
[DKSt03] Vasilios Darlagiannis, Martin Karsten, Ralf Steinmetz; Burst Shaping Queueing ;
Communication Networks and Distributed Systems Modeling and Simulation (CNDS 2003),
San Diego, Januar 2003, S. 65-70.

Burst Shaping Queueing

Vasilios Darlagiannis, Martin Karsten, Ralf Steinmetz

KOM, Darmstadt University of Technology, Germany
{Vasilios.Darlagiannis, Martin.Karsten, Ralf.Steinmetz)@KOM.tu-darmstadt.de

Abstract: In this Paper, we present a novel queue man-
agement mechanism, called Burst Shaping Queueing
(BSQ). The main objective is to minimize the burstiness
of the traffic on packet switched routers, by interleaving
packets that are going to follow different links on next
hops. The complexity of that algorithm is 0(1), which
makes it deployable in high speed networks.
From the simulated experiments we performed, it is
proven that BSQ offers a better trade-off between link
utilization and end-to-end delay, compared with other
queueing mechanisms. Combined with RED, it can
improve the link utilization, without any significant
increase on the end-to-end delay.
Keywords: burstiness, network queues, shaping, sched-
uling, load balance

1 Introduction

In packet-based switched networks, congestion occurs
basically because of the interference of not synchro-
nized, independent flows, sharing common resources, in
cases where the demand for those resources is higher
than the offered ones.
This is a very complex problem that requires coordi-
nated efforts in different components of the network, as
well its design. Network designers provision to offer suf-
ficient resources to often congested links. But, it has
been expenenced that even in over-provisioned net-
works, it is a matter of time to become congested by
always more demanding users and applications.

Therefore, appropriate mechanisms are used both in
the end-points and the routers of a network. End-points
react to the congestion signalling they receive (e.g. in
TCP flows, the senders interpret the acknowledges they
receive to increase or decrease their transmission rate
appropriately). Additionally, packet pacing has been
introduced to minimize the burstiness of the flows, by
evenly distributing the departure of the packets of a win-
dow-based flow, over the estimated RTT.

In routers, different queue management techniques
are employed, aiming to auginent the congestion avoid-
ance, by trying to detect congestion in advance, in order
to inform end-points to reduce their transmission rate, or
by offering more fair shares to the flows sharing a partic-
ular link and punishing this way the more aggressive
flows.

The most common queue discipline in the Interiiet
today is FIFO' (First-In-First-Out), although it is
reported in many works [I], [2] that FIFO is responsible
for higher end-to-end delay because of full queues,
unfair share of the available bandwidth and lock out phe-
nomena, where few flows monopolize the queue space.
Many researchers have proposed alternative schemes
with better performance characteristics, but either
because of their moderate improvement, or because of
their suitability in particular scenarios only, or even für-
ther because of high complexity/scalability issues, they
still have not been widely deployed.

Some of the proposed schemes, like Random Early
Detection (RED) [5] or Blue [3], operate on a single
queue, where the main operation is either dropping prob-
abilistically a packet or marking it, based on the average
queue length. Other approaches construct multiple
queues, either to discriminate tlie offered service, or to
share the bandwidth more fairly. In the case of the multi-
ple queues, scheduling mechanisms are employed to
select the next sub-queue to be served. To a rough
approximation [2], in order to discriminate the vanous
algorithms taking place at routers to handle incoming
packets:

queue management algorithms manage the length of
packet queues by dropping packets when necessary
or appropriate, while
scheduling algorithms determine which packet to
send next; they are used primarily to manage the
allocation of bandwidth among flows.
Moreover, traffic engineering tecliniques are supple-

mentary solutions, used to balance evenly the trafic
over alternative paths between end-points.

In our work, we examine the potential to enhance the
congestion avoidance probability, by changing tlie
scheduling of the packets on an outgoing link, based on
the information "which are the links that those packets
are going to follow, in successive routers". Packets that
are going to follow different paths in following routers
are interleaved, avoiding, as much as possible, the
sequential submission of packets that are going to follow
the same links. The order of the packets that are going to
follow the Same links is not affected. This way, the burst-

I . Usually the terms FCFS (First-Come-First-
Sewed) or Drop-Tail are used alternatively.

iness in that individual outgoing link remains the Same,
but the burstiness in following ones is reduced. This new
queueing mechanism is called Burst Shaping Queueing
(BSQ).

