
[uLHSt+OSI vasilios Uarlagiannis, Nicolas Liebau, Oliver Heckmann, Andreas Mauthe, Ralf Steinmetz;
Caching Indices for Efficient Lookup in Structured Overlay Networks; Fourth
International Workshop on Agents and Peer-to-Peer Cornputing. Springer, Juli 2005, S.

Caching Indices for Efficient Lookup in
Structured Overlay Networks

Vasilios ~ a r l a ~ i a n n i s ~ , Nicolas Liebaut, Oliver Heckmannt,
Andreas ~ a u t h e t , and Ralf Steinmetzt

Multimedia Kommunikation (KOM), Darmstadt University of Technology,
Merckstr. 25, 64293 Darmstadt, Germany,

[bdarla, liebau, heckmann, steinmetz](0kom.tu-darmstadt.de
Lancaster University, Computing Department, Lancaster, LA1 4YR, UK

andreas(0comp.lancs.ac.uk

Abst rac t Structured overlay networks for Peer-to-Peer systems (e.g.
based on Distributed Hash Tables) use proactive mechanisms to provide
efficient indexing functionality for advertised resources. The majority of
their occurrences in proposed systems (e.g. Chord, Pastry) provide upper
bounds (logarithmic complexity with respect to the size of the graph rep-
resenting the network) on the communication cost in worst case scenarios
and their performance is Superior compared to unstructured alternatives.
However, in particular (empirically observed) scenarios where the pop-
ularity of the advertised resources follows a distribution considerably
different from the uniform distribution, structured P2P networks may
perform inferiorly compared to well designed unstructured P2P networks
that exploit effectively the resource popularity distribution. In order to
address this issue, a very simple caching mechanism is suggested in this
paper that preserves the theoretical superiority of structured overlay net-
works regardless of the popularity of the advertised resources. Moreover,
the churn effect observed in Peer-to-Peer systems is considered. The pro-
posed mechanism is evaluated using simulation experiments.

1 Introduction

Structured overlay networks for Peer-to-Peer (P2P) systems, e.g. Chord [27],
Pastry [24], Tapestry 1291 and Omicron 171, use proactive mechanisms t o provide
efficient indexing functionality for advertised resources. T h e majority of their
implementations provide theoretical upper bounds on the communication cost
in u7oist cnse sccnarios, assiiiniiig tlint tlic iiiaiiitcna.iicc of thc topology Iicals 1 . 1 1 ~
divcrgence (ca,used by the clynamic paiticipation of tlie pcers) froin t,l-ie "itlc;iln
network structure. Modeling the topology of a P 2 P network with n graph, t,lie
i i i ; i s i i i i i i i i i clistiiiicr: l)cl\vr>eii iiiiy 1\vo i iot l~~s is P (~ I I ; I ~ to (l ~ c c l i r r t t i r I r i , O S l l i c . ; i . ; i l > I i .

111 ~r;ipI1? r r p ~ ~ ? c ~ i t ilig ~ i ~ t ~ v n ~ . l c ? s11r1i a q rIirv,l (P ~ I (, \ I I > O (I V ~ ~ i ; i i l ~ t ; \ i ~ l ? f l (! y (
. . , >,.I ,,>;.,> \ \ - : , * . ' . < , , . I : . . ,. .

. . . . , . ,

D = o , (\ -) . ' i ! l l l l l l I ! I I ! ' , : , : : . I . , C 1 ' . . 7 : . 2 , !

. ! L ~ I C ; l)ccrh, c.2. 111 ~ i i e ca.x; 01' I ' ~ I . - ~ I ~ -I. c':itJAti LI;. ,,,~.L.i LU I ~ L C I . [, , , , : : , , , ,

constructed clusters of peers, e.g. in the case of the two-tier architecture of
Omicron (Do = O(log(N/l)) , where 1 is the average population of each cluster).
However, a more useful metric to evaluate the communication cost for routing
messages in structured overlay networks is the average inter-peer distance. The
average cost for graphs such as the one representing Chord is PD„ = D c ~ / 2
[27]. On the other hand, the average inter-peer distance for networks such as
Omicron based on de Bruijn grapl-is [5] is PD, = D. - (k - I)-', where k
is the degree of the nodes [13]. However, since the graph nodes in Omicron
represent clusters of peers, the actual average inter-peer distance is smaller than
the average inter-peer distance in Chord.

