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Abstract: In this Paper, we present a novel queue man- 
agement mechanism, called Burst Shaping Queueing 
(BSQ). The main objective is to minimize the burstiness 
of the traffic on packet switched routers, by interleaving 
packets that are going to follow different links on next 
hops. The complexity of that algorithm is 0(1), which 
makes it deployable in high speed networks. 
From the simulated experiments we performed, it is 
proven that BSQ offers a better trade-off between link 
utilization and end-to-end delay, compared with other 
queueing mechanisms. Combined with RED, it can 
improve the link utilization, without any significant 
increase on the end-to-end delay. 
Keywords: burstiness, network queues, shaping, sched- 
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1 Introduction 

In packet-based switched networks, congestion occurs 
basically because of the interference of not synchro- 
nized, independent flows, sharing common resources, in 
cases where the demand for those resources is higher 
than the offered ones. 
This is a very complex problem that requires coordi- 
nated efforts in different components of the network, as 
well its design. Network designers provision to offer suf- 
ficient resources to often congested links. But, it has 
been expenenced that even in over-provisioned net- 
works, it is a matter of time to become congested by 
always more demanding users and applications. 

Therefore, appropriate mechanisms are used both in 
the end-points and the routers of a network. End-points 
react to the congestion signalling they receive (e.g. in 
TCP flows, the senders interpret the acknowledges they 
receive to increase or decrease their transmission rate 
appropriately). Additionally, packet pacing has been 
introduced to minimize the burstiness of the flows, by 
evenly distributing the departure of the packets of a win- 
dow-based flow, over the estimated RTT. 

In routers, different queue management techniques 
are employed, aiming to auginent the congestion avoid- 
ance, by trying to detect congestion in advance, in order 
to inform end-points to reduce their transmission rate, or 
by offering more fair shares to the flows sharing a partic- 
ular link and punishing this way the more aggressive 
flows. 

The most common queue discipline in the Interiiet 
today is FIFO' (First-In-First-Out), although it is 
reported in many works [I], [2] that FIFO is responsible 
for higher end-to-end delay because of full queues, 
unfair share of the available bandwidth and lock out phe- 
nomena, where few flows monopolize the queue space. 
Many researchers have proposed alternative schemes 
with better performance characteristics, but either 
because of their moderate improvement, or because of 
their suitability in particular scenarios only, or even für- 
ther because of high complexity/scalability issues, they 
still have not been widely deployed. 

Some of the proposed schemes, like Random Early 
Detection (RED) [5] or Blue [3], operate on a single 
queue, where the main operation is either dropping prob- 
abilistically a packet or marking it, based on the average 
queue length. Other approaches construct multiple 
queues, either to discriminate tlie offered service, or to 
share the bandwidth more fairly. In the case of the multi- 
ple queues, scheduling mechanisms are employed to 
select the next sub-queue to be served. To a rough 
approximation [2], in order to discriminate the vanous 
algorithms taking place at routers to handle incoming 
packets: 

queue management algorithms manage the length of 
packet queues by dropping packets when necessary 
or appropriate, while 
scheduling algorithms determine which packet to 
send next; they are used primarily to manage the 
allocation of bandwidth among flows. 
Moreover, traffic engineering tecliniques are supple- 

mentary solutions, used to balance evenly the trafic 
over alternative paths between end-points. 

In our work, we examine the potential to enhance the 
congestion avoidance probability, by changing tlie 
scheduling of the packets on an outgoing link, based on 
the information "which are the links that those packets 
are going to follow, in successive routers". Packets that 
are going to follow different paths in following routers 
are interleaved, avoiding, as much as possible, the 
sequential submission of packets that are going to follow 
the same links. The order of the packets that are going to 
follow the Same links is not affected. This way, the burst- 

I .  Usually the terms FCFS (First-Come-First- 
Sewed) or Drop-Tail are used alternatively. 



iness in that individual outgoing link remains the Same, 
but the burstiness in following ones is reduced. This new 
queueing mechanism is called Burst Shaping Queueing 
(BSQ). 

The rest of this paper is organized as follows: Section 
2 describes briefly work that is alternative or supplemen- 
tary to our research, while Section 3 provides the moti- 
vation for using BSQ. Section 4 describes the algorithms 
of BSQ and their complexity and some experiments are 
provided in Section 4 for its evaluation. Finally, Section 
6 provides the conclusion of our work, as well as some 
thoughts for further investigation. 

