.tu-
darmstadt.de

Ralf Steinmetz
Multimedia Communications
Lab (KOM), TU Darmstadt
Darmstadt, Germany
steinmetz@KOM.tu-
darmstadt.de

monitor the context of the users and adapt their services to
suit the situations experienced by the user at different points
in time [5]. Examples of such applications include location-
based services (e.g. Waze'), personal finances (e.g. Mint?),
and context-aware communication [6], among others.

Complex event processing (CEP) provides the means to
detect the occurrence of inherent patterns in low-level data
streams (e.g. sensor data), thereby allowing for an efficient
recognition of higher-level situational context [4]. The re-
quired information about a given user and the prevailing
situation is generally obtained by fusing data from sensors
and inferring them in an appropriate manner. Principally,
CEP involves the sequencing and reordering of incoming
data streams so that they may be filtered, correlated, and
aggregated to obtain the required results. Each of these
fundamental computing modules are termed operators. The
processing logic to obtain the desired higher-level events can
be organized in the form of operator graphs, which dictate
the order in which the operators (graph vertices) need to be
executed. The sources of low-level event data, the individual
CEP operators, and the consumers of the processed data are
connected by event streams to an operator graph [18].

The CEP operator graphs can be executed either indi-
vidually (e.g. on smartphones), or in collaboration with the
available processing devices, where an efficient placement of
the operators among the available devices becomes crucial.
Generally, the processing of user context entails the analysis
of large data volumes coming from heterogeneous sources,
and calls for high requirements in terms of resource usage
(e.g. battery power, memory space, etc.) and latency [18,20].
Existing literature addresses this issue by employing a dis-
tributed processing approach and focusing on assuring either
energy-efficiency or low processing latency [18,21,24].

En route to 5G networks, one of the paradigms expected
to play a key role towards facilitating efficient network cov-
erage is device-to-device (D2D) communication [22]. This
is particularly pivotal in the IoT, where devices such as
user smartphones and environmental sensors communicate
amongst themselves to share and process information col-
laboratively, without the involvement of any centralized en-
tity [1,17]. Such D2D networks are known to be dynamic
in nature, given the random movement of the involved de-
vices as well as their resource-constrained nature, increasing
the network’s susceptibility to failure. Thus, besides an effi-
cient operator placement mechanism, the reliable execution

"https://www.waze.com/en/
Zhttps://www.mint.com/

rst
Textfeld
Dwarakanath, R.; Koldehofe, B.; Steinmetz, R.: Operator Migration for Distributed Complex Event Processing in Device-to-Device Based Networks. In ACM M4IoT, 2016, pp. 13-18, ISBN: 978-1-4503-4663

of CEP operator graphs in D2D networks requires mecha-
nisms for their migration, as well. Operator migration is
paramount to combat the dynamic nature of such networks,
so that node departures or failures do not adversely affect
the overall functionality of the CEP system.

Typically, the principle behind operator migration involves

one of two approaches—active replication [18,19] and rollback-

recovery [7,13,20]. Active replication of certain operators
on backup nodes accounts for a timely recovery of the sys-
tem upon operator migration but at the cost of increased
processing power and communication overhead. In rollback-
recovery, certain checkpoints are maintained in the form of
persistant storage to facilitate system restore opportunities.
This, however, generally leads to increased delay penalties
(loss of events and system downtime) and/or increased usage
of buffer space.

In this paper, we summarize the main requirements for
efficient operator migration in D2D-based networks, by ana-
lyzing the internal workings of CEP operators. We identify
the key shortcomings of related work for distributed CEP in
one such dynamic environment. In order to improve opera-
tor migration, we exploit the intermediate state information
of the different operators to reduce the amount of informa-
tion transferred and buffered on the devices. In doing so,
we propose an initial approach to compromise between an
active replication of all event streams and increased delay
penalty through rollback-recovery.

In the following, Section 2 examines the related work to-
wards operator migration in event processing systems, in
general. Section 3 introduces the system model and presents
the internals of a CEP operator. Our proposed approach for
operator migration is presented in Section 4, followed by a
discussion of its advantages in Section 5. Finally, Section 6
concludes the paper.

