
(DMLSt041 Vasilios Darlagiannis, Andreas Mauthe, Nicolas Liebau, Ralf Steinmetz; An Adaptable, Role-
based Simulator for- P2P Networks; T h e 2004 International C o n f e r e n c e o n Modeling,
Simulat ion a n d Visualization Methods , L a s V e g a s , N e v a d a , USA, J u n i 2004, S. . .-

An Adaptable, Role-based Simulator for P2P Networks

Vasilios Darlagiannis, Andreas Mauthe, Nicolas Liebau, Ralf Steinmetz
Darmstadt University of Technology
Multimedia Communications (KOM)

Merckstr. 25, 64283 Darmstadt, Germany
{Vasilios.Darlagiannis, Andreas.Mauthe, Nicolas.Liebau, Ralf.Steinmetz} @KOM.tu-darmstadt.de

Abstract

Lurge-scale P2P networks are distributed Systems that
are composed of unreliable, autonomous und heterogeneous
conzponents. A large nunlber of competing approaches for
P2P overlay networks design have been proposed that aim
to address a nuniber of conjiicting requirements, such as
scalability, reliability. eficiency, autonomy und fairness.
Realistic evaluation of such networks requires emulation
und simulation techniques to tune the vast nunlber of pa-
rameters that are inherent in their design before they are
actually deployed.

In this paper we present a new network simulator that
follows a novel approach to handle the complexity in the de-
velopment of diverse P2P systerns based on roles. Of partic-
ular interest in the design of this architecture is adaptability
of the network simulator to the wide range of overlay net-
work design approaches. The purpose of this paper is to
describe this architecture.

range from rnodems to high-speed links. This results in a
highly heterogeneous environment. Certain overlay oper-
ations such as routing, indexing and structure maintenance
are cooperative procedures that can evolve to complex tasks,
especially when overlay designers aim at maximizing the
effectiveness of the networks. The complexity of the over-
lay operations and the great multitude of the objectives can
only be justified using simulation and (to a certain degree)
analytical techniques before proceeding to the expensive
step of System deployment.

In order to meet the critical Set of the aforementioned
(and possibly additional) requirements for the operation of
the P2P overlay networks a great variety of approaches have
been proposed. Analyzing the design mechanisms that char-
acterize P2P overlay networks, tliree major design dimen-
sions can be identified to classify the proposed systems
(Figure 1). Overlay networks vary in their structural de-
sign from tightly structured networks such as Chord [16] or
Pastry [15] to loosely structured ones such as Freenet [3]
or Gnutella [10]. Moreover, overlay networks vary in the
dependency of the peers on each other. Approaches such Keywords: P2P systenzs, Overlay networks. Network
as Chord or Gnutella treat all of the participants equally,

simulation, Adaptability
while hierarchical approaches such JXTA [18] or eDonkey

1 Introduction

Peer-to-Peer (P2P) systems are a challenging class of
distributed systems where a Set of often conflicting require-
ments have to be met. The underlying communication
paradigms (as they are deployed in the constructed over-
lay networks) Pose a multitude of non-functional require-
ments such as scalability, reliability, efficiency, autonomy
and faimess. Typical sizes of currently deployed P2P file
sharing systerns reach the order of thousands or even rnil-
lions of participants. Measurement studies of such systems
show that the activity time of the majority of the participat-
ing nodes lasts less than an hour. The physical capabilities
of the participants vary significantly, since peers can range
from PDA-devices to large clusters, while connections can

[SI separate the responsibilities and assign more tasks to a
small subset of more powerful peers (e.g. for indexing).
Additionally, deterministic or probabilistic approaches (e.g.
Bloom filters [2] are used in Oceanstore [13]) are selected
to improve the accuracy or the efficiency respectively of the
P2P systems. Finally, approaches such as Omicron [4] fol-
low hybrid solutions to achieve higher adaptation on the dy-
namically changing factors of the environment.

