
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These
works may not be reposted without the explicit permission of the copyright holder.

Irina Diaconita, Andreas Reinhardt, Delphine Christin, Christoph Rensing: Bleep Bleep! Determining
Smartphone Locations by Opportunistically Recording Notification Sounds. In: Proceedings of the
International Conference on Mobile and Ubiqituous Systems: Computing, Networking and Services
(MobiQuitous), December 2014.

Bleep Bleep! Determining Smartphone Locations by
Opportunistically Recording Notification Sounds

Irina Diaconita
KOM

TU Darmstadt
Darmstadt, Germany
diaconita@kom.
tu-darmstadt.de

Andreas Reinhardt
School of CSE

UNSW
Sydney, Australia
andreasr@cse.

unsw.edu.au

Delphine Christin
University of Bonn,
Fraunhofer FKIE
Bonn, Germany
christin@cs.
uni-bonn.de

Christoph Rensing
KOM

TU Darmstadt
Darmstadt, Germany

rensing@kom.
tu-darmstadt.de

ABSTRACT
Every day, we carry our mobile phone in our pocket or bag.
When arriving at work or to a meeting, we may display it
on the table. Most of the time, we however do not change
the ringtone volume based on the new phone location. This
may result in embarrassing situations when the volume is
too loud or missed calls and alarms when it is too low. In
order to prevent such situations, we propose a non-intrusive
opportunistic approach to determine the phone location and
later adapt the ringtone accordingly. In our approach, we
analyze the attenuation of the played ringtones to deter-
mine the nature of the surrounding elements. We evaluate
our approach based on a prototypical implementation using
different mobile phones and show that we are able to recog-
nize the sole phone location with a precision of more than
94%. In a second step, we consider different surrounding
environments and reach a precision of 89% for the phone
position and 86% for the combination of the phone position
and noise level of the environment, respectively.

Keywords
audio-based context detection, phone position, active envi-
ronment probing

1. INTRODUCTION
Mobile phones are everywhere. Users carry them in their
bags or pockets and leave them on tables during meetings
or lunches. While the phones’ location varies during the
users’ daily activities, the ringtone volume however remains
the same across the day. Hence, users may miss phone calls if
the volume is too low and their phone is stored in their bag.
On the other side, a loud ringtone may attract the attention
to the user in inappropriate situations, such as conferences
or business dinners. In the current state-of-the-art, users
can set and select different ringtone profiles, such as out-
door environment or do-not-disturb mode. They however
need to manually activate them when their context changes.
As shown by our daily experience, most users simply forget
to do it. To avoid missing important calls or embarrassing
situations, we therefore propose to assist the users in auto-
matically adapting the ringtone volume to both users’ and
phones’ contexts.

Related work on context detection often makes use of exter-
nal sensors [21] or imposes constraints on the user regarding
the phone position and the type of environment they are in
[1, 10]. Hence, the unobtrusive nature of these application
is not given. Our approach does not impose any constraints
regarding the way the user carries his phone or the envi-
ronment he’s in. Furthermore, our approach is based on
opportunistic recordings of the user’s phone notifications.
Thus, we avoid the battery drainage that duty cycling in-
curs. Furthermore, we can probe the environment at no
extra cost and update the phone volume exactly when it is
needed. The active probing of the environment allows us
determine the current phone position based on the sound
attenuation. In order to interpret the readings and infer
the current situation, we apply feature engineering and use
MFCC and Delta MFCC coefficients, coupled with machine
learning techniques.

Our contributions can be summarized as follows. We first
identify the current phone’s location by analyzing the at-
tenuation of the ringtone emitted by the phone in real-time.

By doing so, no additional audio signals need to be gen-
erated, which potentially could disturb the users. In our
prototype implementation using Nexus 5, Samsung Galaxy
Nexus and Galaxy S3 smartphones, we are able to distin-
guish between the following locations: (1) in a bag, (2) on
a desk, (3) in users’ hand, and (4) in a pocket. In addi-
tion to the phone’s location, we also determine the noise
level in its surrounding in order to adapt the volume of the
ringtone accordingly. To demonstrate the performance of
our scheme, we have collected 5,474 samples for ten users
in different environments including offices, homes, outdoor,
shopping malls, transportation means, and restaurants. We
have further tested our solutions for ringtones, alarms and
notification sounds. The results show that we can determine
the phone position with more than 94% precision on average
and the phone position together with the environment noise
level with 86% precision.

The remainder of this paper is structured as follows. We
first compare our solution to existing work in Section 2 and
introduce our concept in Section 3 We give details about
our prototype implementation in Section 4. We present our
evaluation settings and evaluation results in Section 4.3, be-
fore addressing future work and concluding this paper in
Section 6.

2. RELATED WORK
Usage of smartphone-integrated sensors for context-aware
applications has become more and more popular, as their
number and quality steadily increased. Existing approaches
include medical applications using accelerometers [3] and gy-
roscopes [11] or cameras and microphones [32] for detecting
emergencies or monitoring and guiding the overall behavior
of the user [9]. GPS and WiFi traces are used for determin-
ing user mobility patterns and predicting their movements
[35, 25] and cameras are used for indoor localization [6].
Another class of applications uses combinations of multiple
sensors. Miluzzo et al [17] use GPS, accelerometer, camera
and microphone readings to determine the user’s activity,
while Azizyan et al [1] use WiFi, microphone, camera, ac-
celerometer and light sensor readings to establish the type
and ambient of a given location.