2. OPERATOR MIGRATION SO FAR

By and large, the existing approaches on distributed CEP
focus on the optimization and flexible execution of the op-
erator graphs, and in particular, the optimal placement of
the operators on the available devices. Latency is considered
as an important metric while placing the operators among
the available processing devices, as shown by a survey by
Lakshmanan et al. [14]. Other works consider the case of
latency and network traffic for the placement of CEP oper-
ators in different application settings [4,10]. Starks et al.
present an energy-efficient mechanism for distributed CEP
in MANETSs [21], exploiting the advantages of decentral-
ized operator placement. They aim to minimize the energy
consumption in resource-constrained devices by limiting the
data transmission costs and achieving near-optimal operator
placement, compared to a centralized approach.

However, all of these approaches deal with the initial place-
ment of CEP operators, but do not address the problem of
operator graph maintenance. Operator migration is a key re-
quirement in systems where nodes can fail or disappear, such
that the operator graph can be restored. Most approaches
towards reliability and fault-tolerance in event processing
can be put into two main categories—(active) replication
mechanisms [19] and rollback-recovery mechanisms [7].

Active replication mechanisms were introduced first by
Schneider [19] towards fault-tolerant systems. Such systems
minimize the delay penalty (loss of events) upon migration,
such that it takes less time to restore the processing chain.

However, this entails a high amount of communication over-
head and processor utilization, since all the event streams
must be replicated on backup nodes. Volz et al. [23] propose
an active replication scheme for CEP systems, particularly
focusing on coordinating the replicas for each operator. Ot-
tenwélder et al. [18] propose a probabilistic approach for mi-
gration in mobile CEP (MCEP) with respect to mobile sit-
uation awareness applications. They provide mechanisms to
optimize system performance through reduced latency and
improved bandwidth utilization in dynamic situations.

Rollback recovery is generally performed by replaying stored
backups of previous checkpoints during the execution of an
operator graph. This method (also, upstream backup) is
used frequently in large event processing systems, given the
flexibility in determining when and which part of the event
streams are stored. Operators maintain events in their out-
put buffer until they receive acknowledgments for those events
from the subsequent operator(s). Hwang et al. [11] first in-
troduced this approach for stream processing applications.
Gu et al. [8] focus on improving checkpointing by reducing
the overhead through cumulative acknowledgments.

Fernandez et al. [3] propose a scale out and fault-tolerance
mechanism for stream processing systems by managing op-
erator state. They introduce an approach to scale out bottle-
neck operators as well as restore the system operation after
node failures by exploiting the processing, buffer, and rout-
ing states of each operator. Koldehofe et al. [13] approached
the same issue by proposing an adaptive acknowledgment-
based scheme to maintain certain savepoints that can be
used to restore an event processing system after failure.

Certain other approaches focus on combining the two ap-
proaches, exploiting the trade-off between the two. Hwang
et al. [12] propose an approach that choses the best scheme
between upstream backup, passive standby, and active repli-
cation, based on the resource consumption and recovery time
of the operators. Heinze et al. [9] propose an adaptive ap-
proach for fault-tolerance by optimizing the number of oper-
ators running in parallel (replicas). They use recovery time
estimates for each operator in order to determine the oper-
ators for replication.

In our work, we address the issue of operator migration
in dynamic mobile environments with D2D communication,
where the availability of the devices for sensing and process-
ing varies with time. We propose an approach that makes
use of both active replication as well as rollback recovery,
wherein we exploit the state information of the CEP opera-
tors in order to improve feasibility of operator migration in
such scenarios.

3. SYSTEM AND CEP MODEL

In this section, we establish the fundamentals as well the
assumptions behind our approach. We describe our system
model as well as the details of an operator graph. We also
delve into the internal state of an operator, which plays an
important role in our approach.

3.1 System Model

Our system model comprises user smartphones and other
sensor devices that provide information about the user en-
vironment in terms of the location, movement, sound levels,
temperature, humidity, etc. As mentioned at the beginning
of the paper, the main application scenario addressed by
our work is the detection and usage of user contextual in-

formation in order to improve the services provided to the
users, accordingly. We focus on collaborative scenarios with
decentralized sources of information, where the CEP opera-
tors can be executed in a distributed manner on the avail-
able devices, such that the system scales with an increase in
the number of sources and devices. In this paper, we par-
ticularly focus on quasi-stationary environments, where the
participation of the devices varies from time to time (low
rates of device churn).