The decisions taken in the overlay networks design di-
mensions affects greatly their ability to rneet the aforernen-
tioned non-functional requirements. More specifically, cer-
tain design decisions might favor a subset of requirements
on the expense of rneeting others. For example, following
a hierarchical approacli reduces the rnaintenance effort but
increases the dependability of the peers to a certain subset
of them. Organized malicious attacks can have severe im-

pact in this case. Similar trade-offs appear with each iden-
tified dimension. In order to evaluate the large number of
approaches and enable the fair comparison of the results in
an as realistic as possible environrnent, emulation and sim-
ulation techniques are mandatory.

Developing a simulator in general is a process that im-
poses a number of design and implementation issues. Tlie
depth at wliich a simulator models the problems should be
sufficient to get valid results. Additionally, it should provide
sufficient functionality and be able to extend and adapt to
Cover new concepts. However, when models become large
in size tliey require extensive Support in memory and com-
putation power to perform the experiments. A balance of
the trade-offs in the level of details is required.

Modeling P2P systems poses certain requirements on the
ability to capture the involved complexity. Effective mecha-
nisms are required to model the User behavior, the details of
the communication protocols at the overlay level and in cer-
tain occasions detailed modeling of the underlying physical
network. To enable tlie simulation of complex approaches
(e.g. Omicron) advanced concepts such as clustering mech-
anisms and role assignment should be supported as well.

Dependency

I Pure P2P

Hierarchical

Determinism

lightly StniCtUred J
F i g u r e 1. Over lay n e t w o r k d e s i g n d i m e n s i o n s

1.1 Design Considerations and Related Work

A large number of simulators have been exarnined as po-
tential candidates that could be used to extensively examine
the characteristics of diverse P2P approaches. Ns-2 [7] was
initially considered as a candidate mainly because of the
great popularity of the tool. While Ns-2 is the default option
for transport and lower (OSI) network protocols, it proved
to be inefficient for P2P systems. The detailed model of the
routers and the transmitted packets, made the simulation of
large size P2P systems very demanding. Moreover, the du-
ality in the language requirements made it less appealing.

J-Sim (formerly known as Javasim) [I91 was another
candidate that was investigated. Its layered-design sounded

a prornising alternative that could enable the simulation of
larger systems. Initially, J-Sim was used as a base under-
lying network but due to the large resource consumption it
was replaced by a rnore lightweight solution.

The Neurogrid Simulator [12] is designed specifically
for P2P systems so it offers a more efficient model. How-
ever, the fact that it was initially designed for a specific sys-
tem (Neurogrid) and the lack of sufficient documentation
limited its potential as a general-purpose P2P simulator.

Ptolemy [G] is a general-purpose simulator that offers
a large variety of simulation models. However, it is not
a lightweight solution appropriate for large-scale P2P sys-
tems.

Finally, some other simulators were briefly examined,
such as 3LS [17], Desmo-J [14], Simjava [l l] , myns [I].
For different reasons, they failed to meet the aforemen-
tioned requirements.

2 Architecture

2.1 Functionality Layers

In order to address effectively the complexity of P2P sys-
tems, an analysis of their functionality was performed to di-
vide them in distinguishable Parts. Three layers have been
identified that can effectively divide their functionalityl:

User behavior layer: This layer captures the actions
taken by the users. This might include their be-
havior using advanced services and express their co-
operativeness or inclination to become free riders (a
well-known phenomenon in the context of P2P sys-
tems). In addition, tliis layer captures important infor-
mation for the reliability and stability of the P2P over-
lay. It is very important to simulate accurately the rates
at which peers join and leave the P2P overlays. Based
on this information prediction algorithms can be devel-
oped to optimize the operation of the overlays and the
usage of the related resources.

O ~ ~ e r l a y protocol layer: Overlay protocols (are ap-
plication layer protocols for constructing the overlay
networks) and performing the related operations are
included in this layer. More specifically, this layer
consists of the communication protocols of the over-
lay networks and the corresponding algorithms such
as message routing, dissemination of systern-related
information (e.g. estimated peer reliability), mainte-
nance of the overlay structure, etc. This layer is the
most significant one with respect to the P2P paradigm.