Structured overlay networks have been desigiied mainly to overcome the in-
trinsic scalability issue of flat and unstructured networlcs, such as Gnutella v0.4
[20]. However, for several reasons, structured overlay networks have not been uti-
lized in widely-deployed P2P systems (with the exception of the Kademlia net-
work [lS]). Iiistead, system designers opt for hierarchical or hybrid approaches
where a subset of peers (usually termed ns super-peers, or ultra-peers) is respon-
sible for indexing and finding the advertised resources. Moreover, a number of
mechanisms have been suggested to improve tlie performance of unstructured
networks, e.g. expanding rings or multiple random walks [16]. The success of
these mechanisms is based on the assumption of uneven popularity of the avail-
able resources. In fact, this assumption is validated by a number of empirical
observations of file sharing systems (cf. [26], [9] and [4]) where the popularity of
the resources is reported. While there is a disagreeinent on the exact distribution
that describes the popularity of the resources (Zipf, lognormal, etc.), it can be
safely coiicluded that it is not uniform.

Therefore, an interesting debate has arisen lately on whether structured
overlay networks can perform efficiently if non-uniform popularity of resources
is observed [15]. Apparently, structured networks perform equally well in any
lookup request, thus, providing upper bounds, though not exploiting effectively
the query frequency. Some hybrid approaches have been suggested to address
this issue, such as hybrid PIER (141 or OceanStore [22]. Though, in these hy-
brid approaches the formation of two separate overlay networks is suggested, a
structured one and an unstructured one to deal with unpopular and popular
queries, respectively. The shortcomings and weaknesses of these solutions are
mainly (i) the increased complexity, (ii) the additional maintenance cost that is
out-of-band, (iii) the lack of adaptability t o both uniform and non-uniform dis-
tributions and (iv) the increased delay when the initial overlay network selection
foi. searcliing tlic resourcc fails aiitl tlie fall-back alt~criiativc inust I)c follo~vetl.

The aforenientioned concerns are taken iiito account in the solution inves-
tigated in this paper. A simple thougli efficient meclianism is suggested that
capitalixcs on tlie adccluateiiess ol' c:icliiiig icsources follo\\:iiig iioii-iiiiiioi.iii tlis-
ti.il~utions and thc higlier interest of t l ~ r P2P iisrrs to n rrlni,i.cfcly sinn11 siil~iirt
(-1s ;~\.;~il;~blc ~ c s o I I : ~ (~ ~ ~ ~ . [! (, > : I E , I I ~ I . :::, c . ,~ ;~ ; ! ! , ; l ;~ ;L ;s I : , : , , , : , . ! ,,;.,,' . , . . , , .

~vni-ks witliout any acl(iitio1i~11 i i i i ~ i i ~ l (~ ; i : i ~ ! f ~ : \ ?frort- n i ~ (l \.(!I,>. !,,\V ; ~ t l I i i ; i , ' : . . ! : ~ ~ ~ - b ' ~ , : c ,

cubL cuiiiparccl tu tlie oiigiiial algoiitiiiiis ui' .>ii.iici i:;c~l iict\vui.I;:, iii \\ui.,,. i ; i . , ~

scenarios where the cache is not properly updated. No extension of their sig-
nalling protocols is required, thus, avoiding increasing further the complexity of
their operationl. Merely, we invest on existing information collected through the
normal network operation to improve the routing performance. The observed
churn rate of the P2P networks, which is the most critical factor (together with
the popularity distribution) is considered in our simulation experiments. While
caching methods have been proposed for unstructured or hybrid overlay net-
works (cf. [17], [12]), they lack investigation on the structured counterparts.
Moreover, several caching mechanisms have been extensively used for increasing
the performance of Web technologies [I].

The rest of the paper is organized as follows. In Section 2 the proposed mech-
anism and its advantages, together with the related algorithms are presented.
Afterwards, the simulation experiments are described in Section 3, followed by
the related work in Section 4. Tlie paper is concluded in Section 5.

2 Index caching mechanism

2.1 Basics

In the common design approaches of structured overlay networks, e.g. based
on Distributed Hash Tables (DHTs) [2], queries are forwarded via intermediate
peers towards the destination peer that is responsible for the part of the DHT
which includes the globally unique identifier (GUID) characterizing the query.
It is only the destination peer(s) that Iias the required information to reply to
the query. Such design is suitable for evenly popular iteins since there is non-
ambiguous mapping of the resources to the system and the workload is evenly
distributed. Thus, in such designs it is necessary to follow the whole path before
it is possible to match the query.

The common core functionality provided by the majority of structured over-
lay networks could be described by the following basic operations:

1. The Routing operation that requires the construction of a routing table for
selecting the most "promising" neighbor t o forward the queries.

2. The Zndexing operation that constructs and updates the necessary distrib-
uted data structures for replying to queries.