3.2 CEP Operator Graph Fundamentals

In general, a CEP system can be described as a com-
bination of producers, who are the sources of the atomic
events in the system, as well as the consumers, who are the
sinks interested in the higher-level events generated by the
system. A set of correlation operators € analyze the inher-
ent patterns in the lower-level (atomic) events and generate
the higher-level events that the consumers are interested in.
Mathematically, we can model the functionality of a (dis-
tributed) CEP system by an operator graph G(QUPUC, E)
that connects the producer set P with the consumer set C'
through event streams £ C (PUQ) x (QUC).

Consumers

g1 (

Higher-level context data
(Meeting)

Operator graph

O

E L 5 &

ID: Userl

™M

dBLevel: High
Loc: Room X

90

Raw sensor
event streams

§'- Bu (o

Producers

Window: 300s

o4

Figure 1: Illustration of a CEP Operator Graph and
System Model

Let us consider an example to understand the principle be-
hind the execution of an operator graph. Figure 1 shows the
system model and a sample operator graph for the detection
of a meeting scenario, based on existing models in related
literature [2,16]. The sensor devices (e.g. smartphones, room
sensors) providing the GPS, microphone, and accelerometer
readings are the producers p € P. The devices obtaining the
higher-level events (here, meeting) are the consumers ¢ € C.
Here, operator wys interprets the decibel levels in the envi-
ronment based on the incoming microphone readings. Op-
erator wy, analyzes the incoming GPS data against an open
street map to determine the exact location and filters out
the data that do not fall in the area under question. (This

can also be extended to indoor-positioning systems with the
help of WiFi or Bluetooth [15]). Finally, operator wg then
compares the decibel values and the location information of
the user(s) to infer if the scenario is a meeting or not.

We can describe an event e as a tuple of attribute-value
pairs such that e = (att1, valy), (atte,val2), ..., (attn, valy).
Between any two nodes in the system, say origin o and des-
tination d, we consider an event stream (o,d) € E as part
of the operator graph, directed from the origin to the des-
tination. Consequently, we term the event stream emerging
from an origin node as its outgoing event stream, and the
event stream going into a destination node as its incoming
event stream. Each event is assumed to carry a timestamp
and a source ID, such that the events are attributed by their
origin node(s) as well as their time of occurence.

An operator graph consists of a set of operators w €
that act upon the incoming event streams. For each given
operator w, we describe the set of incoming event streams
as I, € E. Thereupon, each operator w performs a set
of correlation operations on I, depending on the prevail-
ing rule model. Finally, the output (complex events) of the
correlation operations are inserted into the outgoing event
streams O, € E in temporal order. The mapping function
fw : I, — O, represents the internal logic of an operator w.

3.3 CEP Operator State Model

Figure 2 depicts the internal logic of a typical operator
used in CEP. The incoming event streams I, are stored in
an input buffer By, until they are processed by the inter-
nal correlation function f,. Similarly, O, are stored in the
output buffer Bo, until they are acknowledged by the sub-
sequent operators receiving these events.

The intermediate steps of an operator can be split into
three parts—one or more selectors, the internal correlation
function, and a sequencer. The selectors analyze I, in By
and determine the set of events o that satisfy the required
pattern for the correlation function f,. The events con-
sumed by the selectors are then removed from B, to make
room for the next I,. There can be more than one se-
lector depending on the processing logic for a given op-
erator, e.g. filters, aggregators, negators, etc. The events
(cei,cea,...,cen) C CE € E produced by f. are then ap-
pended with a sequence number and a timestamp by the
sequencer and sent to Bo. We can now describe the corre-
lation function as f,, : ¢ — (ce1, cea, ..., cen).