' A similar functionality separation is proposed in 1171.

Network transmission layer: This layer captures the
details of the physical network (e.g. latency and band-
width) and the related communication protocols that
are located at the four lower layers of the OS1 model.
Although in many cases the details of this model are
not of high importance for the researchers of P2P sys-
tems, they can play very important role (especially in
cases where network QoS is of great importance such
as media streaming within P2P overlays). This layer is
responsible to model the details of delivering packets
between Peers.

Figure 2. Functionality layers

Figure 2 shows the functional architecture of the sim-
ulator. It is designed in a way that can naturally capture
the needs of the P2P systems as they have been analyzed.
Tlie Agent layer represents and models user's behavior, the
Overlay layer includes the details of the P2P protocols and
the NenvorkWrapper is the layer that enables the attachment
of a variety of network models that can capture the physi-
cal network details in a plethora of levels. Finally, the ar-
chitecture includes a core component of the simulator, the
SimulationEngine, in addition to the functional layers. The
simulator has been designed in a way that a great multitude
of simulation engines (e.g. event-based, process-based) can
be attached to perform the simulation. A default simula-
tion engine is provided, though users can exchange it with
customized ones that may be more appropriate for certain
scenarios.

2.2 Components

The aim of developing this tool is to provide a general-
purpose P2P simulator, which is not dedicated to any spe-
cific P2P architecture or system. For this reason it has been
designed following a framework-like approach. As a first

step, many different P2P overlay architectures (structured,
unstructured, flat, hierarchical, hybrid) have been analyzed
to capture their requirements.

Following this step, the most important components have
been identified to represent them as well-defined entities in
the Software architecture of the simulator. Tlie framework
of the simulator is based on the concept of plug-ins. A
clear interface is defined for every identified core compo-
nent to offer the required functionality. Either a default im-
plementation (in cases where it offers general-purpose func-
tionality suitable for any P2P approach) or an abstract base
implementation with general functionality is provided. It
is straightforward to replace the default implementation of
each component with a customized one since there is a clear
interface tliat can be referenced in the implementation of the
other components. Changes are only locally required inside
the component. As an example of a component of this cate-
gory, consider the SimulationEngine. Users can replace the
default event-based engine with a process-based one. An
abstract base implementation with general functionality is
provided in cases where no default implementations can be
proposed. The base implementation has to be extended to
satisfy the needs of the particular system. The Agent is an
example component of this category that has to be extended.

The interaction witli the default or the customized com-
ponents takes place via the well-defined interfaces, making
it implementation detail agnostic. Figure 3 illustrates the
aforementioned design Patterns of the core components.

Interface 0

Figure 3. Component Design Pattern

The extended analysis of many well-known P2P systems
provided a comprehensive understanding of their structure.
The most important identified concepts are listed here.

Peer. It represents the Peer itself encapsulating all the
related components.

GUID. Every Peer can be uniquely identified using a
Globally Unique Dentifier (GUiD). In many cases, no

central authority exists to guarantee the uniqueness of
the identifiers so efficient distributed algorithms should
be employed.

Overlays. They encapsulate the components that are
related to the construction of the overlay networks. In
many cases peers participate in many sub-overlays (es-
pecially in cases of hierarchical approaches).

Cluster Map. Many systems introduce the concept
of clusters of peers, where peers are grouped together
with respect to certain constraints, User interests or net-
work proxirnity-based requirements. Cluster Maps are
entities that summarize the membership information of
each cluster.

Routing Table. Each peer maintains a number of
neighbors, in order to construct the overlays. The
Routing Tables encapsulate this information. The
scope of each Routing Table is the corresponding over-
lay network.

Roles. In many cases, having identical responsibilities
for each peer can lead to inefficient systems. Many ap-
proaches propose the identification of roles, appropri-
ate for different peers in order to overcome this prob-
lein.

Message Dispatcher. Although this component is not
very important from a conceptual point of view, it
plays an important role in the correct and valid oper-
ation of the peers. Peers tliat participate in multiple
overlays and hold a number of different roles require
a mechanism to direct the incoming messages to the
appropriate receivers.