We will focus in what follows on applications that use a
smartphone’s built-in microphone, since our approach relies
on that sensor. This area encompasses two categories of ap-
proaches, one focusing on human-produced sounds and the
other on environment sounds. The first class of solutions
targets tasks such as speech recognition [28, 26], speaker
recognition [13] and stress detection [14]. The category of
smartphone applications focusing on environment sounds is
the one that includes our approach as well. Extensive work
has been put in medical applications which include cough de-
tection and monitoring [10], physiological anomaly detection
[8] and sleep monitoring [7]. Another class of applications
focuses on detecting user activity and the events taking place
in the proximity of the user [24, 16]. Musical genre recog-
nition [36, 33] and music modelling [12] represent a popular
research direction. Rana et al [23] propose a participatory
urban noise mapping system. There are also general pur-
pose frameworks like Auditeur [20], where the user can de-
cide himself on the relevant sound samples to be used and
types of events to be detected.

Schmidt et al [27] developed an early system to distinguish
between five phone modes, two referring to the phone po-
sition (hand and table), two to the phone state (silent and
general) and one to the environment (outside). For this pur-
pose, they used a combination of external sensors including
two accelerometers, a photodiode, temperature and pressure
sensors, a CO gas sensor and a passive IR sensor.

Similarly to our solution, Miluzzo et al [18] propose a solu-
tion that relies on microphone, camera, accelerometer, gy-
roscope and compass readings to determine phone position.
Unlike our solution, they only distinguish between two states
of the phone: inside (a bag, a pocket, etc.) and outside (in
the hand, on a desk, etc.) Furthermore, we do not only
record environment sounds, but actively probe the environ-
ment by piggybacking the phone’s notification sounds.

Siewiorek et al [30] use calendar information, as well as ac-
celerometer, microphone and light sensor readings to distin-
guish between four states of the user: uninterruptible, idle,
active, and default/normal. Although our goal is not to
determine the user’s interest on receiving a phone call, the
distinction between the default and active states of the user,
and thus the corresponding adaption of the phone ringtone
volume is to be noted. However, our solution takes into
account not only the environment noise level but also the
phone position in order to adapt the volume of all notifica-
tion sounds generated by the phone.

3. CONCEPT
As one previous study has shown [4], demographics play
an important role regarding the position people carry their
phones. Nevertheless, bag, hand, trouser pocket or belt clip
are the most common positions, accounting for the pref-
erences of roughly 90% of the respondents of the afore-
mentioned study. Most commonly, women carry their phones
in their bags, men in their pockets or belt clips, but there
are also specific geographic locations where everyone favors
carrying their phones in their hands. While all these posi-
tions imply the fact that the user is carrying his phone along,
there are also situations when the user leaves it behind.

Phone position is essential for many context-aware applica-
tions that rely on specific constraints for gathering the data,
like the phone being in a silent environment, exposing the
camera or the phone being worn on the user’s body. Most
important though is to determine if the user left his phone
behind. Thus, knowing the phone’s position can help avoid
inaccurate results and pointless battery drainage.

Furthermore, user comfort is affected by the volume of the
phone’s notification sounds and setting it manually is an
overhead that is easily overseen. For instance, the ringtone
should be loud during the train commute when the phone is
in the bag, or phone calls will likely be missed. The same
volume will be disturbing after arriving in the office, espe-
cially if the phone is on a desk or in the user’s hand. The
study of Böhmer et al [2] on mobile application usage behav-
ior shows that the most used apps throughout the day are
the communication ones. Furthermore, 49.6% of the chains
of app usage are started by a communication app. This
underlines the importance of properly adjusting the notifi-
cation sounds even for this category of applications alone,

but the same stands true for all other notification sounds
like message alerts and even more so for alarms: not hear-
ing the wake up alarm because the phone is still in the bag
could cause serious discontent.

To overcome these problems, we have exploited in the past
the different propagation patterns of sound in the different
phone positions [5]. Thus, we have played different pilot
sequences, like Gaussian noise, and recorded them at the
same time. Though the classification results were accurate
and the required sound window was just 10 ms, the periodic
probing of the environment was quite power hungry. Fur-
thermore, in the previous application, if a change in phone
position or user location had occurred in the middle of a
monitoring interval and a notification came in during the
same interval, there was no way to adapt the phone volume
specifically for it.

With this solution, we opportunistically use the phone’s no-
tification sounds as pilot sequences. Thus, only when a
phone call or a message is received, or when an alarm is
triggered, the notification sounds are recorded and then clas-
sified with regard to phone position and environment noise
level. Therefore, the volume of the phone is adapted for the
specific incoming notifications. We rely on the assumption
that the sound is attenuated differently for the most com-
mon phone positions. While this stands true to a certain
extent of recordings of environment sounds alone, the at-
tenuation patterns are much more obvious when using pilot
sequences, as we will also show in Section 4.3. We only need
a recording of a very short chunk of the ringtone to deter-
mine the phone position and afterwards the volume can be
changed accordingly for the rest of the ringtone. The current
approach is also energy efficient, as the phone’s position is
determined only when needed and by piggybacking a sound
that was played anyways.

We distinguish between four different phone positions: pocket,
hand, bag, and desk. These were decided based on [4], con-
sidering that pockets and belt clips are quite similar both
regarding signal propagation and desired phone behavior.
Furthermore, the case of a phone the user left behind is
most likely included in the case of a phone lying on a desk
or a table. The other alternative is that the phone is placed
in a bag that was left behind.