Selector; o

Figure 2:
Model

Illustration of a CEP Operator State

As a result, the state of an operator w at time T', ¥, (T)
comprises the states of By and Bo, the selectors, f.,, and the
sequencer. In addition to the input and output buffers, we
also consider additional intermediate buffers B;,; after each
selector, depending on the type of operator and processing

logic behind it. We shall delve into the use of an intermediate
buffer in the next section, when we discuss the consequences
of operator migration for different operator types.

Basically, any operator migration approach for operator
recovery requires the replication of operator state between
the active and the backup node(s). The crux of the prob-
lem lies in the amount of state information that needs to be
replicated and the amount of state information that can be
stored and replayed for migration. Different operator types
possess different levels of state, making it necessary to ana-
lyze operator migration from the perspective of the internal
working of an operator.

4. OPERATOR MIGRATION IN D2D BASED
NETWORKS

The main goal of our work is to optimize the migration of
operators for distributed CEP in a dynamic and resource-
constrained environment. To this end, we propose a new
approach that accounts for the different intermediate states
for the operators in CEP and exploits the same to efficiently
facilitate reliable event processing. In the following sections,
we discuss the additional challenges that arise in a D2D
environment, and present our initial approach to combat
these challenges towards efficient operator migration.

4.1 Challenges in D2D Environments

D2D communication is proposed to represent a new class
of self-configuring and cooperative communications in envi-
ronments such as vehicular communication, disaster scenar-
ios, and opportunisitic sensing and networking [22]. They
allow for the exchange of information in a local environ-
ment, without the need for a centralized server to overlook
the operations and maintain resources. In the context of our
work, we assume that user smartphones and the neighbour-
ing sensor devices form the foundation of the D2D-based
network, such that the CEP operations are primarily exe-
cuted on the smartphones. To this end, we first address the
main challenges posed in D2D communication, especially in
the context of operator migration for distributed CEP.

Dynamism. A user environment is inherently quite dy-
namic and vulnerable to changes, given the movement of
users and variance in device availability. The execution of
CEP operator graphs is considerably affected by changes in
the environment, in terms of the available sensors as well
as the processing devices. The operator migration mecha-
nism has to adapt quickly to these changes and restore the
processing chain as fast as possible.

Resource Constraints. It is inherent to the nature of
mobile devices to have minimal amount of resources. A naive
replication of operator states leads to unnecessary usage of
backup devices, especially in static scenarios. On the other
hand, a complete rollback recovery requires larger buffer
spaces in the order of GB [20] and a larger delay penalty
(stalling of the operator graph) upon migration, leading to
a higher number of false positives or false negatives [23].
Therefore, the migration of operators has to be adjusted
in such a way that unnecessary resource consumption and
event loss are minimized.

Constrained System Overview. This challenge results
from the decentralized nature of execution in the network.
This leads to constrained vision over the connectivity and
the performance of the processing devices. This can be over-

come either by improving the coordination between the de-
vices, leading to larger number of control messages, or by
making use of a coordinator node that has global knowledge
of the network [13]. Many D2D scenarios also consider base
stations for control messages to the individual devices [22].

In this paper, we primarily address the first two challenges
related to the dynamic and resource-constrained nature of
the user environment. Given that the existent approaches on
operator migration are not suitable for D2D environments,
we propose a feasible solution that draws on the concepts of
active replication and rollback-recovery by exploiting differ-
ent parts of the operator state during migration.

4.2 Operator State Migration Approach

As shown in Figure 2, an operator typically consists of an
input and output buffer B; and Bo, selectors, a sequencer,
and the actual correlation function f,. In most related ef-
forts towards operator migration, the individual parts of
an operator and their state information are not considered,
leading to unnecessary data transfer and increased buffer
maintenance. In our solution, we propose the partial trans-
fer of events and state information based on the operator at
hand as well as processing capacity of the nodes involved.

In particular, we exploit the intermediate buffer(s) Bin:
of an operator, introduced in Section 3.3. The selectors
analyze the buffer I, and extract the events o as per the
processing logic. The selected events o can include events
that contain the required attributes and/or fall in the value
range for the given processing logic. The question however
remains as to how much state information should be mi-
grated on to the backup node (and how often). Note that
we do not focus on the choice of the backup node(s) and the
optimal placement of the operators. Interested readers may
consult related work on operator placement in distributed
networks [14,21].