Messages. A large number of different messages may
exist in P2P systems. They are vital components to
develop the distributed nature of the P2P systems.

Protocols. This is a concept that represents the overlay
protocols. It is helpful in the modeling of the systems.
A protocoi is constructed by s Set of messages.

Documents. Documents represent items of interest that
can be shared between peers. Tliey are identified by
GUIDs.

Index. Indices are structures that summarize the loca-
tion of the documents in the P2P System. They can be
detailed structures or can be modeled using appropri-
ate probabilistic methods to simulate their operation.

Cache. Caches are document repositories of limited
size. They can significantly improve the performance
of the overlay operations (e.g. in cases of Zipfian re-
quest distribution).

Link. Links encapsulate the details of the physical
connections among peers. They can include complex
models of the latency and the bandwidth or simple
ones that offer certain functions (e.g. in-order message
delivery).

NetworkWrapper. NetworkWrappers are general ob-
jects that adapt and hide the details of the underlying
network from the Overlay layer. Links are encapsu-
lated inside them.

Figure 4 shows the architectural components of each
Peer. Components are grouped using similar (gray-level)
colors to denote a higher dependence and interaction among
tliem. Multiplicity of the entities is demonstrated with over-
lapping rectangles.

r Map

~g Table

Dispatcher

Figure 4. Core Peer components

2.3 Networking Support

As it has already been mentioned, the architecture of the
simulator enables the easy adaptation of many components
to fulfil a variety of functionalities. Holding the Same axiom
for the network layer, a general interface (NetworkWrapper)
has been defined to encapsulate the details of the network-
ing layer. A lightweight default implementation is provided
that offers a simple but sufficient for most of the cases so-
lution. The characteristics of this model are given in the
following list:

Reliable communication: Taking into account the fact
that most of tlie deployed P2P systems employ TCP as
a transport protocol to exchange messages, this model
provides reliable communication in end-to-end basis.
This means that no packets will ever be dropped be-
cause of buffer overflows in routers.

Peers can depart arbitrarily (fail): Peers can depart
without prior notification. This is the only type of fail-

ure that can take place in this simple model. Network
connectivity is assumed.

In-order message delivery: Messages that belong to
the Same session are guaranteed to be delivered in-
order. Again, this follows from TCP like modeled con-
nections.

Random delay on links: In this model links are enti-
ties tliat connect two peers as illush-ated in Figure 5.
The details of the physical network are hidden in this
model. In order to provide a simple solution that takes
into account the delay in delivering messages, a prob-
abilistic approach has been chosen. The delay can take
some bounded random values. If the delivery of the
previous message is still in progress then this delay is
always additive to the delay that was calculated to the
previously submitted message over the Same link. Al-
though this approach is not very sophisticated, it pro-
vides a simple and effective mechanism to guarantee
in-order delivery of messages.

destination and the originator. An efficient implementation
of an ordered Queue is used to Store the generated mes-
sages and provide them for execution. The default imple-
mentation of the simulation engine is single-threaded with
respect to the model actions. It is not very clear if there
will be any performance improvement by making it multi-
threaded. Thus, it was decided to avoid the complexity of
multi-thread programming. However, costly U 0 operations
can be performed by different threads to improve the overall
performance.

Nehvork
Wrapper

Queue

, I - -

Figure 5. Link modelling

2.4 Simulation Engine

A framework-like approach has been followed to allow
the easy replacement of the default simulation engine with
customized engines. The requirements for the simulation
engine are efficiency and sufficient functionality. Figure 6
provides the software design of the default simulation en-
gine. The SimulationFramework is a general-purpose com-
ponent that is called by the Application to create certain sce-
narios (build nodes, agents, topologies, etc.), Start them and
process the results of the experiments. The Simulator is
an interface that provides vital information about the Status
and the progress of the simulation. The Scheduler enables
the insertion of the active components into the simulator
that can generate events. It ensures the correct execution
of those generated events in order to provide valid experi-
ments. The duration of each experiment is controlled by the
scheduler and the Parameters that tlie Application defines.
Peers add the generated events indirectly via the Network-
Wrapper interface. The events themselves are modeled by
the so-called Event class. They provide information like the
scheduled execution time, the content of the messages, the