2 Related Work 

RED [5] is possibly the most explored queue manage- 
ment mechanism. Alternatives to the original algorithm 
are FIow Random Early Drop (FRED), RED with pen- 
alty box, Stabilized RED [14], Gentle RED (GRED), 
Adaptive RED [4] and Self-configured RED. In the orig- 
inal algorithm, packets are served in a FIFO order, but 
the buffer management is significantly more sophisti- 
cated than Drop-Tail. RED Starts to drop packets proba- 
bilistically, based on the average queue length. RED 
trades-off lower utilization for lower end-to-end delay. 
Four parameters are used to configure RED, to make it 
appropriate for different Scenarios. Fine tuning of those 
parameters is always a headache for the researchers. The 
latest version of RED, Adaptive RED overpass this 
problem, by using some sophisticated algorithms. 

Deficit Round Robin (DRR) [I61 is a scheduling 
algorithm, aiming to offer fair Shares of the bandwidth to 
all of the flows competing in an outgoing link. DRR con- 
stnict a number of multiple queues (called buckets) and 
thcn assigns each flow in one of those buckets, by hash- 
ing thc destination IP address. More than one flows 
could share the Same bucket, in case of collisions in the 
hasliing procedure The scheduler periodically visits all 
the buckets using the round robin algorithm, and adding 
a quantum (an increase on the maximum size in bytes 
allowed to be transmitted from that bucket) to the deficit 
of that bucket. If the size of the next packet to be trans- 
mitted is smaller than the deficit, then it is transmitted. 
Othenvise the scheduler proceeds to the next bucket. 

Core-Stateless Fair Queueing (CSFQ) [I71 is an 
approach that discriminates the operations performed by 
the core routers from the operations performed by the 
edge routers in a subnet. Since the number of flows in 
the core routers is very large and the transmission speed 
is very high, it is not possible to apply a queueing tech- 
nique, requesting for state per flow. Deployability of a 
statefull technique is more feasible in edge routers. 
CSFQ calculates the rate of each flow in the edge routers 
and this rate information is inserted in every packet. 

Core routers calculates the fair share of each flow and 
probabilistically drop packets from flows that exceed 
their fair share. The drawbacks of that approach are 
mainly the facts that each packet has to be labeledlde- 
labeled in the edge routers and the complexity of the 
edge routers still remains high. Mice flows might be 
handled unfriendly, since the estimation of their rate can 
be miscalculated due to their short live. 

3 Motivation 

In order to motivate our work, we take as an example the 
network shown in Figure 1. In that example, we consider 
a snapshot where some flows are directed from nodes 1 
and 2, through 3 to nodes 4, 5 and 6. The doned arrows 
represent a set of flows that are going to be directed to 
node 4, the dashed arrows to node 5 and the solid ones to 
node 6. Although it is possible that none of the flows is 
highly bursty, it can very likely be the aggregation of 
them. Node 3 can not regulate the burstiness of its outgo- 
ing links, unless it under-utilize them. But, possibly 
nodes 1 and 2 can augment node 3 in that. 

Consider that at an arbitrary point in time, the con- 
tent of the queue of the outgoing link on node 1, is the 
one shown on the left side of Figure 2. Using the usual 
FIFO discipline, the order of the transmission of the 
packets is identical to their order in the queue, as it is 
shown in the upper right Part of the figure. Here we 
notice that the packets are mostly transmitted in groups 
of 3, meaning that after node 3, that group is going to 
follow the Same outgoing link. On the other hand, 
employing BSQ at node 1, the output order is the one 
shown in the lower right Part of the Same figure. 

Figure I: Network example 
We can notice that using BSQ we have bursts of one 

packet, with the exception of the end of the queue, where 
4 packets are creating an even Iiigher burst than FIFO. 
This is the case because in that static figure, we can not 
capture the real-time, dynamic characteristics of a traffic 
passing through the queue, where packets are always 



ing link on the next router. Global information is coming into, allowing further interleaving of them, with- 
out causing such large bursts. reauired as well. to manage the total buffer svace, 

Figure 2: Queue content snapshot 
It is important to mention that although the output of 

the link on node 1 should not cause any congestion on 
the output links of node 3 towards nodes 4, 5 and 6 (if 
we assume identical link characteristics), it is very possi- 
ble to be the case by interfering with the output link of 
node 2 towards node 3(or even with more links that 
carry packets that will be routed through the aforemen- 
tioned links). 

From that case description, it is observable why BSQ 
can offer better performance, which is achieved by lower 
average queue lengths, by conhoiiing the scheduling of 
the packets. 

4 Algorithm Description 

4.1 Assump tions 
In order for a router to be able to classify a packet based 
on its destination IP address, it is assumed that it 
includes the required information in its own routing 
table. The amount of that required information depends 
on the depth into the network every router is interested 
in (level of interest). For example, for depth value equal 
to one, the router is assumed to include in its own rout- 
ing table the routing tables of all of each neighbours. The 
specific way of implementing it is out of scope, but alter- 
natives can be either a two step lookup, or even in one 
step, where tuples are returned. 