Besides phone position, there is a second aspect that deter-
mines the optimal volume of the notification sounds, and
that is the noisiness of the environment. Thus, we differen-
tiate between silent environments (home, office) and noisy
environments (outdoors, shops, cafés, public transportation
means) without determining the specific situations, as they
would not bring any extra information for determining the
ideal ringtone volume.

We have considered and implemented two different architec-
tures for our system. For both approaches we use a smart-
phone to record a chunk of the ringtone, alarm or notifi-
cation sound, the smallest being 100 ms. Then, the first
system, PCD-P (Phone Context Detection – Phone), pre-
processes the sample and classifies it on the phone. Based on
the classification result, the phone volume would be adapted
accordingly.

ringtone

environment

preprocessing
and

classification

phone position
location category

HTTP

adjust
ringtone
volume

Figure 1: The PCD-S architecture

For the second system, PCD-S (Phone Context Detection –
Server), the smartphone sends the recording to a server,
where it is further preprocessed and classified. The server
sends back to the phone the determined phone position and
noise level, based on which the phone could adapt its volume
accordingly. Figure 1 shows the architecture of PCD-S.

During our experiments, the delay caused by sending the
data to the server and receiving back the classification re-
sult was, on average, 97 ms for a 100 ms recording. Thus,
this second solution is feasible for adapting the volume for
the very notification sound we collected the recording and
carried out the classification. In Section 4.3 we present a
comparison of the processing times and battery consump-
tion for the two approaches.

On the server, the samples are first preprocessed, then we
leverage machine learning technologies. First, we reduce
the dimension space by extracting the feature array by us-
ing well-established features from the domain of audio sig-
nal analysis. Then, we classify the samples using tree and
cluster-based approaches.

4. IMPLEMENTATION DETAILS
In this section we will first offer a brief overview of the dif-
ferences between PCD-P and PCD-S, then we will go on and
present the applications we used for collecting the samples
and classifying the samples.

4.1 Differences Between PCD-P and PCD-S
What differentiates the two approaches is that one processes
the data locally, while the other sends the data to a server,
has the data processed on that server and receives back the
result. PCD-P was done in Android and we have used Weka
for Android [15] for the classification. PCD-S consists of
an Android app for recording and sending the audio files to
the server, and a classifier running on the server that uses
Python and the scikit-learn library [22].

However, these are all the differences between the two sys-
tems. The steps followed and the methods used for the data
collection itself and for the classification were the same for
both approaches. Therefore, in what follows, we will present
only one description for the implementation of the two com-
ponents.

4.2 Sample Collection
For collecting the samples, we used an Android app that
plays ringtones, alarm and notification sounds, and records
them at the same time. The sampling rate was 44.1 kHz.
Given that the optimal volume is to be decided after the
classification, for recording the samples the app sets volume
for each audio sample that is played in order to avoid clip-
ping. Our processing pipeline on the server side includes
silence removal, so we do not need to take measures against
the few tens of milliseconds between the beginning of the
recording and the beginning of the sound playback. We
considered the ringtones, alarms and notification sounds of
Samsung Galaxy Nexus, and ringtones of Samsung Galaxy
S3. Despite some common audio tracks, most of them differ
between phones.

4.3 Sample Classification
Our processing pipeline, as shown in Figure 2 includes win-
dowing, silence removal, Fourier transformation, feature ex-
traction and classification.

Thus, we first apply a rectangular windowing function with
a fixed length window size to the recordings. Since notifica-
tion sounds often contain silence between the repetitions of
the same audio sample, it is preferrable to record more than
just one window. After comparing the results for different
window sizes, we decided to use 4096 sample windows, which
corresponds to about 100 ms. Afterwards, we remove the
windows that contain only silence. This is essential for the
classification process, since, as we have already mentioned,
ringtones and alarm sounds almost always include some si-
lence intervals. Therefore, we calculate the signal energy for
every window and remove all windows where it falls below a
certain threshold. Next, we convert the signal from the time
domain to the frequency space by using a Fourier transform.

Then, to reduce the dimensions of the data, we go on to
extract the feature array. We experimented with four dif-
ferent types of features: Mel Frequency Cepstral Coeffi-
cients (MFCC), Delta Mel Frequency Cepstral Coefficients
(Delta MFCC), the Band Energy (BE) and the Powerpec-
trum (PS). As expected MFCC and Delta MFCC obtained
the best results. MFCC are “perceptually motivated” [33],
emulating the behavior of the human auditory system [31].
This type of features has been successfully used for speech
[34, 19] and speaker recognition [31], but also for music mod-
eling and general audio classification tasks [20, 24]. Similarly
to [20] and [31], we used the first N=13 MFCC coefficients.
MFCC features are calculated for individual windows, so
there is no temporal aspect taken into account. As a solu-
tion to this, Delta MFCC coefficients are calculated as the
first order derivative of the MFCC coefficients with respect
to time.

The final step was the classification of the features. We used
the following classifiers: Decision Trees (DT), Random For-
est (RF), Gaussian Naive Bayes (GNB), K-Nearest Neigh-
bors (KNN), Support Vector Machine Classifier (SVC), and
Gaussian Mixture Model (GMM). Given the way our data
is clustered, tree-based and distance-based algorithms of-
fered the best results as all feature vectors form clusters in
the N-dimensional feature space. This happens due to the
fact that the feature arrays are made up of numerical values

⨯

(pocket, silent)

windowing

silence removal

Fourier transformation

feature extraction

classification

Figure 2: Processing pipeline of the audio samples

expressing distribution (spectral shape) of the signal’s fre-
quency components. These values are almost constant for
each kind of environment, while differing between the differ-
ent kinds of environment, which gives us the basis for our
work.