The rest of this paper is organized as follows: Section
2 describes briefly work that is alternative or supplemen-
tary to our research, while Section 3 provides the moti-
vation for using BSQ. Section 4 describes the algorithms
of BSQ and their complexity and some experiments are
provided in Section 4 for its evaluation. Finally, Section
6 provides the conclusion of our work, as well as some
thoughts for further investigation.

2 Related Work

RED [5] is possibly the most explored queue manage-
ment mechanism. Alternatives to the original algorithm
are FIow Random Early Drop (FRED), RED with pen-
alty box, Stabilized RED [14], Gentle RED (GRED),
Adaptive RED [4] and Self-configured RED. In the orig-
inal algorithm, packets are served in a FIFO order, but
the buffer management is significantly more sophisti-
cated than Drop-Tail. RED Starts to drop packets proba-
bilistically, based on the average queue length. RED
trades-off lower utilization for lower end-to-end delay.
Four parameters are used to configure RED, to make it
appropriate for different Scenarios. Fine tuning of those
parameters is always a headache for the researchers. The
latest version of RED, Adaptive RED overpass this
problem, by using some sophisticated algorithms.

Deficit Round Robin (DRR) [I61 is a scheduling
algorithm, aiming to offer fair Shares of the bandwidth to
all of the flows competing in an outgoing link. DRR con-
stnict a number of multiple queues (called buckets) and
thcn assigns each flow in one of those buckets, by hash-
ing thc destination IP address. More than one flows
could share the Same bucket, in case of collisions in the
hasliing procedure The scheduler periodically visits all
the buckets using the round robin algorithm, and adding
a quantum (an increase on the maximum size in bytes
allowed to be transmitted from that bucket) to the deficit
of that bucket. If the size of the next packet to be trans-
mitted is smaller than the deficit, then it is transmitted.
Othenvise the scheduler proceeds to the next bucket.

Core-Stateless Fair Queueing (CSFQ) [I71 is an
approach that discriminates the operations performed by
the core routers from the operations performed by the
edge routers in a subnet. Since the number of flows in
the core routers is very large and the transmission speed
is very high, it is not possible to apply a queueing tech-
nique, requesting for state per flow. Deployability of a
statefull technique is more feasible in edge routers.
CSFQ calculates the rate of each flow in the edge routers
and this rate information is inserted in every packet.

Core routers calculates the fair share of each flow and
probabilistically drop packets from flows that exceed
their fair share. The drawbacks of that approach are
mainly the facts that each packet has to be labeledlde-
labeled in the edge routers and the complexity of the
edge routers still remains high. Mice flows might be
handled unfriendly, since the estimation of their rate can
be miscalculated due to their short live.

3 Motivation

In order to motivate our work, we take as an example the
network shown in Figure 1. In that example, we consider
a snapshot where some flows are directed from nodes 1
and 2, through 3 to nodes 4, 5 and 6. The doned arrows
represent a set of flows that are going to be directed to
node 4, the dashed arrows to node 5 and the solid ones to
node 6. Although it is possible that none of the flows is
highly bursty, it can very likely be the aggregation of
them. Node 3 can not regulate the burstiness of its outgo-
ing links, unless it under-utilize them. But, possibly
nodes 1 and 2 can augment node 3 in that.

Consider that at an arbitrary point in time, the con-
tent of the queue of the outgoing link on node 1, is the
one shown on the left side of Figure 2. Using the usual
FIFO discipline, the order of the transmission of the
packets is identical to their order in the queue, as it is
shown in the upper right Part of the figure. Here we
notice that the packets are mostly transmitted in groups
of 3, meaning that after node 3, that group is going to
follow the Same outgoing link. On the other hand,
employing BSQ at node 1, the output order is the one
shown in the lower right Part of the Same figure.

Figure I: Network example
We can notice that using BSQ we have bursts of one

packet, with the exception of the end of the queue, where
4 packets are creating an even Iiigher burst than FIFO.
This is the case because in that static figure, we can not
capture the real-time, dynamic characteristics of a traffic
passing through the queue, where packets are always

ing link on the next router. Global information is coming into, allowing further interleaving of them, with-
out causing such large bursts. reauired as well. to manage the total buffer svace,

Figure 2: Queue content snapshot
It is important to mention that although the output of

the link on node 1 should not cause any congestion on
the output links of node 3 towards nodes 4, 5 and 6 (if
we assume identical link characteristics), it is very possi-
ble to be the case by interfering with the output link of
node 2 towards node 3(or even with more links that
carry packets that will be routed through the aforemen-
tioned links).