3. The Maintenance operation that maintains the ideal network topology so
that the theoretical upper bounds for the communication cost in worst case
scenarios can be met.

Chord, Pczstry and Tapestry are exainples of structiired networlts t,liat orer
t,lie aforeineiitioned functioiiality. However, Oiilicroil [7] suggcsts nii a(lrIitioii;il
fuiiction, tliat OE cnching to olrer 11-ioi.c efiicieiit scrvices, tliotigli it is ~ ~ r o l ~ o s f i l
;i.: ; ~ i i o l) l ioii;il I ' i i i i (~ 1 icuii;ilil!, l'oi. s\.sI!~i~i.: t 1 c ~ ; i l i i i : n.ii 1 1 ~ r ~ ~ i i - i i ~ i i i ;) ~ iiil~. l) 0 1) 1 1 1 : i i I i,-

sc~iii.c:t,s. 'l'lie esl)loi(;ii.ic)ii 01' 1 Iio ; i t l c ~ c ~ i i ; i i ~ ~ i I (~s i~i i 01 ' i l i c . c . ; ~ (. l i i i i ; I ~ I I . (I i . i ! ! i - i i i I O I
. ' , . ,

2.2 Mechan i sm design

The rationale behind the caching mechanism is described as follows. Since peers
participate both in generating queries and routing them towards the destina-
tion, it may be advantageous t o reuse the information gained from the replies
they received from locally generated queries. Thus, peers may provide directly
the position of the requested resource instead of forwarding the query until it
reaches the final DHT destination. Moreover, if peers monitor the popularity of
forwarded requests, they could additionally consider caching the most popular
of tl-iem provided that they hold the necessary indexing information. A simple
mechanism t o develop such indexing knowledge is to modify the semantics of
the routing procedure. For popular requests, intermediate peers may consider
storing locally the incoming queries and generate identical ones (though origi-
nated a t the intermediate peer) and forward thein instead of the original queries.
The received replies can be used both to reply the stored pending queries and
to populate the local caclie with useful and popular iiiformation. However, the
gathered information nlay be used for a maximuin amount of time tTh that de-
pends on the peer uptime distribution [8]. In fact, tTh defines the maxiinum time
a cache entry can be used, thereby, providing a simple mechanism deal with tlie
high churn rate. Expired entries are removed froin the cache after the tTh time.

Cacher node Query step Reply step

0 - ------- Y

Skipped query step 'A

(a) Lookup steps for peer Qi. (b) Lookup steps for peer Q z .

Figure 1. Lookup operation using cache indices.

The proposed scheme is illustrated in Figure 1 using a Chord-like structured
iietnroi-li. 'I.'liei-e: at linic t l pees Qi ciucries Tor n sesouscc iittlcxecl a t peei- 11
(Figure l(a)). Assurne that peer I considers that the specific query is popu1a.r.
Then, instead of for.warding the query, peer I generates an icleiltical query timt
cvciiti.ially iii.i.i\.cs ;11 I I ~ C I . D. Pcc~. D r~l>li(:s t u]) (T ~ I . f , n.11ic11 110111 ~~ l><l i i l , e~ 111(1

lor;il fnrlic niirl provit!cs tlic i.cpl!r tn pccr (;)I. .~]~l?arclltl?., ~ C P I . QI mn'. ;ll?n
, . , . , ! , , . t r i ,..... -

I;;.'..,:.' , , I r2 f ! !0 :~ ' , : . . . , , , ; ,>:: , . .; , , , , , . , , . . . , . .

a t time t 2 , ~vitli t , < t 2 < / I + t Th (whei-e tTh is I I C t I i r c s !~~~~l~ l ! j ~ i i i ~ indica,t.iil:
t11i1,L 111~ C ~ I L ~ L L ! C L J I I L ~ I I I , ,a \ . i ~ i i t i L \ . ~ L ~ I 11:;11 l , , o ; ~ . : ~ : : i ; ~ , , i ~ c c I LJL t , 8 a ~ i ! ~ ~ . , i : . ,

Same item and peer I is in the path towards peer D. In that case peer I provides
the cached information t o peer Q2 immediately skipping the rest of the lookup
steps towards D (Figure l(b)). Furthermore, peer Q2 may update its local cache
if it considers the query popular. However, in the latter case it is important t o
consider the "aging" of the information as it is not directly provided by peer
"D", but from a cached index. Peer Q2 has t o set the lifetime of the entry in the
cache t o T;I, = TTh - (t2 - t ~) .