Figure 6. Simulation engine

3 Roles

A novel characteristic of this simulator is the ability to
Support multiple roles for each peer in an effective way.
Roles represent responsibilities for certain operations, such
as routing or indexing. In order to achieve that an appro-
priate abstract framework is necessary. A common role has
been identified for each peer independently of the selected
system to be simulated. It is the Connector role, which pro-
vides the establishment of the inter-peer connections (not
necessarily in a TCP way):

It handles the creation and tear-down of each connec-
tion.

It checks the validity of the connections with
pingtpong messages.

Furthermore, the Connector offers the means to dynami-
cally update the roles "installed" on each peer. In addition, it
dynamically updates the local Cluster Maps as they evolve
over time.

Table 1 provides the identified roles as they appear in
the different node types of three P2P networks. These
P2P networks are representative Systems of different de-
sign approaches. JXTA is a hierarchical system, Chord

is a non-hierarchical P2P approach and Omicron is a hy-
brid one. Five core operations are shown: Routing (RT),
Caching (CH), lndexing (IX), Maintaining (M N) and Con-
necting (CN). The advantage of the role-based approach is
the simple reconfiguration of the responsibilities and the re-
usage of the implemented modules in multiple ways. For
example, Users can share the Same Indexing mechanism be-
tween Chord-based and Omicron-based experiments. Al-
ternatively, simple JXTA peers can dynamically evolve to
Rendezvous by installing additional roles.

Table 1. Roles
Node type Ot>erations 1

4 Message Handling

. .

JXTA Rendezvous
JXTA Peer

Chord

Messages are the entities that encapsulate the informa-
tion to be exchanged aniong peers to realize the overlay
protocols. In complex Systems such as JXTA, peers can par-
ticipate in multiple overlay networks (e.g. per peer group).
Moreover, they can be assigned multiple roles (Router,
Maintainer, etc.). Peers communicate witli their neighbor
peers for each assigned role in every overlay abstraction.
Each message carries a number of fields that can augment
in this process to handle efficiently the large number of po-
tential receivers. The following common fields are included
in each message:

Style. The Style deterrnines the way a message is
transmitted to the destination. There are two different
styles. The recursive style where tlie message is for-
warded to the most "promising" neighbor and then this
neighbor forwards similarly the message to the most
promising neighbor of his until the message amves to
the final destination. The second style is the iterative
communication style. Also in this case, the message
is forwarded to the most promising neighbor. How-
ever, the selected neighbor replies to the original peer
with the address of the most promising of its neigh-
bors instead of forwarding the message directly. Then
the original peer is responsible to contact the new peer
and get a new address until it reaches the final desti-
nation. Although the second cornmunication style is

Omicron Caclier
Omicron Indexer
Omicron Maintainer

more costly in terms of latency compared to the first
one, it has tlie benefit that peers can check the Progress
of forwarding messages themselves, thus, avoiding the
problems that might appear with the presence of mali-
cious peers.

Y

RT
J

Type. The type of the message determines the func-
tionality that this message serves. For example, it can
be a maintenance or a routing message.

Name. The name discriminates the messages and en-
ables the selection of how to react to each one.

CH
-

Scope. The scope of a message determines the overlay
through wluch this message should be delivered to the
destination. It might be possible that a destination node
might be reachable through different sub-overlays at
different cost.