From that case description, it is observable why BSQ
can offer better performance, which is achieved by lower
average queue lengths, by conhoiiing the scheduling of
the packets.

4 Algorithm Description

4.1 Assump tions
In order for a router to be able to classify a packet based
on its destination IP address, it is assumed that it
includes the required information in its own routing
table. The amount of that required information depends
on the depth into the network every router is interested
in (level of interest). For example, for depth value equal
to one, the router is assumed to include in its own rout-
ing table the routing tables of all of each neighbours. The
specific way of implementing it is out of scope, but alter-
natives can be either a two step lookup, or even in one
step, where tuples are returned.

Additionally, link characteristics like bandwidth can
be required for a weighted and more efficient schedul-
ing.

4.2 Design Issues
Every router assigns the neighbour router on each spe-
cific outgoing link in the root of a tree with depth equal
to the level of interest. Figure 3 presents the structure of
that tree for node 1 of Figure 1, and more specifically,
for the outgoing link towards node 3, with level of inter-
est 1. Based on the topology of that network, root 4 3 has
three children, Q4, Q5, 4 6 , representing the sub-queues
on that router. Each sub-queue is responsible to handle
the packets that are going to follow the respective outgo-

Figure 3: Tree structure on node I for the outgoing link
towards node 3

There are two main operations that take place in a
queue System: Adding a packet (enqueueing) and
removing a packet (dequeueing).
When a new packet arrives in the queue, it is processed
iteratively to find the correct position into the hee of the
sub-queues. A new sub-queue is created when the
requested branch does not exist, taking as Parameter the
bandwidth of the link, to ensure weighted scheduling.
When the appropriate leaf of the tree is reached, the
packet is stored in the corresponding sub-queue. If the
total nurnber of Storage space required to Store the pack-
ets of the queue is greater than the maximum allowed
one, BSQ drops the head of largest sub-queue'.

void enque(packet) {
Get the address of this node
Current node is the root of the tree
Search until the maximum IevelOfInterest is
reached or the final destination is found {

Lookup in the extended routing table
which is the next hop from the
current one to the
final destination
Get the child in the subtree that fits with
that next hop
lfthat child does not exist, create it
Make the current node this new one

1
lncrease the number of packets that are stored
in this subtree
Enqueue the packet in that subtree
Accumulate the total size of the stored packets
If there is buffer overflow, drop a packet from the
subtree with the largest number of packets
(or the maximum length of them){

Find the subtree with the maximum
number of packets
Update the intemal structures
Dequeue the packet to be dropped
Drop the packet

1
1

Figure 4: Enqueue pseudocode

4.2.1 Enqueueing
Figure 4 provides the pseudocode which describes the
operation of adding a new packet into BSQ.

4.2.2 Dequeueing
Removing a packet from BSQ in order to be hans-

mitted is taking place in two steps: First to find the next
sub-queue to be scheduled and second to perform the
usual dequeue operation as it is for a normal FIFO
queue. The second step is considered trivial and it is not
described in detail.
schediiledSubQueue getNextPQO{

Search in the current root of the subtree and the
subtree itself(

If in this iteration the root is chosen to
be checked

If there are packets in the root{
scheduled SubQueue is found
Notify to check in the next
iteration the first child

1
Otherwise, check the chosen child of the
subtree{

Get recursively the
scheduledSubQueue, using the
chosen child as the new root
If this is a valid scheduledSubQueue

Notify to check the next child
in the following iteration

1
lf this node has children{

Notify to check the next child in the
following iteration
If the last child is currently visited

Notify to check the root in
the next iteration

retum the scheduledSubQueue

Figure 5: Dequeue pseudocode
Figure 5 provides the pseudocode which describes

the operation of finding the next sub-queue to be sched-
uled. It is a round robin scheduler applied recursively on
each level of the tree. An alternative technique that we
explored was based on Smoothed Round Robin [6],
which provides a scheduling Pattern for almost perfect
interleaving of the packets. Unfortunately, it proved to
be too complex and ineff~cient because of the micro-
scopic view of the system, applied on the content of a
relatively short queue, where the relative ratio of the

I . A different flavor of BSQ, which combines RED charac-
teristics is described later, which randomly picks up the
packet to be dropped.

packets destined to one direction, to the packets destined
to another one, was changing very frequently.