Consider Figure 3 which illustrates the transfer of data sy-
chronization messages between the active and backup nodes
in the network, as well as the replication of internal operator
state at regular intervals. Nodes X (running operator wy)
and Y (running operator wg) are the active nodes that are
part of the operator graph, whereas Z acts as the backup
node. Events (X, Y) € E flow from the output buffer Bo,;
of w; to the input buffer By s of we. Node Z also maintains
an input buffer of an uninstantiated operator for restoration
purposes.

We consider the input and output buffers of the nodes in
order to adjust the number of event streams to migrate on to
the backup node(s). Each event in Bo,; is removed as and
when its receipt is acknowledged by wgz. For the purpose of
recovery, we maintain an additional buffer Byesiore On each
node, wherein the events that are acknowledged (but not yet
consumed) by the subsequent operator (here, wz) are stored.
The first half of Brestore,x is transferred to the input buffer
of Z, while the remaining half is retained at X.

The backup buffer Byesiore,x is updated depending on the
processing speed of wg. Accordingly, synchronization mes-
sages are exchanged among the nodes, in order to discard
unnecessary events (that are already processed). The state
of the intermediate buffers B;,: is replicated at Z at regu-
lar intervals depending on the processing logic of the corre-
sponding operator, as will be explained below. The structure
of the control messages corresponds to the state information
that needs to be transferred between devices, as well as the

B,

Internal operator
state replication at
regular intervals

restore, Y

| Data
Upstream | | kive n;: 4. | synchronisation
events acknowle ! between B, , and
gments : 4
| H erm,x

B,

restore, X

Data synchronisation
between B, x and B;
on backup node
(uninstantiated
operator)

Figure 3: Illustration of Message Exchange and
Buffer Maintenance

acknowledgment messages.

4.3 Exploiting the Intermediate Buffer

The above algorithm provides a general overview over the
proposed measures in our approach for efficient operator mi-
gration in dynamic D2D environments. As mentioned ear-
lier, the particularities of partial state transfer varies among
the different CEP operators in use nowadays. In the ensu-
ing discussion, we shall consider some examples of common
CEP operations—filtering, (sliding) window-based aggrega-
tion, and (batch) window-based sequencing—and discuss the
vital state information in each case.

Filtering. Typically, in a filter operator (part of single-
item operators), for all incoming event streams I, in By,
one or more attributes are compared against a certain value
or a value range to check if they satisfy a condition. The
selected events are then put into Bo, so that they may be
forwarded to the subsequent operators and/or consumers.
In this case, the selector(s) and the sequencer are effectively
stateless, given that the correlation function f, performs a
simple task of sorting out events. Consequently, the internal
parts of the operator are completely stateless, and only By
and Bo will be considered for migration.

(Sliding) Window-based Aggregation. Any window-
based operator needs to select only those events in By for
further processing that fall in a specific time window or lie
within a given number of events (count-based). For a fixed
window-based aggregation or derivation, the selector com-
pares the timestamps of each event e in B; and stores those
(temporarily) in Bint, before forwarding the selected events
o to f., for aggregation or deriving higher-level informa-
tion. For example, deriving the information that a person
is speaking requires microphone readings over a short pe-
riod of time (say, 30-60 seconds). This example can also
be applied for sliding window-based aggregation/derivation,
wherein the time window under consideration is moved as
and when new events enter Br. A window-based operator
can be further expanded with another selector that com-
pares the attribute values and sorts out events in the form
of a filter.

Window-based Sequencing. A window-based sequenc-

ing operator looks for certain event patterns in a given time
frame (batch). It adheres to a certain sequence (as per the
processing logic) while selecting the events for the internal
correlation function. In the example in Section 3.2, say the
sound events Ejs are to be considered only if the location
events Fr, correspond to be pre-defined location (room X).
For the corresponding operator was, the first selector sorts
out the events that do not fall in the given time window,
and puts the selected events o; into Bint,;. A second se-
lector then puts the events in the sequence required (say, a
subset of Er and then a subset of Eys). However, it may
so happen that the events arrive in a haphazard order, such
that the second selector maintains the partially sequenced
set of events in its intermediate buffer By, 2, until the events
can be reordered and sent to f., for processing.