Figure 7 displays the common structure of each mes-
sage. Moreover, this figure shows how messages are han-
dled wlien they arrive at one peer. The Message Dispatcher
checks the Type of the message and it passes it to the appro-
priate Role. Subsequently, the Role examines the Name of

D(

J

J - J J J L

the message in order to process it and after it performs the
appropriate local actions, it examines the scope of the mes-
sage in order to select the appropnate Overlay to forward or
to reply to this message.

verlays

MN
J
-

Messag

38

Name
L -

T
Message

Dispatcher

CN
J
J

Figure 7. Message handling

5 Evaluation

5.1 Performance

Although the performance of a simulator is highly re-
lated to the details of the embedded model, the efficiency

of the implementation itself plays an important role for tlie
acceptance of the tool. Using profiling tools, the implemen-
tation and in some cases the design of the tool has been
improved. Figure 8 provides two graphs that demonstrate
the consumption of the resources during a number of ex-
periments. As it can be easily obtained from those graphs,
both the memory consumption and the execution time in-
crease linearly with respect to the size of the topology. This
is very important and proves in a certain degree the validity
of tlie implementation.

Initially, J-Sim was selected to model the details of the
underlyiiig network. Although that solution offered a rich
model, the performance was heavily decreased. The analy-
sis of the results of profiling the used resources while using
the simulator sliowed that approximately 75% of the CPU
and memory was consumed by the J-Sim component. Thus,
this led to the development of the lightweight approach de-
scribed in Section 2.4. The selection of the heavy J-Sim
based solution is still available in cases where a very de-
tailed model is necessary.

However, in order to evaluate better the information pro-
vided by these graphs it is necessary to describe the ex-
periments in more detail. They include the construction
of Omicron overlays and the construction of clusters with
peers assigned to Omicron roles. They were performed us-
ing a laptop at 1.0 GHz speed and 384 MB memory. The
employed JVM was JDK1.4. In Summary, it can be de-
rived that it takes less than a minute time and less than 200
MB of memory to construct a complex overlay like Omi-
cron of size 100.000 active nodes. The observed linearity
in terms of physical resources prornises simulation experi-
ments sized as large as half a million nodes in moderately
more powerful machines dedicated for simulation.

5.2 Visualization of Experiments

In order both to demonstrate the results and ob-
serveldebug the simulated experiments, graphical tools are
necessary. A variety of graph tools can be used to get graphs
similar or more complicated than the ones provided in the
previous section. However, the graphical animation of the
experiment provides additional information about the ex-
periments, which can add great value. For this reason, the
simulator can generate Nam-like traces that can be con-
sumed by the Nam tool (Network animator). Since Nam
has been designed to fulfil the needs of Ns-2 [8] and its im-
plementation was based on C++ and Tcl languages, an al-
ternative tool proved to be more useful for the needs of the
simulator. This is Javis (Java Visualizer) [9]. It is capable
of tracing Nam-files, but with more clear software archi-
tecture. Javis was enhanced to fit to the needs of the P2P
simulator in three ways:

Support directed links. Javis and Nam support only

Peers (1000)

(a) Memory

Peers (1000)

(b) Cpu time

Figure 8. Simulator Performance

bidirectional links.

Control overlay topology. P2P overlay networks can
be displayed easier.

Remove failed nodes und links. Javis as well as the
original Nam have no ability to remove failed nodes
and links.

6 Conclusions

Though simulation alone is not sufficient to guarantee
successful deployment of P2P Systems over the Internet, it
is an obligatory step in the development cycle.

A well-developed simulator should carefully address the
need for functionality and the achieved performance. More-
over, an extendable and adaptable design is necessary to en-
able the integration of particular systems with the general-
purpose mechanisms offered by the tool.

The described tool is designed to simulate network op-
erations particularly for the case of P2P systems. The r o l e
based approach increases its suitability for a variety of over-
lay network designs. The layered-based approach enables
the attachment of various underlying network models to fit
the level of desired detail (e.g. J-Siin).

Furthermore, performed experiments show the efficiency
achieved in terms of resource requirements (memory and
computation) for sufficiently large P2P networks. The high
adaptability of the simulator to a variety of simulation en-
gines increases its suitability to a vast number of modeling
approaches.

Currently three P2P systems have been ported for sim-
ulation: Giiutella, Chord and Omicron. Simulation is a
preferable approach to compare P2P networks since iden-
tical environment conditions can be assured to obtain ob-
jechve results.