5. EVALUATION
In this section we evaluate our system from multiple points
of view. We first describe our evaluation setup and com-
pare the energy and time efficiency of PCD-P and PCD-S
in Subsection 5.1. Afterwards, we present an overview of
the types of recordings we use. In the following subsections
we proceed to evaluate and compare the accuracies of the
different types of features and classifiers in determining the
phone position based on ringtones, alarms and notification
sounds respectively.

5.1 Evaluation Setup
We tested our approach on a Samsung Galaxy Nexus, a
Samsung Galaxy S3 and a Nexus 5, which could all support a
44.1 kHz sampling rate required for an optimal classification.

Both PCD-P and PCD-S use the same methods and, thus,
yield the same results, so we measured their battery con-
sumption and processing times in order to decide which sys-

0

20

40

60

80

100

Androm
eda

Aquila

ArgoNavis

CanisM
ajor

Carina

Centaurus

Cygnus

Draco

Girtab

Hydra

M
achina

Orion

OverTheHorizon

Pegasus

Perseus

Pyxis

RadiationOrchestration

Rigel

RobotsforEveryone

Scarabaeus

Sceptrum

Solarium

Them
os

UrsaM
inor

Zeta
Silence

Precision Recall

Figure 3: Classification results for all Samsung Galaxy Nexus ringtones when using MFCC and Random
Forest

tem to use for the evaluation.

As far as the energy consumption is concerned, the sample
collection step is similar for both approaches. The differ-
ence stems from the fact that one app sends the files to the
server and one classifies it locally. Therefore, we measured
and compared the drop in battery percentage caused by pro-
cessing one hour’s worth of 100 ms samples for the two cases.
This means, for a 10-fold cross validation approach, that the
system was trained with nine hours’ worth of recordings. We
picked the time interval of one hour since it is quite unlikely
for a user to receive enough phone calls and notifications to
need to classify more than 36000 samples over one day.

PCD-S has caused a 4% drop in battery percentage, whereas
PCD-P has lead to a 36% drop in battery percentage. The
first approach took 20 minutes to send the data to the server
and receive the answers, plus 0.416 minutes to classify the
data on the server. PCD-P needed 238 minutes to finish the
task.

As far as processing times are concerned, classifying one
100 ms sample in the afore-mentioned setting took on aver-
age 0.692 ms on the server and 397 ms on the phone.

5.2 Types of Recordings
We considered all the pre-installed ringtones of the Galaxy
Nexus and the Galaxy S3, as well as the pre-installed alarms
and notifications for the Galaxy Nexus. With very few ex-
ceptions, the original audio files that came with the phone
were different for each model. We had two users collect the
ringtone samples in noisy environments. Furthermore, we
compare the results of the ringtone recordings with those
of the environment sounds alone, in order to show the im-
provement brought by our system.

The alarm sounds are most commonly used as wake-up alarms,

so the user is most likely in a silent environment. Therefore,
the alarm samples were only recorded in a silent environ-
ment. The notification sounds, which have a wide range of
usage, from receiving text messages to system notifications,
were recorded in noisy settings.

We studied in more detail the case of the ringtone “Over
the Horizon”, one of the most popular Samsung ringtones.
For this purpose, we had ten users gather samples in both
silent and noisy environments. While we do not differenti-
ate between the specific situations, the settings in which the
recordings were gathered include offices and homes as silent
environments and outdoors, public transportation means,
shops, cafés and parties as noisy environments. Further-
more, we studied in more detail the case of “Proxima”, one
of the most common Samsung notification sounds, including
both silent and noisy settings in the evaluation.

Based on the reasons presented in Section 3, we considered
four main phone positions: pocket, bag, hand, and desk. We
had 5,474 samples in total, which make up more than 880
minutes of recordings. For the training and evaluation of
the classifiers we applied 10-fold cross-validation, thus using
90% of the data for training and 10% for the evaluation.

5.3 Classification of Ringtone Recordings
In what follows, we will analyze the performance of the var-
ious types of features and classifiers for the ringtones that
come with Samsung Galaxy Nexus and Galaxy S3. Samsung
Galaxy Nexus has 25 pre-installed ringtones, with an average
duration of 8.5 seconds, while Galaxy S3 has 34 pre-installed
ringtones, with an average duration of 25.2 seconds.

Figure 3 presents the classification results for the 25 pre-
installed Samsung Galaxy Nexus ringtones in noisy environ-
ments, taking into account the four positions we mentioned
in the beginning – bag, hand, pocket, and desk – while for

0

20

40

60

80

100

Beep
Once

Beep-Beep

Birdsong
by

the
Lake

Blowing
Dandelion

Seeds

Bugs' Story

Desert Sunrise

Drifting
Downstream

Eagle's
Call

Fairy
Fountain

Fog
on

the
W

ater

Gentle
Spring

Rain

Hangouts
Incom

ing
Video

Call

Heartbeat of the
W

ild

High
Tide

The
Journey

Begins

Jungle
Drum

s

Jungle
Trek

M
idnight Picnic

M
oonlit Beach

M
oonlit Rem

iniscences

M
other Nature

M
ountain

Tem
ple

Nighttim
e

Oasis

Over the
Horizon

Rain
Drops

Rays
of the

Sun

Sea
Breeze

Seaside

The
Secret Forest

Sparkling
M

ist

Tribal Sum
m

oning

Underground
Pool

Underwater W
orld

W
alk

on
the

Seaside

Silence

Precision Recall

Figure 4: Classification results for all Samsung Galaxy S3 ringtones using Delta MFCC and Random Forest

the desk also distinguishing between the two possible ways
of placing the phone: facing the ceiling or facing the desk.
We used 1,600 samples, totaling 200 minutes.