Additionally, link characteristics like bandwidth can 
be required for a weighted and more efficient schedul- 
ing. 

4.2 Design Issues 
Every router assigns the neighbour router on each spe- 
cific outgoing link in the root of a tree with depth equal 
to the level of interest. Figure 3 presents the structure of 
that tree for node 1 of Figure 1, and more specifically, 
for the outgoing link towards node 3, with level of inter- 
est 1. Based on the topology of that network, root 4 3  has 
three children, Q4, Q5, 4 6 ,  representing the sub-queues 
on that router. Each sub-queue is responsible to handle 
the packets that are going to follow the respective outgo- 

Figure 3: Tree structure on node I for the outgoing link 
towards node 3 

There are two main operations that take place in a 
queue System: Adding a packet (enqueueing) and 
removing a packet (dequeueing). 
When a new packet arrives in the queue, it is processed 
iteratively to find the correct position into the hee of the 
sub-queues. A new sub-queue is created when the 
requested branch does not exist, taking as Parameter the 
bandwidth of the link, to ensure weighted scheduling. 
When the appropriate leaf of the tree is reached, the 
packet is stored in the corresponding sub-queue. If the 
total nurnber of Storage space required to Store the pack- 
ets of the queue is greater than the maximum allowed 
one, BSQ drops the head of largest sub-queue'. 

void enque(packet) { 
Get the address of this node 
Current node is the root of the tree 
Search until the maximum IevelOfInterest is 
reached or the final destination is found { 

Lookup in the extended routing table 
which is the next hop from the 
current one to the 
final destination 
Get the child in the subtree that fits with 
that next hop 
lfthat child does not exist, create it 
Make the current node this new one 

1 
lncrease the number of packets that are stored 
in this subtree 
Enqueue the packet in that subtree 
Accumulate the total size of the stored packets 
If there is buffer overflow, drop a packet from the 
subtree with the largest number of packets 
(or the maximum length of them){ 

Find the subtree with the maximum 
number of packets 
Update the intemal structures 
Dequeue the packet to be dropped 
Drop the packet 

1 
1 

Figure 4: Enqueue pseudocode 



4.2.1 Enqueueing 
Figure 4 provides the pseudocode which describes the 
operation of adding a new packet into BSQ. 

4.2.2 Dequeueing 
Removing a packet from BSQ in order to be hans- 

mitted is taking place in two steps: First to find the next 
sub-queue to be scheduled and second to perform the 
usual dequeue operation as it is for a normal FIFO 
queue. The second step is considered trivial and it is not 
described in detail. 
schediiledSubQueue getNextPQO{ 

Search in the current root of the subtree and the 
subtree itself( 

If in this iteration the root is chosen to 
be checked 

If there are packets in the root{ 
scheduled SubQueue is found 
Notify to check in the next 
iteration the first child 

1 
Otherwise, check the chosen child of the 
subtree{ 

Get recursively the 
scheduledSubQueue, using the 
chosen child as the new root 
If this is a valid scheduledSubQueue 

Notify to check the next child 
in the following iteration 

1 
lf this node has children{ 

Notify to check the next child in the 
following iteration 
If the last child is currently visited 

Notify to check the root in 
the next iteration 

retum the scheduledSubQueue 

Figure 5: Dequeue pseudocode 
Figure 5 provides the pseudocode which describes 

the operation of finding the next sub-queue to be sched- 
uled. It is a round robin scheduler applied recursively on 
each level of the tree. An alternative technique that we 
explored was based on Smoothed Round Robin [6], 
which provides a scheduling Pattern for almost perfect 
interleaving of the packets. Unfortunately, it proved to 
be too complex and ineff~cient because of the micro- 
scopic view of the system, applied on the content of a 
relatively short queue, where the relative ratio of the 

I .  A different flavor of BSQ, which combines RED charac- 
teristics is described later, which randomly picks up the 
packet to be dropped. 

packets destined to one direction, to the packets destined 
to another one, was changing very frequently. 

4.3 Complexity 
The complexity of a queue algorithm is very critical for 
its deployment. In high speed networks, complexity of 
even O(log(n)) might make an algorithm useless. 

BSQ, although it increases the requirements in the 
size of the routing tables, it does not keep state for each 
active queue, but for each neighbor's link, which is into 
the level of interest. This is a relatively static informa- 
tion, which needs to be updated only when there are 
changes on the topology of the network, a task that is 
going to take place anyway. The usual mechanisms of 
conshucting the routing tables can be reused for the pur- 
poses of BSQ. Therefore, the complexity of BSQ is 
O( 1 ). 