Two important factors drive the design mechanisms of caching. First, the
scalability of the solution can be only provided if the size of the information that
is additionally requested by each peer is constant. However, this constraint is not
necessarily a practical limitation since this mechanism is designed t o operate in
systems where a small portion of the resources is frequently requested. Thus, each
peer can locally decide wliich resources are popular by simply using a counter
and the elapsed time since the first accounted appearance to estimate the rate
of querying them and maintain the C most popular resources.

The second critical factor that has to be considered is the high churn rate
of the peers. Nonetheless, conditional reliability mechanisms [8] may reduce the
side-effects. Naturally, popular resources are being held by several peers. Assum-
ing that the responsible DHT nodes can provide back either the complete set of
these peers or an adequate subset of them, the intermediate peers have sufficient
information for locating a reliable peer that is still alive.

Figure 2. Abstract description of the cache structure.

The proposed cache structure is illustrated in Figure 2. Each row contains
information for a single advertised resource. The first field includes the key of
the resource. The second field contains the Expiration timer set t o the maximum
lifetime of the cache entry. As it has already been mentioned, t o set the value of
the expiration time the "age" of the index has t o be considered. This mechanism
assumes that also the indexing mechanism uses an expiration timer t o remove old
advertisements2. The third field is the Fkquency field, which is a local counter
that indicates how many times a query for that item has arrived on the particular
intermediate peer. The value of the counter is reset periodically and the Window
reset field Stores that time. Tlie fifth field incliides t,he list of collectcd Tndlce.s
aboiit [)Cers t1in.t posscs t,lic rc(liicsl.ctl rcsoiii.c.cs aiid iiiny I)o clirrclly (.oiit;i(:1.(~1.
Tlie siihsoqiiciit fielt1 coiit.aiiis 1 lic. list. of l . l i (1 I 'ei i t l i i i ,q r11icric.s Tor t.liis i.c,.~oiii.cc~.
Fiiiilllj., Llic ! \ I ~ ~ i h : c d liclcl iiiclic;~Lcs L I I L L L Llic ci~clic i~cl,l~icciiicii~ i~i~uii t l i i i i i1~1.s
c ~ ! ~ r t r v l i!ii.:: i . v . 1 i n I) ? r r , i i n ~ - r r ! frnc-, 1 1 1 ~ r ~ ~ : ~ r . l ~ , ~ . TTi>v:r~~.r~~. t l l r litt n f ,-rrt>,!ii>,v

Key

...

Window reset

...

Expiration

...

Frequency

...

Indices

...

Pending queries

...

Marked

...

queries for this resource is not empty and the deletion of the selected entry has
to be delayed until the reply will be received and the pending queries replied.

Further, an additional characteristic that may be successfully exploited to
increase the efficiency of the structured networks is the fact that peers are also
owners of resources. In cases where the requested resource is being hold locally
on the intermediate peer it can be safely provided to the requestor. It may be
additionally argued that instead of developing the index caching mechanism,
intermediate peers can provide the requested resources themselves. Neverthe-
less, this possibility is application depended and many factors (e.g. copyrights,
technical limitations, systein design) have to be considered. Moreover, if further
constraints apply (e.g. find a resource or service provider in the closest vicinity
to the requestor) this solution may not provide optimal performance.

2.3 Algorithms

Several cache replacement policies have been developed to fit to the requirements
of different problems (cf. least frequently used (LFU) [23], least recently used
(LRU) and LRU-K [19]). In fact, the replaceinent policy adopted for the indices
cache on each peer is a variation of the LFU algorithm, which is further enhanced
with timeouts on the maximum lifetime of each entry. The latter improvement
is mandatory for capturing the dynamics of P2P overlay networks. The pseudo-
code of the LFU variation is provided in Algorithm 2.1. If there is an entry with
0 popularity and no pendii-ig queries, then this eiltry is removed. Otherwise, the
least popular entry is retilrned3.

Algorithm 2.1: L F U - R ~ ~ ~ ~ c ~ ~ ~ ~ ~ (c a c h e , p e n d i n g Q u e r i e s)

found = cache.get(1)
for i t 2 to cache.size()

querylzst = pendingQueries.remove(i)
if (cache.get(i).popzllarity == 0 and queryList.isEmpty())

then { cache.remove(i) return (null)
eise if (f ound.popzllarity > cache.get(i).popu~arity and

(not cache.get(i).isMarked()))
then { found = cache.get(i)

return (found)
m

Tlie pseudo-cocle Sor lillirig a caclie ei1i;i.y willi iiiSoriiiatioii obtaiiicd Sroiii ;L
rt:l>ly is listed i i i i\lgorit,liiii 2.2. Ul~oii (l ic , i.ccol)(.ioii o r t,lic i.cil)ly ~ 1 1 1 tlic i.)c ' i i , l i i io,

(111ci,i(;s ;II,C; J'~ii~t11ci~ i~~:~)licc~l. A I U ~ V O \ ~ (! I ~ , il" I , I I C c . i i t : I i (; t,i~t.iy is iio(, i ~ i i ~ i ~ I i ~ , t l , i t , is l i l l t , , l
1 :

> . , \ 4 t i ; . ~ (i # . , ; I , ~ ~ , l ' ~ b , , , , . : : , .