4.3 Complexity
The complexity of a queue algorithm is very critical for
its deployment. In high speed networks, complexity of
even O(log(n)) might make an algorithm useless.

BSQ, although it increases the requirements in the
size of the routing tables, it does not keep state for each
active queue, but for each neighbor's link, which is into
the level of interest. This is a relatively static informa-
tion, which needs to be updated only when there are
changes on the topology of the network, a task that is
going to take place anyway. The usual mechanisms of
conshucting the routing tables can be reused for the pur-
poses of BSQ. Therefore, the complexity of BSQ is
O(1).

5 Simulations

5.1 Simulation Environment
In order to evaluate the performance of BSQ, we used
ns-2 [7]. In those experiments, compared BSQ with
Drop-Tail, DRR and RED. The choice was based on the
fact that they are very representative examples and avail-
able with the distribution of ns-2.

Figure 6: Network topology for the experiments
Figure 6 shows the network topology for the experi-

ments. It represents a part of a backbone example net-
work that can be considered as a graph transformation
into a tree to include three levels of cascading networks
similar to the one in Figure 1.

In most of the experiments, the sources are located in
the Open links of the figure, connected to nodes SI , s2,
11, 13, ml and 4. The destinations are the nodes n2, n3,
r l , r2, r3 and r4. The capacity of the links has been Set to
12.5MBps and the queue size to 20000 bytes. The flows

are both TCP that consider the received feedback, as
well as self-similar background trafic [IO], encapsu-
lated in UDP packets, to make the simulation as much
realistic as possible. The version of TCP was in those
experiments was TCP Sack. The self-similar traffic has
been generated modiQing a self similar traff~c generator
[9] , in order to make the output traces compatible with
ns-2. The packet size for every flow, both TCP and self-
similar, is 500 bytes.

The primary design concern of that simulation envi-
ronment is to examine how the BSQ queues, located in
nodes s l and s2 are going to reduce the burstiness in
node 12, and sequentially, how each level is reducing the
burstiness entering in the following one.

5.2 Simulation Results
Figure 7 shows the average queue length of BSQ, DRR
and Drop Tail over time, on the outgoing link from node
m2 towards n l , since it is a very representative example.
It is very clear that DRR constructs much longer queues,
resulting in higher end-to-end transmission delays. BSQ
and DRR construct queues with similar length on aver-
age, but BSQ has lower deviation, resulting in more sta-
ble Systems and smaller jitter, a very important property
for multimedia applications.

Figure 7: Average queue length for DRR, BSQ and Drop
Tail

Table 1 summarizes the most important information
from the experiments, comparing the perforrnance
among BSQ, DRR and Drop Tail. What is visually obvi-
ous in Figure 7, is expressed with the average queue
length. DRR constructs queues with almost 50% higher
length, compared with BSQ and Drop Tail. As a result,
end-to-end delay is also higher, although not that clearly,
since the provided numbers include link transmission
delay and not only queueing delay. But longer queues
has not only drawbacks, but also some benefits. DRR
provides the higher utilization (taking in account the
number of transmitted TCP packets), compared to BSQ
and Drop Tail.

It seems that DRR provides lower goodput for the
self-similar UDP trafic, but this might be the case,
because that traffic is the aggregation of many others,
and DRR can not discriminate between them, to give a
more fair share. Finally, DRR suffers from a higher drop
rate, compared to BSQ and Drop Tail.

Table 1:

As a second set of experiments, we combined BSQ
with RED to examine if it is possible to improve the
main drawback of RED', which is a low link utilization
[12]. Figure 8 displays the average queue length of RED
and BSQRED, where they follow a similar behaviour,
with smaller length oscillation for BSQRED.

Figure 8: Average queue length for RED and BSQRED
Table 2 shows, as expected the higher link utilization

of BSQRED compared with Adaptive RED. It should be
mentioned also, that BSQRED drops a higher number of
packets.