In both of the above cases, from the operator state per-
spective, the intermediate buffers B;,; become increasingly
important for operator migration on resource-constrained
devices. For example, a sliding window-based operator only
needs to update the new set of events that were added to
the intermediate buffer B, by the corresponding selector,
hence reducing the number of control messages between de-
vices. It is not necessary to transfer the entire buffer state
each time. The migration of Bj,:, along with By, will re-
duce the amount of computation intensity on the backup
node, considerably. In doing so, the backup node may start
processing at the same point the active node left off.

S. DISCUSSION

In this paper, we propose the partial transfer of state in-
formation by exploiting the intermediate buffers of opera-
tors to optimize the migration of operators in a distributed
CEP system. In theory, we expect to obtain a better la-
tency /bandwidth tradeoff, given the reduction in the data
amount replicated as well as the delay penalty upon restart-
ing an operator on a backup node. This particularly applies
for applications where there is a continuous stream of events,
such as the scenario described in Section 3.2, where any sys-
tem downtime cannot be tolerated.

The control messages between the nodes is not restricted
to the maintenance messages mentioned above. A new node
taking over an operator also entails an adjustment of the
underlying associations between the nodes. The amount of
buffer space necessary in each of the nodes is also an im-
portant evaluation metric. While the resource-constrained
nature of the nodes in a D2D scenario is primarily restricted
to their battery life-time and their processing capacity, the
amount of space available can also be a bottleneck depend-
ing on the application at hand.

Furthermore, given the possibility of dense networks in
the IoT, D2D communication can be affected by many envi-
ronmental factors. Devices can obstruct each other, leading
to loss of messages and deterioration in system performance.
It is essential to choose appropriate operator placement al-
gorithms that take the underlying topology into account.

Generally, reliability cannot be completely guaranteed in
a mobile processing environment, given that a network with
n nodes can only be made reliable as long as at least k
nodes, k < n, are available for any operations. However, it
can be improved by either reducing the vertical dependency
within an operator graph, making the operator graph more
stateless, or by extending the number of horizontal backup
nodes available for each operator.

6. CONCLUSION AND FUTURE WORK

The advent of the IoT as well as newer paradigms like D2D
communication has opened new avenues for user-centric ap-
plications, especially with the proliferation of sensors and
sensor-based devices. Distributed CEP provides for a pru-
dent approach to ensure high performance and accuracy for
such applications. However, the adoption of CEP in dy-
namic user scenarios can be problematic unless suitable mea-
sures are taken towards operator migration. In this paper,
we presented some measures to operator migration in dy-
namic resource-constrained environments, by exploiting the
internal state information of CEP operators. In future work,
we shall implement the above approach in a simulation envi-
ronment and compare it against existing approaches towards
reliable CEP. We believe that we can achieve a balance be-
tween the bandwidth required for recovery messages and the
latency of restoration of an operator graph after migration.

7. ACKNOWLEDGMENTS

This work has been [co-]funded by the Social Link Project
within the Loewe Program of Excellence in Research, Hes-
sen, Germany, and by the German Research Foundation
(DFG) as part of the project C2 within the Collaborative
Research Centre (CRC) 1053 - MAKI.

8. REFERENCES

[1] O. Bello and S. Zeadally. Intelligent Device-to-Device
Communication in the Internet of Things. IEEE
Systems Journal, 10(3):1172-1182, 2014.

[2] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska,
D. Nicklas, A. Ranganathan, and D. Riboni. A Survey
of Context Modelling and Reasoning Techniques.
Pervasive and Mobile Computing, 6(2):161 — 180, 2010.

[3] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki,
and P. Pietzuch. Integrating Scale-Out and
Fault-Tolerance in Stream Processing using Operator
State Management. In ACM SIGMOD, pages 725-736,
2013.

[4] G. Cugola and A. Margara. Deployment Strategies for
Distributed Complex Event Processing. Computing,
95(2):129-156, 2013.

[5] A. K. Dey, G. D. Abowd, and D. Salber. A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications.
Human-computer interaction, 16(2):97-166, 2001.