[.':.,,,Il.. . i , . . , . . , . , I , , , 3 , ' 1 1 , , , : (i , - ; i i < . . , . , , , ! , , , ,, , , , I ! . . : 1 : < '

Algorithm 2.2: F I L L C A C H E E N T R Y (~ ~ C ~ ~ , entry, pendingQueries)

queryList = pendingQueries.remove(entry.ID)
for i + 1 to queryList.size()

I lookupMsg = queryList.remove(1)
lookupMsg.setDestination(lookupMsg.initiatw)

do lookupMsg.setSender(localGUID)
iookupMsg.setVa~ue(entry.value)
repl yMessage(1ookupMsg)

if (entry. isMarked())
then {cache.remove(entry)
else

entry.setValue(srcs) -

Algorithm 2.3: G E T C A C H E E N T R Y (C ~ C ~ ~ , id,pendingQueries, m s g)

entry = caclie.get(id)
if (entry == null)

i entry = createNewCacheEntry(id, null)
then cache.put(id, entry)

return (entry)
if (entry.hasEx@red() and (not entry. isMarked()))

i cache.remove(id)
then entry = createNewCacheEntry(id, nul l)

cache.pt(id , entry)
else

entry.updateüsage()
if (entry. frequency > F R E Q U E N C Y - T H R E S H O L D and

entry.getValue == null)
queryl is t = pendingQueries.get(id)
if (queryList.isEmpty())

then (then { lookupMsg = createLookupMessage(id)
f orwardMessage(1ookupMsg)

queryList.add(msg)
if (cache.size() - marked >= M A X - C A C H E - S I Z E)

removed = L FU-Replacement(cache)
queryl is t = pendingQueries.remove(~emoved.~D)

then [if (queryList.isEmpty)
then {cache.remove(remoued)
else
~ . c i r , o i , c ~ r l . ~ i r i ~ . I ~ . () !

l . l % t t l l . l l [~ - i i I l . ! /)

m7. . . - . . .

the query is higher than a threshold then, the message is stored as a pending
query and a new lookup message is being created for tlie queried GUID, if this
is the first pending message4. Moreover, if the size of the cache has exceeded its
maximum value, the least frequently used entry is either removed if no pending
queries are present or is marked for deletion a t the arrival of the reply.

3 Evaluation

3.1 E x p e r i m e n t s descr ip t ion

The goal of tlie simulation experiments is t o evaluate the performance improve-
inent of the Chord network using the proposed indices cache meclianism and
conipare to the original network.

The simulation experiments have been performed using a general purpose
discrete event simulator for P2P overlay networks [G]. The population of the
peers is consisted of 4096 peers distributed randomly over a Cliord ring with key
range of 65536. Peers and resources share tlie saine key range. Each experirnent
lasts approxiniately 30 minutes of simulation time. Peers randomly select a re-
source to query every 20 seconds (asynchronously from each other). The process
is repeated for 80 times resulting t o a total number of approximately 327000
queries.

Peers start requesting tlie resources after a certain stabilization period. The
probability distribution of the resource selection follows a lognormal distribu-
tion with parameters p = 0.52 and U = 2.9 following the guidelines in [4]. The
selection of the lognormal distribution over the Zipfian distribution is motivated
by the greater challenge of the former since the popularity of the resources is
more widely distributed. The implemented lognormal generator produces ran-
domly selected GUIDs limited to the aforementioned key range. On average,
approximately 4000 - 4100 different keys are generated on each run.

Figure 3 displays a representative cumulative distribution of the resource
popularity, where the resources are sorted from the most to the least popular.
R o m this figure, it can be concluded the first 25 most popular resources con-
tribute t o approximately 80% of the query load. Thus, an equivalently small
cache size is adequate t o store them and achieve high performance, provided
that the popularity identification algorithm operates correctly. Nevertheless, in
real experiments, the cache size may have t o be bigger t o capture effectively the
popular resources since the key range may be considerably larger.

Figure 3. Cumulative resource popularity distribution.

of the original Chord network, as a function of the expiration timeout. Two
different experiment I-iave Ileen selectecl:

1. Experiment A, where the F R E Q U E N C Y - T H R E S H O L D is 5, tlie max-
inium caclie size is set to 80 and tlie frequency counter is reset every 200
seconds.

