OCHSEO5]

Vasilios Darlagiannis, Nicolas Liebau, Oliver Heckmann, Andreas Mauthe, Ralf Steinmetz:

Caching Indices for Efficient Lookup in Structured
International Workshop on Agents and Peer-to-Peer Computing

Overlay Networks; Fourth
. Springer, Juli 2005, S.

Caching Indices for Efficient Lookup in
Structured Overlay Networks

Vasilios Darlagiannis’, Nicolas Liebaut, Oliver Heckmann?,

Andreas Mauthet, and Ralf Steinmetz!

T Multimedia Kommunikation (KOM), Darmstadt University of Technology,

Merckstr. 25, 64293 Darmstadt, Germany,
[bdarla, liebau, heckmann, steinmetz]@kom.tu-darms

tadt.de

! Lancaster University, Computing Department, Lancaster, LA1 4YR, UK

andreas@comp.lancs.ac.uk

Abstract Structured overlay networks for Peer-to-Peer systems (e.g.

based on Distributed Hash Tables) use proactive mechanisms

to provide

efficient indexing functionality for advertised resources. The majority of
their occurrences in proposed systems (e.g. Chord, Pastry) provide upper

bounds (logarithmic complexity with respect to the size of the

graph rep-

resenting the network) on the communication cost in worst case scenarios
and their performance is superior compared to unstructured alternatives.
However, in particular (empirically observed) scenarios where the pop-
ularity of the advertised resources follows a distribution considerably
different from the uniform distribution, structured P2P networks may
perform inferiorly compared to well designed unstructured P2P networks
that exploit effectively the resource popularity distribution. In order to
address this issue, a very simple caching mechanism is suggested in this
paper that preserves the theoretical superiority of structured overlay net-

works regardless of the popularity of the advertised resources.

Moreover,

the churn effect observed in Peer-to-Peer systems is considered. The pro-

posed mechanism is evaluated using simulation experiments.

1 Introduction

Structured overlay networks for Peer-to-Peer (P2P) systems,

e.g. Chord [27],

Pastry [24], Tapestry [29] and Omicron (7], use proactive mechanisms to provide
efficient indexing functionality for advertised resources. The majority of their
implementations provide theoretical upper bounds on the communication cost
in worst case scenarios, assuming that the maintenance of the topology heals the

divergence (caused by the dynamic participation of the peers)

from the ”ideal”

network structure. Modeling the topology of a P2P network with a graph, the

maximum distance between any two nodes is equal to the diame
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constructed clusters of peers, e.g. in the case of the two-tier architecture of
Omicron (Do = O(log(N/!}), where [ is the average population of each cluster).
However, a more useful metric to evaluate the communication cost for routing
messages in structured overlay networks is the average inter-peer distance. The
average cost for graphs such as the one representing Chord is ppgy = Don/2
[27]. On the other hand, the average inter-peer distance for networks such as
Omicron based on de Bruijn graphs [5] is pp, ~ Do — (k — 1)7!, where k
is the degree of the nodes {13]. However, since the graph nodes in Omicron
represent clusters of peers, the actual average inter-peer distance is smaller than
the average inter-peer distance in Chord.

Structured overlay networks have been designed mainly to overcome the in-
trinsic scalability issue of flat and unstructured networks, such as Gnutella v0.4
[20]. However, for several reasons, structured overlay networks have not been uti-
lized in widely-deployed P2P systems (with the exception of the Kademlia net-
work [18]). Instead, system designers opt for hierarchical or hybrid approaches
where a subset of peers (usually termed as super-peers, or ultra-peers) is respon-
sible for indexing and finding the advertised resources. Moreover, a number of
mechanisms have been suggested to improve the performance of unstructured
networks, e.g. expanding rings or multiple random walks [16]. The success of
these mechanisms is based on the assumption of uneven popularity of the avail-
able resources. In fact, this assumption is validated by a number of empirical
observations of file sharing systems (cf. [26], [9] and [4]) where the popularity of
the resources is reported. While there is a disagreement on the exact distribution
that describes the popularity of the resources (Zipf, lognormal, etc.), it can be
safely concluded that it is not uniform.