[6] R. Dwarakanath, D. Stingl, and R. Steinmetz.
Improving Inter-user Communication: A Technical
Survey on Context-aware Communication. PIK-Prazis
der Informationsverarbeitung und Kommunikation,
38(1-2), 2015.

[7] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A Survey of Rollback-Recovery Protocols in
Message-Passing Systems. ACM Computing Surveys,
34(3):375-408, 2002.

[8] Y. Gu, Z. Zhang, F. Ye, H. Yang, M. Kim, H. Lei, and
Z. Liu. An Empirical Study of High Availability in
Stream Processing Systems. In ACM/IFIP/USENIX
Middleware, page 23, 2009.

[9] T. Heinze, M. Zia, R. Krahn, Z. Jerzak, and C. Fetzer.
An Adaptive Replication Scheme for Elastic Data
Stream Processing Systems. In ACM DEBS, pages
150-161, 2015.

[10] K. Hong, D. Lillethun, U. Ramachandran,

B. Ottenwélder, and B. Koldehofe. Opportunistic
Spatio-Temporal Event Processing for Mobile
Situation Awareness. In ACM DEBS, pages 195-206,
2013.

[11] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,
M. Stonebraker, and S. Zdonik. High-Availability
Algorithms for Distributed Stream Processing. In
IEEE ICDE, pages 779790, 2005.

[12] J.-H. Hwang, Y. Xing, U. Cetintemel, and S. Zdonik.
A Cooperative, Self-Configuring High-Availability
Solution for Stream Processing. In IEEE ICDE, pages
176-185, 2007.

[13] B. Koldehofe, R. Mayer, U. Ramachandran,

K. Rothermel, and M. Vélz. Rollback-Recovery
without Checkpoints in Distributed Event Processing
Systems. In ACM DEBS, pages 2738, 2013.

[14] G. T. Lakshmanan, Y. Li, and R. Strom. Placement
Strategies for Internet-Scale Data Stream Systems.
Internet Computing, IEEE, 12(6):50-60, 2008.

[15] H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of
Wireless Indoor Positioning Techniques and Systems.
IEEE Transactions on Systems, Man, and
Cybernetics, 37(6):1067-1080, 2007.

[16] S. W. Loke. On Representing Situations for
Context-Aware Pervasive Computing: Six Ways to
Tell if You Are in a Meeting. In IEEE PerCom
Workshops, pages 5 pp.—39, 2006.

[17] L. Militano, G. Araniti, M. Condoluci, I. Farris, and
A. Tera. Device-to-Device Communications for 5G
Internet of Things. FAI Endorsed Transactions on
Internet of Things, 15(1), 2015.

[18] B. Ottenwiilder, B. Koldehofe, K. Rothermel, and
U. Ramachandran. MigCEP: Operator Migration for
Mobility Driven Distributed Complex Event
Processing. In ACM DEBS, pages 183—-194, 2013.

[19] F. B. Schneider. Implementing Fault-Tolerant Services
using the State Machine Approach: A Tutorial. ACM
Computing Surveys, 22(4):299-319, 1990.

[20] Z. Sebepou and K. Magoutis. CEC: Continuous
Eventual Checkpointing for Data Stream Processing
Operators. In IEEE/IFIP DSN, pages 145-156, 2011.

[21] F. Starks and T. P. Plagemann. Operator Placement
for Efficient Distributed Complex Event Processing in
MANETSs. In IEEE WiMob Workshop, pages 83-90,
2015.

[22] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu.
Device-to-Device Communication in 5G Cellular
Networks: Challenges, Solutions, and Future
Directions. IEEE Communications Magazine,
52(5):86-92, 2014.

[23] M. V&lz, B. Koldehofe, and K. Rothermel. Supporting
Strong Reliability for Distributed Complex Event
Processing Systems. In IEEE HPCC, pages 477-486,
2011.

[24] J. Yang, T. Mo, L. Lim, K.-U. Sattler, and A. Misra.
Energy-Efficient Collaborative Query Processing
Framework for Mobile Sensing Services. In IEEE
MDM, pages 147-156, 2013.