2. Experiment B, where the FREQUENCY-THRESHOLD is 3, the maxi-
mum cache size is set to 300 and the frequency counter is reset every 100
seconds.

We can observe that the total communication load for query routing can be
considerably reduced using the caching mechanism down to 50% of the original
load.

Exprimenl A -
Expctimnl B .--*-- ,

ici.~u Au1 IClJl) 111;: L U LIiC C(I.ICl'lCb 13 gCLL111g i l l U I C C l C i l l Y UibL1IIJULCCl. i ' I g U I C J \ i L)

displays tlie load balance in tlie original Cliord network, while Figure 5(b) shows
tlic rilicry replving in t,he cnche-enhniiccrl Chnid iiet~irork. It shoiild he iiotcd

that the vertical axis is logarithmically scaled. Moreover, many peers reply with
cached values which are not considered in this figure.

l 'm 01i11) Pirr Gl lll>

(a) Original Cliord network. (b) Cache-enhanced Chord network.

Figure 5. Load distribution for replying queries.

4 Related work

OceanStore [ll] is a P2P storage system built 011 top of Tapestry [29] to take
advantage of its scalahle lookup capabilities. However, OceanStore, employs an
additional probabilistic mechanism based on attenuated Blooin Filters [3], re-
sulting to a hybrid solution for improving Tapestry's routing performance when
the popularity of the queries is not uniform [22]. In the context of the OceanStore
algorithm, the first Bloom filter (located a t position '0') is a record of the objects
contained locally on the current node. The i th Bloom filter is the union of all
of the Bloom filters for all of the nodes a distance i through any path from the
current node. An attenuated Bloom filter is stored for each directed edge in the
network. A query is routed along the edge whose filter indicates the presence of
the object a t the smallest distance. When the fast probabilistic algorithm fails to
provide the requested results, OceanStore activates the Tapestry routing mecha-
nism t o forward the request to the final destination. However, the routing cost is
increased when Bloom Filters provide false replies. Moreover, the maintenance
of two different overlay networks increases considerably the operational cost of
the system (both overlays are based on proactive mechanisms).

I-??.l~i.itl PIER [1,I] is nii n\~cxi.lny iiet\voi.lc tlo-;iyic~tl 1 0 iriil)iovo tlict ~ ~ ~ ~ ~ ~ [O I ~ I I I ; I I I ~ ~ (~

PIER 1101 \ \ ! I I (> I I 1c~oIii11~ 1113 I'OI. !) O I) I I I ; I I , I . ~ + o I I I (~ (~ s . I t i.5 (. O I I I ~) I I < I Y I ol' IIVO

(: ~) I I I ~ ~ I I P I I ~ S. (i) ; \ I) 1 T l 1 i ; i l ' (~ (~ v - ! ~ : ~ ~ (~ l C I I I I I , , I I ; I I I (> ~ \ I . (> I . I < ~ ; \ I I , I [i i) . ;I - \ I . I \ (. I 1 1 , (~ 1
Cont,ent Adrircssnhle Net,mork (CAN) [211 nrlir~i.c oiily lJll 1.n l'rc~.s pnrt ic,i!xii i 3 .

l .<., 8 . . , . I , '

The search algorithm uses flooding techniques for locating popular items, and
structured (DHT) search techniques for locating rare items.

Caching mechanisms have been also utilized in P2P storage systems such as
PAST [25], which is deployed on top of Pastry, a structured overlay network.
The goals of the caching mechanism in PAST are (i) to minimize client access
latencies, (ii) t o maximize the query throughput and (iii) to balance the query
load in the system. However, the utilized caching management system deals with
the stored content and not with the indexing mechanism, which is the focus of
this paper.

In addition, the use of caching has been investigated for the case of unstruc-
tured P2P overlay networks. Markatos [17] exploits network locality in unstruc-
tured networks (i.e. Gnutella) using caching mechanisms. Peers cache received
replies and provide thein to other peers sending siniilar queries instead of fiirther
forwarding the queries. Therefore, the overall traffic is reduced. Similarly, Liu et
al. [12] iiivestigate the reduced traffic and response time when cacliiiig the re-
sults, using simulation based experiments. Boykin et al. [4] study the statistical
properties of queries in Gnutella-like systems and provide analytical results on
query cache performance.

5 Conclusions

While caching has been extensively used in Web technologies and in unstructured
P2P overlay networks, it has not received sufficient attention for structured P2P
network approaches. The adequacy of caching popular indices in intermediate
peers along the paths towards the responsible indexing peer(s) for structured
networks is demonstrated in this paper.