In this case, we have used the MFCC coefficients as features
and Random Forest as the classifier. Our choice was moti-
vated by the fact that MFCC was proven to offer very good
results in audio classification problems [24, 20], while Ran-
dom Forest is particularly suited for the way our data was
clustered.

For comparison, we also included the classification results of
the recordings of the environment sounds alone, which have
noticeably worse results. Thus, the ringtone recordings have
an average precision of 94.4%, while the recordings of the
environment sounds alone reach only 77%.

Figure 4 shows the precision and recall for the 34 Galaxy
S3 ringtones. We used 1,329 samples, with a total dura-
tion of 560 minutes. In this case, we decided to pick Delta
MFCC as feature. MFCC is calculated over the individual
windows, thus not taking into account the temporal aspect,
while Delta MFCC is calculated as the first derivative of the
MFCC with respect to time. Thus, Delta MFCC is expected
to produce better results then MFCC.

The classification results are similar to those of the Galaxy
Nexus, although, on average slightly better. Again, one
can notice the clear improvement brought by the ringtone
recordings compared to the environment sounds recordings,
from 84% precision to 95.6% on average.

5.4 Ringtone Case Study: “Over the Horizon”
In what follows, we will analyze the classification results
of one of the most common Samsung ringtones, “Over the
Horizon”. Figure 5 shows the spectrum of recordings of the
ringtone taken in the four main phone positions, as well as
the spectrum of the ground truth. Thus, the differences in
the spectral shape are quite obvious, especially for positions

0 2 4 6 8 10 12

x 105

0

5

10

15

20
Ground truth spectrum

FFrequency (kHz)

P
ow

er
 (d

B
)

0 2 4 6 8 10 12

x 105

0

2

4

6
Collected data spectrum − pocket

P
ow

er
 (d

B
)

0 2 4 6 8 10 12

x 105

0

1

2

3

4
Collected data spectrum − backpack

0 2 4 6 8 10 12

x 105

0

10

20

30

40
Collected data spectrum − desk

0 2 4 6 8 10 12

x 105

0

2

4

6

8
Collected data spectrum − hand

Frequency (kHz)Frequency (kHz)
P

ow
er

 (d
B

)

P
ow

er
 (d

B
)

P
ow

er
 (d

B
)

Frequency (kHz) Frequency (kHz)

Figure 5: The spectrum of the “Over the Horizon”
ringtone recordings for various phone positions

where we expected the sound to be muffled, like in a pocket
or, to a lesser extent, in a bag. While differences in spec-
tral shape are less pronounced when comparing the desk
and the hand, one can notice the clear distinctions in signal
power. As expected, the power values for the desk have a
significantly greater range then those for the other phone
positions.

To test our concept, we gathered recordings from ten users
in various kinds of silent and noisy environments (home,
office, outdoors, public transportation means, shops, restau-
rants, cafés) and aimed to distinguish between the four most
common phone positions. We used three types of phones,
Samsung Galaxy Nexus, Samsung Galaxy S3 and Nexus 5.

0

20

40

60

80

100

KNN
(M
FCC)

KNN
(DM

FCC)

KNN
(BE)

DT
(M
FCC)

DT
(DM

FCC)

DT
(BE)

RF
(M
FCC)

RF
(DM

FCC)

RF
(BE)

GNB
(M
FCC)

GNB
(DM

FCC)

GNB
(BE)

GM
M
(M
FCC)

GM
M
(DM

FCC)

GM
M
(BE)

Precision Recall

Figure 6: Comparison of classifier results for “Over
the Horizon”

Figure 6 shows the precision and recall of the different com-
binations of feature arrays and classifiers that we experi-
mented with. It can be clearly noticed that MFCC and
Delta MFCC yield the best results regardless of the overall
performance of the classifier and its suitability for the cur-
rent problem. Tree-based approaches are less affected by the
type of feature then other classifiers, having good and very
good results in all cases. Out of these, Random Forest has
the best overall results. In contrast to Random Forest, the
second best classifier, K-Nearest Neighbors is much more
sensitive to the kind of feature array that is used. Thus, it
offers very good results for MFCC and Delta MFCC, but is
quite inaccurate when using BE.

Next, we will look closer at the classification results of Delta
MFCC and Random Forest,when trying to determine the
phone position and the noise level of the environment. Given
that the data is clustered on two levels, Random Forest
is one of the most appropriate classifiers for our problem.
Figure 7 presents the corresponding confusion matrix. As
expected, the precision and recall dropped slightly, reach-
ing 86%, given the increased complexity of the classification
problem. Thus, it can be noticed that in some of the noisy
situations, the noise itself leads to a mislabeling of the phone
position, such confusions happening for instance between the
desk and the hand. Despite these, the overall performance
of our classifier in determining main phone positions and the
noise levels of the environment is very good.