Therefore, an interesting debate has arisen lately on whether structured
overlay networks can perform efficiently if non-uniform popularity of resources
is observed [15]. Apparently, structured networks perform equally well in any
lookup request, thus, providing upper bounds, though not exploiting effectively
the query frequency. Some hybrid approaches have been suggested to address
this issue, such as hybrid PIER [14] or OceanStore [22]. Though, in these hy-
brid approaches the formation of two separate overlay networks is suggested, a
structured one and an unstructured one to deal with unpopular and popular
queries, respectively. The shortcomings and weaknesses of these solutions are
mainly (i) the increased complexity, (ii) the additional maintenance cost that is
out-of-band, (iii) the lack of adaptability to both uniform and non-uniform dis-
tributions and (iv) the increased delay when the initial overlay network selection
for searching the resource fails and the fall-back alternative must be lollowed.

The aforementioned concerns are taken into account in the solution inves-
tigated in this paper. A simple though efficient mechanism is suggested that
capitalizes on the adequateness of caching resources following non-uniform dis-
tributions and the higher interest of the P2P users to a relatively small subset
of the available resonrers T oxtewds e capalilities of Crdne Dot
works without any additional maintenanes effort and very low additho st
cost compared Lo the original algoritiuns of struciured networks in wotsu casc



scenarios where the cache is not properly updated. No extension of their sig-
nalling protocols is required, thus, avoiding increasing further the complexity of
their operation!. Merely, we invest on existing information collected through the
normal network operation to improve the routing performance. The observed
churn rate of the P2P networks, which is the most critical factor (together with
the popularity distribution) is considered in our simulation experiments. While
caching methods have been proposed for unstructured or hybrid overlay net-
works (cf. [17], [12]), they lack investigation on the structured counterparts.
Moreover, several caching mechanisms have been extensively used for increasing
the performance of Web technologies [1].

The rest of the paper is organized as follows. In Section 2 the proposed mech-
anism and its advantages, together with the related algorithms are presented.
Afterwards, the simulation experiments are described in Section 3, followed by
the related work in Section 4. The paper is concluded in Section 5.

2 Index caching mechanism

2.1 Basics

In the common design approaches of structured overlay networks, e.g. based
on Distributed Hash Tables (DHTs) [2], queries are forwarded via intermediate
peers towards the destination peer that is responsible for the part of the DHT
which includes the globally unique identifier (GUID) characterizing the query.
It is only the destination peer(s) that has the required information to reply to
the query. Such design is suitable for evenly popular items since there is non-
ambiguous mapping of the resources to the system and the workload is evenly
distributed. Thus, in such designs it is necessary to follow the whole path before
it is possible to match the query.

The common core functionality provided by the majority of structured over-
lay networks could be described by the following basic operations:

1. The Routing operation that requires the construction of a routing table for
selecting the most ” promising” neighbor to forward the queries.

2. The Indexing operation that constructs and updates the necessary distrib-
uted data structures for replying to queries.

3. The Maintenance operation that maintains the ideal network topology so
that the theoretical upper bounds for the communication cost in worst case
scenarios can be met.

Chord, Pastry and Tapestry are examples of structured networks that offer
the aforementioned functionality. However, Owicron [7] suggests an additional
function, that of caching to offer more efficient services, though it is proposed
as an optional functionality for svstems dealing with non-uniformlyv populis ve-
sources, The exploitation ol the adequate desien of the cachine mechani=m o
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2.2 Mechanism design

The rationale behind the caching mechanism is described as follows. Since peers
participate both in generating queries and routing them towards the destina-
tion, it may be advantageous to reuse the information gained from the replies
they received from locally generated queries. Thus, peers may provide directly
the position of the requested resource instead of forwarding the query until it
reaches the final DHT destination. Moreover, if peers monitor the popularity of
forwarded requests, they could additionally consider caching the most popular
of them provided that they hold the necessary indexing information. A simple
mechanism to develop such indexing knowledge is to modify the semantics of
the routing procedure. For popular requests, intermediate peers may consider
storing locally the incoming queries and generate identical ones (though origi-
nated at the intermediate peer) and forward them instead of the original queries.
The received replies can be used both to reply the stored pending queries and
to populate the local cache with useful and popular information. However, the
gathered information may be used for a maximum amount of time ¢7, that de-
pends on the peer uptime distribution [8]. In fact, ¢t7), defines the maximum time
a cache entry can be used, thereby, providing a simple mechanism deal with the
high churn rate. Expired entries are removed from the cache after the tr), time.