The proposed caching mechanism reduces significantly the routing cost in
structured P2P networks. Compared t o alternative proposals, the achieved per-
formance improvement is combined with a set of attractive features. Since the
mechanism is locally applied t o peers it can be incrementally deployed. Moreover,
there is no need to introduce multiple specialized overlay networks operating in
parallel or additional protocols t o update the cached information.

Though this work identifies the critical parameters that have t o be considered
for the caching problem, there are several issues that can be further developed.
Selecting the optimal values for the critical parameters can improve even further
the observed performance. Moreover, a mechanism t o adapt the values of the
parameters to the dynamics of the network has significant practical and theo-
retical interest. Finally, different caclie operation algoritlii-ns iimy providc better
rcsiilts in ccitnin srciiniios. T h c prnhlciii rr~qiiiics ~ i i i ~ l i c i . :~iinlytirnl iiivcsi i!rntinii
I , , , , , , , l , -]> l ;~ ,~ , , l l > < , t l < 3] , , I < , ! T , , ~ , ~ , , \ (~ : .

This work has been performed partially in tlie context of the project Preniiuiii
"Preis- und Erlsmodelle im Internet - Uiiiset~ziing iiiid 3lnrl~tchn.nccn" whe1.c TI!

Darmstadt has been funded by t h e German Bundesministerium fuer Bildung und
Forschung (BMBF).

References

1. Martin Arlitt, Rich F'riedrich, and Tai Jin. Performance evaluation of Web proxy
cache replacement policies. Performance Evaluation, 39(1-4):149-164, 2000.

2. Hari Balakrishnan, M. F'rans Kaashoek, David Karger, Robert Morris, and Ion
Stoica. Looking up Data in P2P Systems. Communications of the ACM, 46(2):43-
48, 2003.

3. Burton H. Bloom. Spaceltime trade-offs in hash coding with allowable errors.
Communicatiom of the ACM, 13(7):422-426, 1970.

4. P. Oscar Boykin, Jesse S.A. Bridgewater, and Vwani Roycliowdhury. Statistical
Properties of Query Strings. Preprint, Ja.nuary 2004.

5. N.G. De Bruijn. A conibinatorial problein. In Proceedings o j th.e Koninklije Ned-
erlandse Academie van Wetenshapen, pages 758-764, 1946.

6. Vasilios Darlagiannis, Andreas Mauthe, Nicolas Liebau, snd Ralf Steinmetz. An
Adaptable, Role-based Simulator for P2P Networks. In Pmceedings of the Inter-
national Conference on Modeling, Simulation und Visualization Methocis, pages
52-59, June 2004.

7. Vasilios Darlagiannis, Andreas Mauthe, and Ralf Steinmetz. Overlay Design Mech-
anisms for Heterogeneous, Large Scale, Dynamic P2P Systems. Journal of Net-
w o r h und System Management, 12(3):371-395, 2004.

8. Vasilios Darlagiannis, Andreas Mauthe, and Ralf Steinmetz. Optimizing Overlay
Network Stability using Burn-In Methods. Submitted for publication, March 2005.

9. Krishna P. Gummadi, Richard J . Dunn, Stefan Saroiu, Steven D. Gribble,
Henry M. Levy, and John Zahorjan. Measurement, Modeling, and Analysis of
Peer-to-Peer File Sharing Workload. In Proceedings of 19th ACM Symposium on
Operating Systems Principles, October 2003.

10. Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott
Shenker, and Ion Stoica. Querying the Internet with PIER. In Proceedings of
VLDB'OS, September 2003.

11. John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Chris
Wells, and Ben Zhao. OceanStore: an Architecture for Global-scale Persistent
Storage. In Proceedings of the 9th International Conference on Architectuml Sup-
port for Pmgramming Languages und Operating Systems, pages 19C-201. ACM
Press, 2000.

12. Yunhao Liu, Li Xiao, and Lionel M. Ni. Building a Scalable Bipartite P2P Over-
lay Network. In Proceedings of the 18th International Parallel und Dwtributed
Processing Symposium, April 2004.