I. Parameter sening is also very dificult in RED, and for
that reason we used the latest venion o f Adaptive RED.

6 Conclusions & Outlook

In this Paper, BSQ, a novel queueing algorithm, has been
presented. The main objective of that algorithm is to
minimize the burstiness of the traffic on packet switched
routers, by interleaving packets that are going to follow
different links on next hops. The complexity of that
algorithm is 0(1), which makes it deployable in high
speed networks.

From tlie experiments we performed, it is proved that
BSQ offers a better trade-off between link utilization and
end-to-end delay, compared with DRR and Drop Tail.
Combined with RED, it can improve the link utilization,
without any significant increase on the end-to-end delay.

It is important to mention that the particular experi-
ment results for BSQ are heavily based on the selected
packet scheduler, that we do not claim that it is optimal.
But still, it is sufficient to prove the benefits of BSQ.
Finding the optimum scheduler for this dynamic envi-
ronment is a great challenge. Prediction mechanisms
could improve a lot the performance.

We plan to perform more experiments to compare
BSQ with other available queueing algorithms. It is very
important to examine the available possibilities to
increase the fairness of the algorithm. Also, alternatives
to the level-of-interest-based round robin algorithm
seems a promising direction to increase even further the
performance of BSQ.

Table 2:

Acknowledgements
The authors would like to thank Jens Schmitt for the

very useful discussions we had on BSQ.

References
[I] I. D. F. M. Brandauer, Ziegler. Comparison of tail

drop and active queue management perfomance for
bulk-data and web-like intemet traffic. In ISCC'2001
(6th IEEE Sjvnposium on Computers und
Communicafions), Hammamet, Tunisia,, 200 1.

[2] B. Branden. et al. Recommendations on queue
management and congestion avoidance in the
internet. RFC 2309, 1998.

[3] W. Feng, D. Kandlur, D. Saha, and K. Shin.
Stochastic fair blue: A queue management algorithm
for enforcing faimess. In Proc. IEEE Infocom, 200 1.

[4] S. Floyd, R. Gummadi, and S. Shenker. Adaptive
RED: An algorithm for increasing the robustness of
RED, 200 1.

[5] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM
Transactions on Nefworking, 1(4):397413, 1993.

[6] C. Guo. SRR: An O(1) Time Complexity Packet
Scheduler for Flows in Multi-Service Packet
Networks. In Proceedings of the ACM SIGCOMM
'01 Conference, San Diego, California, 200 1.

[7] K. Harju and S. Korventausta. Network simulation
and protocol implementation using network
simulator 2.

[8] Y. Joo, V. Ribeiro, A. Feldmann, A. Gilbert, and
W. Willinger. The impact of variability on the buffer
dynamics in P networks, 1999.

[9] G. Kramer. On generating self-similar traffic using
pseudo-pareto distribution.

[I01 G. Kramer. Self-similar network traffic: the notion
and effects of self-similarity and long range
dependence.

[I I] D. Lin and R. Morris. Dynamics of random early
detection. In SIGCOMM '97, pages 127-1 37,
Cannes, France, september 1997.

[I21 M. May, J. Bolot, C. Diot, and B. Lyles. Reasons not
to deploy RED. In Proc. of 7th. International
Workshop on Qualify of Service (IWQoS199),
London, 1999.

[I31 H. Ohsaki and M. Murata. Steady State Analysis of
the RED Gateway: Stability, Transient Behavior, and
Parameter Setting. IEICE Trans. Commun., E85-
B(1), 2002.

[I41 T. J. Ott, T. V. Lakshman, and L. H. Wong. Sred :
Stabilized RED. In INFOCOM, pages 1346-1 355,
1999.

[I51 P. K. Panos Gevros, Jon Crowcroft and S. Bhatti.
Congestion control mechanisms and the best effort
service model. IEEE Network Special Issue on the
Confrol of Best Effort Traffic, May/June, 2001.

[I61 M. Shreedhar and G. Varghese. Efficient fair
queueing using deficit round robin. In SIGCOMM,
pages 23 1-242,1995.

[I71 I. Stoica, S. Shenker, and H. Zhang. Core-stateless
fair queueing: Achieving approximately fair
bandwidth allocations in high speed networks. In
Proceedings of the ACM SIGCOMM '98 Conference,
pages 11 8-130, 1998.