Cacher node Query step Reply step SkiPP‘?q quety step
© P e G - . ‘A
(a) Lookup steps for peer Q. (b) Lookup steps for peer Q2.

Figure 1. Lookup operation using cache indices.

The proposed scheme is illustrated in Figure 1 using a Chord-like structured
network. There, at time ¢; peer (@1 queries for a resource indexed at peer D
(Figure 1(a)). Assume that peer I considers that the specific query is popular.
Then, instead of forwarding the query, peer I generates an identical query that
eventually arrives at pecr 12, Peer D replies to peer [, which both updates the
local cache and provides the reply to peer Q). Apparently, peer Q) may alen
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same item and peer [ is in the path towards peer D. In that case peer I provides
the cached information to peer Qo immediately skipping the rest of the lookup
steps towards D (Figure 1(b)). Furthermore, peer @2 may update its local cache
if it considers the query popular. However, in the latter case it is important to
consider the "aging” of the information as it is not directly provided by peer
D7, but from a cached index. Peer @5 has to set the lifetime of the entry in the
cache to Tq"'h = Trp — (t2 — t1).

Two important factors drive the design mechanisms of caching. First, the
scalability of the solution can be only provided if the size of the information that
is additionally requested by each peer is constant. However, this constraint is not
necessarily a practical limitation since this mechanism is designed to operate in
systems where a small portion of the resources is frequently requested. Thus, each
peer can locally decide which resources are popular by simply using a counter
and the elapsed time since the first accounted appearance to estimate the rate
of querying them and maintain the ¢ most popular resources.

The second critical factor that has to be considered is the high churn rate
of the peers. Nonetheless, conditional reliability mechanisms [8] may reduce the
side-effects. Naturally, popular resources are being held by several peers. Assum-
ing that the responsible DHT nodes can provide back either the complete set of
these peers or an adequate subset of them, the intermediate peers have sufficient
information for locating a reliable peer that is still alive.

} .

The proposed cache structure is illustrated in Figure 2. Each row contains
information for a single advertised resource. The first field includes the key of
the resource. The second field contains the Ezpiration timer set to the maximum
lifetime of the cache entry. As it has already been mentioned, to set the value of
the expiration time the "age” of the index has to be considered. This mechanism
assumes that also the indexing mechanism uses an expiration timer to remove old
advertisements?. The third field is the Frequency field, which is a local counter
that indicates how many times a query for that item has arrived on the particular
intermediate peer. The value of the counter is reset periodically and the Window
reset field stores that time. The fifth field includes the list of collected Indices
about peers that posses the requested resonrces and may be directly contacted.

Key| Expiration| Frequency|Window reset|Indices|Pending queries| Marked

Figure 2. Abstract description of the cache structure.

The subsequent field contains the list of the Pending queries for this resource.
Finally, the Marked ficld indicates that thice cache replacemnent algoritlun has
seloctod this enfrye to he removed framy the cacke, TTowever, the Tiet af pendine
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queries for this resource is not empty and the deletion of the selected entry has
to be delayed until the reply will be received and the pending queries replied.

Further, an additional characteristic that may be successfully exploited to
increase the efficiency of the structured networks is the fact that peers are also
owners of resources. In cases where the requested resource is being hold locally
on the intermediate peer it can be safely provided to the requestor. It may be
additionally argued that instead of developing the index caching mechanism,
intermediate peers can provide the requested resources themselves. Neverthe-
less, this possibility is application depended and many factors (e.g. copyrights,
technical limitations, system design) have to be considered. Moreover, if further
constraints apply (e.g. find a resource or service provider in the closest vicinity
to the requestor) this solution may not provide optimal performance.

2.3 Algorithms

Several cache replacement policies have been developed to fit to the requirements
of different problems (cf. least frequently used (LFU) [23], least recently used
(LRU) and LRU-K [19]). In fact, the replacement policy adopted for the indices
cache on each peer is a variation of the LF'U algorithm, which is further enhanced
with timeouts on the maximum lifetime of each entry. The latter improvement
is mandatory for capturing the dynamics of P2P overlay networks. The pseudo-
code of the LFU variation is provided in Algorithm 2.1. If there is an entry with
0 popularity and no pending queries, then this entry is removed. Otherwise, the
least popular entry is returned3.