13. Dmitri 1,ogiiinov. A i i i u I<iimar, Vivrk Rni, antl S;>i Cnncsli. Cirapli-Theoi.c,tic
:\ii:il>.sis oI' Stiiiciitlt~il I ' C ' C I . - ~ O - ~ ' (> (~ I . S~~~I,III..: I ? ~ ~ ~ i i i i : ; D ~ + (; I I I (. I , s ; I I I I I I ; ' i t i i l~ I':<,
:.ilit,,:,.c,, ! T I / ' : , , ,C rr!,;;,:, V (\ / ' l . / T / (, ' (' () 1 , 1 1 , / ~ / 1 :, , , ",'l-, I O I i , \ , I I , X I : I 1'1'11:;

, i . l ; < t c # i ~ ' I I I , I : ~ I . L I C , . ; : , % < . ! I I I ! I : !,:.tl~. ~ * , I I , ; ;<; ,C , I . , , L , . i < , . t [; ! I . \ I , i i t ! I (I , i < 1 1 : . ! ! , # , ' , I

Vor ; I l l \ . l ~ i . i , l 1'21' ,?~\;?rr!~ I I I I ' I ; I \ I I ~ I I ~ ~ I I I , , . 111 I ': , , , , ,/,,),;. 01 . / ' I (/ / I , 1.11, tv,,!!; , , ,m,~I

16. Qin Lv, Sylvia Ratnasamy, and Scott Shenker. Can Heterogeneity Make Gnutella
Scalable? In Pmceedings of the Ist International Worlcshop on Peer-to-Peer Sys-
t e m (IPTPSO2), March 2002.

17. Evangelos P. Markatos. Tracing a large-scale Peer-to-Peer System: an hour in the
life of Gnutella. In Pmceedings of the 2nd IEEE/ACM International Symposium
on Cluster Computing und Grid, pages 65-74, May 2002.

18. P. Maymounkov and D. Mazieres. Kadernlia: A Peer-to-peer Information System
Based on the XOR metric. In Pmceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPSO2), 2002.

19. Elizabeth O'Neil, Patrick O'Neil, and Gerhard Weikum. The LRU-K Page Re-
placement Algorithrn For Database Disk Buffering. In Proceedings o j the 1993
ACM SIGMOD International Conference on Management of data, pages 297-306,
1993.

20. M. Portrnann, P. Sookavatana, S. Ardon, ancl A. Seneviratne. Tlie cost of Peer
discovery and searching in the Gnutella peer-to-peer file sharing protocol. In Pro-
ceedzngs of the International Conference on Networh, pages 263-265, 2001.

21. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.
A scalable Content Addresable Network. In Proceedings of the 2001 Conference
on Applications, Technologies, Architectures, und Protocols for Computer Commu-
nications, pages 161-172. ACM Press, 2001.

22. S. Rhea and J. Kubiatowicz. Probabilistic location and routing. In Pmceedings
of the 2lst Annual Joint Conference of the IEEE Computer und Communications
Societies, June 2002.

23. John Robinson and Murthy Devarakonda. Data cache rnanagement using frequency
based replacernent. In Pmceedings of the 1990 ACM SIGMETRICS conference on
Measurement und modeling of computer systems, pages 134-142, 1990.

24. Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systerns. In IFIP/ACM International
Conference on Distributed Systems Platfonns (Mzddleware), pages 329-350, 2001.

25. Antony I. T . Rowstron and Peter Druschel. Storage managernent and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In Symposium on
Operating Systems Principles, pages 188-201, 2001.

26. Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A Measurement Study
of Peer-to-Peer File Sharing Systems. In Pmceedings of Multimedia Computing und
Networking 2002 (MMCN '02), 2002.

27. Ion Stoica, Robert Morris, David Liben-Nowell, David Karger, M. F'rans Kaashoek,
F'rank Dabek, and Hari Balakrishnan. Chord: A scalable Peer-to-Peer Lookup
Service for Internet Applications. IEEE IPransactions on Networking, 11(1):17-32,
February 2003.

28. Bernard Traversat, Ahkil Arora, Mohamed Abdelaziz, Mike Duigou, Carl
Haywood, Jean-Christophe Hugly, Eric Pouyoul, and Bill Yeager. Project
JXTA 2.0 Super-Peer Virtual Network. littp://www.jxta.org/project/~v~v~v/docs/
.TST;\?.nprotncolsl .pdf. TYfny 2003.

. > < I . \ ' ;.'I , ; , , , 1 : , , , 1 1 , , . , . , , , I , , , .,.., , ' , . ; I ' ; . . ' L ' , , ; I 1 : ' , < . . : . . , . , I , l . . .

, , , : . , i . . , . . , I ' . , I . .'L ! . ' . ' . . / $, . . t . .

ll~~~~lu~~l~l~~lll. l/~,'/i/; . J O i l / ~ / i . l i . ~ 011 s c / c c l (~ , i . l i , Cl., / ; I 0 ~ , ~ 1 1 ~ ! ~ ~ ~ ~ , 1 ~ < , 1 1 ; < f l ; 1 ., 2 2 (1) , I 1 .-,L;.

200 1.