5.5 Classification of Alarm Sound Recordings
In what follows, we will look into the classification results
of the six Samsung Galaxy Nexus alarm sounds. Figure 8
compares the F-score results of the classification using two
different types of features, MFCC and Delta MFCC, and the
same classifier, Random Forest. We picked Random Forest
since it was the classifier that yielded the best results on
average, and want to compare the precisions of MFCC and
Delta MFCC. Given that as Delta MFCC takes into account
also the variation of the MFCC coefficients in time, we ex-
pect it to lead to better results. We consider a balanced F-
score, calculated according to [29], as shown in equation (1).

bagn bags desn dess hann hans pocn pocs

bag_noisy

bag_silent

desk_noisy

desk_silent

hand_noisy

hand_silent

pocket_noisy

tr
ue

 c
la

ss

2755 19 11 14 81 19 122 140

14 2546 1 8 116 13 90 71

58 9 1227 8 48 171 15 10

42 9 24 2313 17 75 28 17

46 92 37 8 5183 242 342 107

46 44 170 55 287 3346 38 9

112 48 18 36 596 48 4982 272

128 60 17 27 151 37 199 5060

Confusion matrix of Delta MFCC with RF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2546

1227

2755

5183

2313

4982

3346

5060

predicted class

pocket_silent

Figure 7: Classification results for position and envi-
ronment noise level when using “Over the Horizon”
as pilot sequence

F-score =
2

1
recall

+ 1
precision

(1)

One can notice that for“Cesium”and“Hassium”Delta MFCC
has slightly worse results than MFCC. This happens due to
the structure of these audio files, as 50% or more of their
duration is made up of silence, which is removed during the
preprocessing. Thus, less than half of the training data was
used and this led to poorer classification results than those
of the other audio files, given that we collected and used an
equal number of samples for all the alarm sounds.

However, given that “Cesium” is the default Galaxy Nexus
alarm sound, we will have a closer look at its classification
results. Delta MFCC and Random Forest yield a 96% F-
score. As shown in Figure 9, most confusions between the
situations are negligible, the only one standing out being
the one between the desk and the user’s hand. This is not
unexpected, given the similarities in the sound propagation
patterns between the two situations and the lower number of
windows that were left for training after the silence removal.

0

20

40

60

80

100

Cesium

Ferm
ium

Hassium

Neptunium

Nobelium

Plutonium

MFCC+KNN DMFCC+RF

F-
m
e
a
su
re

Figure 8: Phone position classification results for all
Samsung Galaxy Nexus alarm sounds

bag des han

predicted class

bag

desk

hand

tr
ue

 c
la

ss

82 0 1 0

3 85 5 0

1 2 55 0

1 0 0 64

Confusion matrix of Delta MFCC with RF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

pocket

55

64

82

85

poc

Figure 9: Classification results for “Cesium” alarm
sound

5.6 Classification of Notification Sound Record-
ings

Next, we evaluated our solution on the 17 notification sounds
that are included by default in the Samsung Galaxy Nexus,
gathering over 2,000 sound samples. The clips have lengths
between 0.6 and 4.4 seconds and are made up of up to 58%
silence.

Figure 10 compares the F-scores of the classification results
for all the notification sounds for two combinations of types
of features and classifiers that provide the best results. Here
as well it can be that the sound files that contain significantly
longer periods of silence percentage-wise, like “Hojus” and
“Lalande” have also lower F-scores.

When comparing the performances of the two classifiers,
Random Forest and Delta MFCC have obviously better re-
sults. This highlights not only the better performances of
DMFCC compared to MFCC, but also that Random Forest
is being more suited for this case. Thus, given the structure
of the data, building multiple trees is more efficient and ac-
curate than clustering the data on N=13 dimensions, like
K-Nearest Neighbors does.

0

20

40

60

80

100

Adara

Bellatrix

Capella

CetiAlpha

Hojus

Join
Hangout

Lalande

M
ira

Polaris

Pollux

Procyon

Proxim
a

Shaula

Tetjat

Upsilon

Vega

MFCC+KNN DMFCC+RF

F-
m
e
a
su
re

Figure 10: Phone position classification for all Sam-
sung Galaxy Nexus notification sounds

bagn bags desn dess hann hans pocn

predicted class

bag_noisy

bag_silent

desk_noisy

desk_silent

hand_noisy

hand_silent

pocket_noisy

tr
ue

 c
la

ss

162 0 10 0 2 0 2 0

6 90 0 0 2 0 0 0

2 0 161 0 2 0 0 0

0 2 0 889 1 0 0 0

2 0 3 0 152 0 0 4

0 0 0 0 1 94 0 0

2 0 0 0 0 0 157 0

10 0 0 0 11 0 1 93

Confusion matrix of Delta MFCC with RF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
162 0 10 0 2 0 2 0

6 90 0 0 2 0 0 0

2 0 161 0 2 0 0 0

0 2 0 889 1 0 0 0

2 0 3 0 152 0 0 4

0 0 0 0 1 94 0 0

2 0 0 0 0 0 157 0

10 0 0 0 11 0 1 9393

89

157

pocket_silent

pocs

Figure 11: Classification results for “Proxima” noti-
fication sound

Next, we shall focus on the default notification sound for
Galaxy Nexus, which is “Proxima”. We used Delta MFCC
and Random Forest to classify the phone the position and
the noise level of the environment, obtaining a 94% preci-
sion, recall and F-score. As it can be noticed in Figure 11,
there are very few false positives and false negatives, the
overall results of the classification being very good.