Acknowledgments

This work has been performed partially in the frame-
work of the EU IST project MMAPPS "Market Manage-
ment of Peer-to-Peer Services" (IST-2001-34201). The
authors gratefully acknowledge ongoing discussions with
their MMAPPS Partners.

References

[l] Suman Banerjee. myns (P2P) simulator.
http://www.cs.umd.edu/ suman/research/myns/, 2002.

[2] Burton H. Bloom. Spaceltime trade-offs in hash coding with
allowable errors. Communications of rhe ACM, 13(7):422-
426, 1970.

[3] Ian Clarke, Oskar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A distributed anonymous
information storage and retrieval System. In ICSI Worksl~op
on Design Issues in Anonymiry and Unobservabilify, 2000.

[4] Vasilios Darlagiannis, Andreas Mauthe, and Ralf Steinmetz.
Overlay Design Mechanisms. Journal of Nenvorks and Sys-
rem Managemenr, September:?-?, 2004.

[SI eDonkey2000. http:l/www.edonkey20OO.com, 2003.

[6] Shuvra S. Bhattacharyya et al. Heterogeneous Concur-
rent Modeling and Design in Java: Ptolemy I1 Design.
http://ptolemy.eecs.berkeley.edu~ptolemylI/designdoc.htm,
2003.

[7] Kevin Fall and Kannan Varadhan. The ns manual.
http://www.isi.edu/nsnam/nsldoc-stable/index.html, 2000.

[8] Sally Floyd and Vern Paxson. Difficulties in simulating the
internet. IEEWÄCM Transacrions on Nehvorking (TON) ,
9(4):392-403,2001.

[9] Scott Gammill. Java Visualiser (Javis 2.0).
http:llcs.baylor.edu/ donahoolNIUNet/javis.html, 2000.

[I01 Gnutella 2. http:l/www.gnutella2.com.

[I 11 Fred Howell and Ross McNab. Simjava: a discrete event
simulation package for Java with applications in Computer
systems modelling. In Inrernarional Conference on Web-
based Modelling n d Simularion, January 1998.

[I21 Sam Joseph. An Extendible Open Source P2P Simulator.
P2P Journal, November: 1-1 5,2003.

1131 John Kubiatowicz, David Bindel, Yan Chen, Steven Czer-
winski, Patrick Eaton, Dennis Geels, Ramakrishna Gum-
madi, Sean Rhea, Hakim Weatherspoon, Chris Wells, and
Ben Zhao. Oceanstore: an architecture for global-scale per-
sistent storage. In Proceedings ofrhe ninrl~ iniernational con-
ference on Archirectural supporr for programming languages
and operating systems, pages 19@-201. ACM Press, 2000.

[I41 Bernd Page, Tim Lechler, and Sönke Claassen. Objekrori-
enrierre Simulation in Java mir dem Framework DESMO-J.
Libri Books on Demand, 2000.

[I51 Antony Rowstron and Peter Druschel. Pastry: Scalable,
distributed object location and routing for large-scale peer-
10-peer Systems. In IF IP/ACM International Conference
on Disrributed Sysrems Plarforms (Middleware), pages 329-
350,2001.

[I61 Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Baiakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications. In Proceed-
ings of rhe 2001 conference on applicarions, rechnologies,
archirectures, and prorocols for Computer communicarions,
pages 149-160. ACM Press, 2001.

[I71 Nyik San Ting and Ralph Deters. 3LS-A p2p network simu-
lator. In Poster in The Third I E E E Inrernational Conference
on Peer-ro-Peer Compuring, September 2003.

[I81 Bernard Traversat, Ahkil Arora, Moharned Abdelaziz, Mike
Duigou, Carl Haywood, Jean-Christophe Hugly, Eric Pouy-
oul, and Bill Yeager. Project JXTA 2.0 Super-Peer
Virtual Network. http://www.jxta.org/project/www/docs/
JXTA2.Oprotocolsl .pdf, May 2003.

[I91 Hung ying Tyan. Design, Realization, and Eval-
uation of a Component-based Compositionai Software
Architecture for Network Simulation. http://www.j-
sim.org/whitepapers/tyanthesis.pdf, 2002.