Algorithm 2.1: LFU_REPLACEMENT(cache, pendingQueries)

found = cache.get(1)
for i «— 2 to cache.size()
queryList = pendingQueries.remove(i)

if (cache.get(i).popularity == 0 and queryList.isEmpty())
cache.remove(i)
do then return (null)

else if ( found.popularity > cache.get(i).popularity and
( not cache.get(i).isMarked()))
then {found = cache.get(i)
return (found)

The pseudo-code for filling a cache entry with information obtained from a
reply is listed in Algorithm 2.2, Upon the reception of the reply all the pending
queries are further replied. Morcover, il the cachie entry is nol marked, it s illed
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Algorithm 2.2: FILLCACHEENTRY (cache, entry, pendingQueries)

queryList = pendingQueries.remove(entry.ID)
for i — 1 to queryList.size()
lookupM sg = queryList.remove(1)
lookupM sg.set Destination(lookupM sg.initiator)
do { lookupM sg.setSender(localGUID)
lookupM sg.setV alue(entry.value)
replyM essage(lookupM sg)
if (entry.isMarked())
then {cache.remove(entry)
else
entry.setValue(srcs)

Algorithm 2.3: GETCACHEENTRY (cache, id, pendingQueries, msg)

entry = cache.get(id)
if (entry == null)
entry = createNewCacheEntry(id, null)
then {cache.put(id, entry)
return (entry)
if (entry.hasEzxpired() and ( not entry.isMarked()))
cache.remove(id)
then {entry = createNewCache Entry(id, null)
cache.put(id, entry)
else
entry.updatel sage()
if (entry. frequency > FREQUENCY _THRESHOLD and
entry.getValue == null)
( queryList = pendingQueries.get(id)
if (queryList.isEmpty())
then then lookupM sqg = createLookupM essage(id)
forwardM essage(lookupM sg)
\ queryList.add(msg)
if (cache.size() — marked >= MAX_ CACHE_SIZE)
( removed = LFU _Replacement(cache)
queryList = pendingQueries.remove(removed.I D)
if (queryList.isEmpty)
then {cache.remove(remoued)
else
removedanark()
veturn (enfry)

then T




the query is higher than a threshold then, the message is stored as a pending
query and a new lookup message is being created for the queried GUID, if this
is the first pending message?. Moreover, if the size of the cache has exceeded its
maximum value, the least frequently used entry is either removed if no pending
queries are present or is marked for deletion at the arrival of the reply.

3 Evaluation

3.1 Experiments description

The goal of the simulation experiments is to evaluate the performance improve-
ment of the Chord network using the proposed indices cache mechanism and
compare to the original network.

The simulation experiments have been performed using a general purpose
discrete event simulator for P2P overlay networks [6]. The population of the
peers is consisted of 4096 peers distributed randomly over a Chord ring with key
range of 65536. Peers and resources share the same key range. Each experiment
lasts approximately 30 minutes of simulation time. Peers randomly select a re-
source to query every 20 seconds (asynchronously from each other). The process
is repeated for 80 times resulting to a total number of approximately 327000
queries.

Peers start requesting the resources after a certain stabilization period. The
probability distribution of the resource selection follows a lognormal distribu-
tion with parameters ;2 = 0.82 and ¢ = 2.9 following the guidelines in [4]. The
selection of the lognormal distribution over the Zipfian distribution is motivated
by the greater challenge of the former since the popularity of the resources is
more widely distributed. The implemented lognormal generator produces ran-
domly selected GUIDs limited to the aforementioned key range. On average,
approximately 4000 — 4100 different keys are generated on each run.

Figure 3 displays a representative cumulative distribution of the resource
popularity, where the resources are sorted from the most to the least popular.
From this figure, it can be concluded the first 25 most popular resources con-
tribute to approximately 80% of the query load. Thus, an equivalently small
cache size is adequate to store them and achieve high performance, provided
that the popularity identification algorithm operates correctly. Nevertheless, in
real experiments, the cache size may have to be bigger to capture effectively the
popular resources since the key range may be considerably larger.