6. CONCLUSIONS
Smartphones have seen numerous exciting new functional-
ities added in recent years. Still, telephony and messaging
remain at their core and tones for incoming calls and no-
tifications are played back frequently. Their volume and
the additional usage of the vibration motor, however, need
to be manually set by the user according to the environ-
ment. With many context changes throughout the day, for-
getfulness may lead to inappropriate settings and awkward
moments. We have hence presented a system that allows
for the opportunistic classification of the environment based
on recording the tones whilst they are being played back.
With only 100 ms of sampling required, the environment of
the phone can be quickly determined and the notification
tone volume adapted. Our evaluation has shown that pre-
cision and recall values in excess of 90% could be achieved
for the location detection based all ringtones deployed on
the Galaxy Nexus phone. Furthermore, “Over the Horizon”,
one of the most popular Samsung ringtones, has shown very
good performance to also classify the ambient noise level,
with precision values of 86% regardless of the phone posi-
tion. Our evaluations have been based on more than 880
minutes of ringtone recordings collected from three different
smartphone models. They unambiguously show that our ap-
proach is viable and can be easily implemented in order to
automatically adjust the notification tone volume based on
the user’s current environment.

6.1 Next Steps
As a future extension, we want to monitor the user’s pre-
ferred phone locations and habits. The ringtones and alarms
sounds would definitely be useful for this endeavor, but the
other notification sounds could play a bigger role. Thus mes-
sages, emails, Skype or other messenger app notifications, as

well as notifications coming from various apps or the system
are much more common and numerous during the day than
phone calls and can offer in an opportunistic fashion a much
better image of the user’s habits. Furthermore, it would
be interesting to explore a potential correlation between the
phone position and the user’s current activity or type of ac-
tivity. For instance, it might be the case that the user always
leaves the phone on his desk when in a meeting or working
at his PC, or that he always carries the phone in a bag when
walking or taking public transportation means.

Acknowledgment
This work is supported by funds from the German Fed-
eral Ministry of Education and Research under the mark
01PF10005B and from the European Social Fund of the Eu-
ropean Union (ESF). The responsibility for the contents of
this publication lies with the authors.

7. REFERENCES
[1] M. Azizyan, I. Constandache, and R. Roy Choudhury.

SurroundSense: Mobile Phone Localization via
Ambience Fingerprinting. In Proceedings of the 15th
Annual International Conference on Mobile
Computing and Networking, 2009.

[2] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, and
G. Bauer. Falling Asleep with Angry Birds, Facebook
and Kindle: A Large Scale Study on Mobile
Application Usage. In Proceedings of the 13th
International Conference on Human Computer
Interaction with Mobile Devices and Services, 2011.

[3] A. K. Bourke, J. O’Brien, and G. Lyons. Evaluation of
a Threshold-based Tri-axial Accelerometer Fall
Detection Algorithm. Gait & Posture, 2007.

[4] Y. Cui, C. Jan, and I. Fumiko. A Cross Culture Study
on Phone Carrying and Physical Prsonalization. In
Usability and Internationalization. HCI and Culture,
2007.

[5] I. Diaconita, A. Reinhardt, F. Englert, D. Christin,
and R. Steinmetz. Do You Hear What I Hear? Using
Acoustic Probing to Detect Smartphone Locations. In
Proceedings of the 1st Symposium on Activity and
Context Modelling and Recognition, 2014.

[6] R. Elias and A. Elnahas. An Accurate Indoor
Localization Technique Using Image Matching. In
Proceedings of the International Conference on
Intelligent Environments, 2007.

[7] T. Hao, G. Xing, and G. Zhou. iSleep: Unobtrusive
Sleep Quality Monitoring Using Smartphones. In
Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, 2013.

[8] D. Hong, S. Nirjon, J. A. Stankovic, D. J. Stone, and
G. Shen. Poster Abstract: a Mobile-Cloud Service for
Physiological Anomaly Detection on Smartphones. In
Proceedings of the 12th International Conference on
Information Processing in Sensor Networks, 2013.

[9] M. Kranz, A. Möller, N. Hammerla, S. Diewald,
T. Plötz, P. Olivier, and L. Roalter. The Mobile
Fitness Coach: Towards Individualized Skill
Assessment Using Personalized Mobile Devices.
Pervasive and Mobile Computing, 2013.

[10] E. C. Larson, T. Lee, S. Liu, M. Rosenfeld, and S. N.
Patel. Accurate and Privacy Preserving Cough

Sensing Using a Low-cost Microphone. In Proceedings
of the 13th International Conference on Ubiquitous
Computing, 2011.

[11] Q. Li, J. A. Stankovic, M. A. Hanson, A. T. Barth,
J. Lach, and G. Zhou. Accurate, fast fall detection
using gyroscopes and accelerometer-derived posture
information. In Proceedings of the 6th International
Workshop on Wearable and Implantable Body Sensor
Networks, 2009.

[12] B. Logan et al. Mel Frequency Cepstral Coefficients
for Music Modeling. In Proceedings of the 11th
International Society for Music Information Retrieval
Conference, 2000.

[13] H. Lu, A. J. Bernheim Brush, B. Priyantha, A. K.
Karlson, and J. Liu. SpeakerSense: Energy Efficient
Unobtrusive Speaker Identification on Mobile Phones.
In Pervasive Computing. 2011.