5 Simulations 

5.1 Simulation Environment 
In order to evaluate the performance of BSQ, we used 
ns-2 [7]. In those experiments, compared BSQ with 
Drop-Tail, DRR and RED. The choice was based on the 
fact that they are very representative examples and avail- 
able with the distribution of ns-2. 

Figure 6: Network topology for the experiments 
Figure 6 shows the network topology for the experi- 

ments. It represents a part of a backbone example net- 
work that can be considered as a graph transformation 
into a tree to include three levels of cascading networks 
similar to the one in Figure 1. 

In most of the experiments, the sources are located in 
the Open links of the figure, connected to nodes SI ,  s2, 
11, 13, ml and 4. The destinations are the nodes n2, n3, 
r l ,  r2, r3 and r4. The capacity of the links has been Set to 
12.5MBps and the queue size to 20000 bytes. The flows 



are both TCP that consider the received feedback, as 
well as self-similar background trafic [IO], encapsu- 
lated in UDP packets, to make the simulation as much 
realistic as possible. The version of TCP was in those 
experiments was TCP Sack. The self-similar traffic has 
been generated modiQing a self similar traff~c generator 
[9 ] ,  in order to make the output traces compatible with 
ns-2. The packet size for every flow, both TCP and self- 
similar, is 500 bytes. 

The primary design concern of that simulation envi- 
ronment is to examine how the BSQ queues, located in 
nodes s l  and s2 are going to reduce the burstiness in 
node 12, and sequentially, how each level is reducing the 
burstiness entering in the following one. 

5.2 Simulation Results 
Figure 7 shows the average queue length of BSQ, DRR 
and Drop Tail over time, on the outgoing link from node 
m2 towards n l ,  since it is a very representative example. 
It is very clear that DRR constructs much longer queues, 
resulting in higher end-to-end transmission delays. BSQ 
and DRR construct queues with similar length on aver- 
age, but BSQ has lower deviation, resulting in more sta- 
ble Systems and smaller jitter, a very important property 
for multimedia applications. 

Figure 7: Average queue length for DRR, BSQ and Drop 
Tail 

Table 1 summarizes the most important information 
from the experiments, comparing the perforrnance 
among BSQ, DRR and Drop Tail. What is visually obvi- 
ous in Figure 7, is expressed with the average queue 
length. DRR constructs queues with almost 50% higher 
length, compared with BSQ and Drop Tail. As a result, 
end-to-end delay is also higher, although not that clearly, 
since the provided numbers include link transmission 
delay and not only queueing delay. But longer queues 
has not only drawbacks, but also some benefits. DRR 
provides the higher utilization (taking in account the 
number of transmitted TCP packets), compared to BSQ 
and Drop Tail. 

It seems that DRR provides lower goodput for the 
self-similar UDP trafic, but this might be the case, 
because that traffic is the aggregation of many others, 
and DRR can not discriminate between them, to give a 
more fair share. Finally, DRR suffers from a higher drop 
rate, compared to BSQ and Drop Tail. 

Table 1: 

As a second set of experiments, we combined BSQ 
with RED to examine if it is possible to improve the 
main drawback of RED', which is a low link utilization 
[12]. Figure 8 displays the average queue length of RED 
and BSQRED, where they follow a similar behaviour, 
with smaller length oscillation for BSQRED. 

Figure 8: Average queue length for RED and BSQRED 
Table 2 shows, as expected the higher link utilization 

of BSQRED compared with Adaptive RED. It should be 
mentioned also, that BSQRED drops a higher number of 
packets. 

I. Parameter sening is also very dificult in RED, and for 
that reason we used the latest venion o f  Adaptive RED. 



6 Conclusions & Outlook 

In this Paper, BSQ, a novel queueing algorithm, has been 
presented. The main objective of that algorithm is to 
minimize the burstiness of the traffic on packet switched 
routers, by interleaving packets that are going to follow 
different links on next hops. The complexity of that 
algorithm is 0(1), which makes it deployable in high 
speed networks. 

From tlie experiments we performed, it is proved that 
BSQ offers a better trade-off between link utilization and 
end-to-end delay, compared with DRR and Drop Tail. 
Combined with RED, it can improve the link utilization, 
without any significant increase on the end-to-end delay. 

It is important to mention that the particular experi- 
ment results for BSQ are heavily based on the selected 
packet scheduler, that we do not claim that it is optimal. 
But still, it is sufficient to prove the benefits of BSQ. 
Finding the optimum scheduler for this dynamic envi- 
ronment is a great challenge. Prediction mechanisms 
could improve a lot the performance. 

We plan to perform more experiments to compare 
BSQ with other available queueing algorithms. It is very 
important to examine the available possibilities to 
increase the fairness of the algorithm. Also, alternatives 
to the level-of-interest-based round robin algorithm 
seems a promising direction to increase even further the 
performance of BSQ. 

Table 2: 
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