3.2 Results
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Figure 3. Cumulative resource popularity distribution.

of the original Chord network, as a function of the expiration timeout. Two
different experiment have been selected:

1. Experiment A, where the FREQUENCY_THRESHOLD is 5, the max-
imum cache size is set to 80 and the frequency counter is reset every 200
seconds.

2. Experiment B, where the FREQUENCY _THRESHQOLD is 3, the maxi-
mum cache size is set to 300 and the frequency counter is reset every 100
seconds.

We can observe that the total communication load for query routing can be
considerably reduced using the caching mechanism down to 50% of the original
load.

% of Chord routing communication cost

Experiment A ——
Experiment B +-m-
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that the vertical axis is logarithmically scaled. Moreover, many peers reply with
cached values which are not considered in this figure.
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(a) Original Chord network. (b) Cache-enhanced Chord network.

Figure 5. Load distribution for replying queries.

4 Related work

OceanStore [11] is a P2P storage system built on top of Tapestry [29] to take
advantage of its scalable lookup capabilities. However, OceanStore, employs an
additional probabilistic mechanism based on attenuated Bloom Filters [3], re-
sulting to a hybrid solution for improving Tapestry’s routing performance when
the popularity of the queries is not uniform [22]. In the context of the OceanStore
algorithm, the first Bloom filter (located at position ’0’) is a record of the objects
contained locally on the current node. The ith Bloom filter is the union of all
of the Bloom filters for all of the nodes a distance ¢ through any path from the
current node. An attenuated Bloom filter is stored for each directed edge in the
network. A query is routed along the edge whose filter indicates the presence of
the object at the smallest distance. When the fast probabilistic algorithm fails to
provide the requested results, OceanStore activates the Tapestry routing mecha-
nism to forward the request to the final destination. However, the routing cost is
increased when Bloom Filters provide false replies. Moreover, the maintenance
of two different overlay networks increases considerably the operational cost of
the system (both overlays are based on proactive mechanisms).

Hybrid PIER [11] is an overlay network designed to improve the performmnce
of PIER [101 when looking up for popnlar resourees. It is composed o bwa
components, (i) an UltralPeer-based Cundella network™ and (i), o stroctnred
Content Addressable Network (CAN) [21] where only UllraPeers participate,
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The search algorithm uses flooding techniques for locating popular items, and
structured (DHT) search techniques for locating rare items.

Caching mechanisms have been also utilized in P2P storage systems such as
PAST [25], which is deployed on top of Pastry, a structured overlay network.
The goals of the caching mechanism in PAST are (i) to minimize client access
latencies, (ii) to maximize the query throughput and (iii) to balance the query
load in the system. However, the utilized caching management system deals with
the stored content and not with the indexing mechanism, which is the focus of
this paper.

In addition, the use of caching has been investigated for the case of unstruc-
tured P2P overlay networks. Markatos [17] exploits network locality in unstruc-
tured networks (i.e. Gnutella) using caching mechanisms. Peers cache received
replies and provide them to other peers sending similar queries instead of further
forwarding the queries. Therefore, the overall traffic is reduced. Similarly, Liu et
al. [12] investigate the reduced traffic and response time when caching the re-
sults, using simulation based experiments. Boykin et al. [4] study the statistical
properties of queries in Gnutella-like systems and provide analytical results on
query cache performance.

5 Conclusions

While caching has been extensively used in Web technologies and in unstructured
P2P overlay networks, it has not received sufficient attention for structured P2P
network approaches. The adequacy of caching popular indices in intermediate
peers along the paths towards the responsible indexing peer(s) for structured
networks is demonstrated in this paper.

The proposed caching mechanism reduces significantly the routing cost in
structured P2P networks. Compared to alternative proposals, the achieved per-
formance improvement is combined with a set of attractive features. Since the
mechanism is locally applied to peers it can be incrementally deployed. Moreover,
there is no need to introduce multiple specialized overlay networks operating in
parallel or additional protocols to update the cached information.

Though this work identifies the critical parameters that have to be considered
for the caching problem, there are several issues that can be further developed.
Selecting the optimal values for the critical parameters can improve even further
the observed performance. Moreover, a mechanism to adapt the values of the
parameters to the dynamics of the network has significant practical and theo-
retical interest. Finally, different cache operation algorithms may provide better
resnlts in certain seenarios. The problem requires Mmirther analvtical investieation
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