[14] H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T.
Chittaranjan, A. T. Campbell, D. Gatica-Perez, and
T. Choudhury. StressSense: Detecting Stress in
Uconstrained Acoustic Environments Using
Smartphones. In Proceedings of the ACM Conference
on Ubiquitous Computing, 2012.

[15] R. J. Marsan. Weka for Android. GitHub Repository,
2011.

[16] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen.
Acoustic Event Detection in Real Life Recordings. In
18th European Signal Processing Conference, 2010.

[17] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu,
M. Musolesi, S. B. Eisenman, X. Zheng, and A. T.
Campbell. Sensing Meets Mobile Social Networks: the
Design, Implementation and Evaluation of the
CenceMe Application. In Proceedings of the 6th ACM
Conference on Embedded Network Sensor Systems,
2008.

[18] E. Miluzzo, M. Papandrea, N. D. Lane, H. Lu, and
A. T. Campbell. Pocket, Bag, Hand,
etc.-Automatically Detecting Phone Context Through
Discovery. In Proceedings of the ACM International
Workshop on Sensing Applications on Mobile Phones,
2010.

[19] S. Molau, M. Pitz, R. Schluter, and H. Ney.
Computing Mel-Frequency Cepstral Coefficients on
the Power Spectrum. In Proceedings the IEEE
International Conference on Acoustics, Speech, and
Signal Processing, 2001.

[20] S. Nirjon, R. F. Dickerson, P. Asare, Q. Li, D. Hong,
J. A. Stankovic, P. Hu, G. Shen, and X. Jiang.
Auditeur: A Mobile-Cloud Service Platform for
Acoustic Event Detection on Smartphones. In
Proceedings of the The 11th International Conference
on Mobile Systems, Applications, and Services, 2013.

[21] S. Nirjon, R. F. Dickerson, Q. Li, P. Asare, J. A.
Stankovic, D. Hong, B. Zhang, X. Jiang, G. Shen, and
F. Zhao. MusicalHeart: a Hearty Way of Listening to
Music. In Proceedings of the 10th ACM Conference on
Embedded Network Sensor Systems, 2012.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine Learning in

Python. Journal of Machine Learning Research, 2011.

[23] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu,
and W. Hu. Ear-phone: an End-to-end Participatory
Urban Noise Mapping System. In Proceedings of the
ACM/IEEE International Conference on Information
Processing in Sensor Networks, 2010.

[24] M. Rossi, S. Feese, O. Amft, N. Braune, S. Martis,
and G. Troster. AmbientSense: A Real-Time Ambient
Sound Recognition System for Smartphones. In
Proceedings of the International Conference on
Pervasive Computing and Communications, 2013.

[25] S. Scellato, M. Musolesi, C. Mascolo, V. Latora, and
A. T. Campbell. Nextplace: A spatio-temporal
prediction framework for pervasive systems. In
Pervasive Computing. Springer Berlin Heidelberg,
2011.

[26] R. Schlegel, K. Zhang, X.-Y. Zhou, M. Intwala,
A. Kapadia, and X. F. Wang. Soundcomber: A
Stealthy and Context-Aware Sound Trojan for
Smartphones. 2011.

[27] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela,
K. Van Laerhoven, and W. Van de Velde. Advanced
Interaction in Context. In Handheld and Ubiquitous
Computing, 1999.

[28] R. V. Shannon, F.-G. Zeng, V. Kamath, J. Wygonski,
and M. Ekelid. Speech Recognition With Primarily
Temporal Cues. Science, 1995.

[29] W. M. Shaw Jr, R. Burgin, and P. Howell.
Performance Standards and Evaluations in IR Test
Collections: Cluster-based Retrieval Models.

Information Processing & Management, 1997.

[30] D. Siewiorek, A. Krause, N. Moraveji, A. Smailagic,
J. Furukawa, K. Reiger, F. L. Wong, and J. Shaffer.
SenSay: A Context-Aware Mobile Phone. In
Proceedings of the 16th International Symposium on
Wearable Computers, 2012.

[31] S. Srivastava, S. Bhardwaj, A. Bhandari, K. Gupta,
H. Bahl, and J. Gupta. Wavelet Packet Based Mel
Frequency Cepstral Features for Text Independent
Speaker Identification. In Intelligent Informatics. 2013.

[32] B. U. Töreyin, Y. Dedeoğlu, and A. E. Çetin. HMM
Based Falling Person Detection Using Both Audio and
Video. In Computer Vision in Human-Computer
Interaction. 2005.

[33] G. Tzanetakis and P. Cook. Musical Genre
Classification of Audio Signals. IEEE Transactions on
Speech and Audio Processing, 2002.

[34] R. Vergin, D. O’shaughnessy, and A. Farhat.
Generalized Mel Frequency Cepstral Coefficients for
Large-Vocabulary Speaker-Independent
Continuous-Speech Recognition. IEEE Transactions
on Speech and Audio Processing, 1999.

[35] L. Vu, Q. Do, and K. Nahrstedt. Jyotish: Constructive
Approach for Context Predictions of People Movement
from Joint Wifi/Bluetooth Trace. Pervasive and
Mobile Computing, 2011.

[36] A. Wang. An Industrial Strength Audio Search
Algorithm. In Proceedings of the 4th Symposium
Conference on Music Information Retrieval, 2003.

