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Abstract—Many context-aware smartphone applications de-
pend on specific conditions for gathering data, e.g., specific phone
locations or orientations. As a result, the significant overhead of
keeping all this information in mind is imposed on their users.
Besides averting the interest of potential application users, these
requirements defeat one of the main purposes of these mobile
data collection, namely simplifying life through mobile sensing
applications. This is not a problem that solely affects the users,
but the developers of the applications alike. As even the most
diligent users often do not manage to follow the strict data
collection guidelines at all times, errors in the collected data
may ultimately lead to the provision of wrong services and thus
to degraded application quality.

In this paper, we thus present a solution to determine the
location of a phone in order to support context-aware appli-
cations. It offers the possibility to detect the position of the
phone with an accuracy of 97%, as well as being able to
correlate it with the type of the location of the user. Our system
can be used to improve existing mobile sensing applications by
facilitating various services that depend on the phone location,
e.g., seamlessly adapting the ringtone volume or setting a phone’s
flight mode.

I. INTRODUCTION

Mobile phones have become ubiquitous and offer an in-
creasing number of innovative applications, which may con-
tribute to improve the user’s quality of life. For example, the
embedded sensors can be used to measure the noise pollution
in urban areas [1] or monitor the user’s sport activities [2].
The quality of the provided services, however, often depends
on the location of the mobile devices. For example, mobile
phones carried in bags or pockets will collect different sound
levels than when a mobile device is being held in user’s hands.

Clearly, information about the smartphone’s current location
is thus not only beneficial to weed out sensor samples collected
when noise is present or the mobile phone’s sensor is covered.
They are also very valuable in order to improve the accuracy
and/or quality of context-aware applications that rely on the
collected sensor data.

Within the scope of this paper, we hence propose a novel
method to identify the position of the user’s mobile phone
in different contexts. This information can then be leveraged
in the proposed applications and included in the computation
of the application outcomes. Our solution is based on short
bursts of audio signals emitted and recorded by the mobile
phones. While these audio signals are inaudible by the users,
the differences in signal attenuation reveal the nature of the

material surrounding the mobile phones. In comparison with
existing solutions, our method solely relies on on-board sen-
sors and enables an identification of multiple phone locations
in various user contexts.

Furthermore, our approach can serve as an enhancement to
existing mobile sensing approaches, which often depend on the
quality of the data and therefore have certain constraints for the
user, like always carrying the phone in a certain position. Our
solution would allow such applications to assign weights and
confidence levels to the detected user contexts based on the
phone’s position. Thus they could improve their performance
and, at the same time, their user acceptance, by limiting the
overhead for the user.

We have implemented our solution on both Samsung Galaxy
Nexus and Galaxy S3 smartphones. In order to assess its
classification accuracy, we have recorded more than 7,800
audio signals and analyzed different machine learning solu-
tions to determine the current location of the mobile phones.
Possible locations include: (1) in a backpack, (2) on a desk
(display facing up or down), (3) in the user’s hand, and (4)
in the user’s pocket. Moreover, we have tested different user
contexts, including in an office setting, outdoors, and in public
transportation.

The remainder of this paper is organized as follows: We
first summarize existing work in Section II, before introducing
our concept in Section III. We then detail our implementation
in Section IV and present the results of our evaluation in
Section V. We finally conclude this paper and discuss future
work in Section VI

II. RELATED WORK

A first category of solutions for user context detection is
based on external sensors. This includes approaches using
external microphones and accelerometers [3], multiple ex-
ternal accelerometers [4], external cameras [5], as well as
integrated devices with multiple sensors [6] (accelerometer,
barometer, thermometer, microphone, etc.). Other authors fo-
cus on using a single external sensor, often in the form of
a microphone [7, 8, 9, 10]. While these approaches have
the advantage of collecting less noisy data than on-board
sensors and capturing more relevant features (like collecting
data from multiple microphones placed in strategic locations),
they also require external hardware. Thus, they incur extra
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costs and, furthermore, external wearable sensors might cause
user discomfort.

To overcome these shortcomings, approaches that used only
the sensors integrated in smartphones were developed. Some
applications focus on the information that can be obtained
from one specific sensor, this being also the approach we
take. For instance, GPS and WiFi traces are used to detect
and predict user mobility [11], accelerometers to detect the
user’s physical activities [12], camera and microphone to
characterize the user’s environment [13, 14]. Reference [15]
uses WiFi/Bluetooth traces to build user mobility patterns.
For obtaining more complex information, the readings from
multiple sensors are processed. For example, SurroundSense
[16] attempts to detect also the type of location the user is
in (library, restaurant, club, etc.) using WiFi, microphone,
accelerometer, camera, and light sensor readings. CenceMe
[17] records GPS, accelerometer, camera, and audio data to
detect the user’s activity and then shares it through the user’s
social networks, e.g. Facebook.

Similarly to our work, different solutions have been devel-
oped solely based on the built-in microphone. These solutions
focus on the recognition of either human-based or environmen-
tal sounds. There are two general areas of interest, human-
produced sounds and environment sounds. Approaches for
human-emitted sounds include voice/speaker recognition [18]
and emotion and stress detection [19]. A special part of this
field is dedicated to medical purposes, like cough detection
[20], physiological anomaly detection [21] or a heartbeat
counter [22]. Environment sounds have multiple applications
such as building maps and estimating noise pollution levels
[14] and music/genre recognition [23]. Further aproaches
include characterizing locations based on the ambient noise
[16] and estimating the user’s enerygy consumpion based on
the sounds produced by various appliances [24]. Approaches
like [25, 26, 9, 27, 28] classify a variety of sounds in different
categories in order to detect the user’s activity and characterize
their environment, but do not address the localization of the
phone itself.

The closest approach to the work presented in this paper
is [29], which proposes a system to distinguish between var-
ious locations of a smartphone by recording the environment
sounds. The solution is implemented only for two locations,
inside and outside of the user’s pocket. In comparison, we do
not record environmental sound, but actively probe the phone’s
environment by playing back short pilot sequences. Due to
the shortness of these sequences, the users are not disturbed.
By doing so, we are not only able to determine if the phone
is either within or out of the user’s pocket as in [29], but
can recognize multiple contexts.To the best of our knowledge,
we are therefore the first to use active probing sequences to
determine the environment conditions of mobile phones.

III. CONCEPT

As previous research has shown [28], sound samples alone
can be used successfully to classify events from the user’s
environment, as long as they have quite distinct acoustic
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Fig. 1. System architecture

fingerprints. Furthermore, environment noises can harm the
accuracy and the systems strongly depend on an appropriate
positioning of the recording device. Such conditions include
having the device directly exposed to the source, in a roughly
similar position at all times (and, most importantly, similar to
the one used for the initial training of the classifier).

The conditions required to obtain the same performances
are however not compatible with a real-world deployment. For
example, users may not constantly hold their mobile phones in
their hands, but may carry them in backpacks or bags. Some
users may also choose to wear their mobile phone on their belt
or in a pocket. As, however, a majority of them are taking their
phones out and walking with them in their hands, e.g., to check
emails, changes in phone location are a common occurrence.
Users might also simply leave their phone on a desk while at
work and not take it along when going to a different place for
a meeting or for lunch, which would render any context aware
services useless and needlessly drain the phone battery.

To overcome this limitation, we probe the attenuation of a
deterministic signal in the phone’s current environment and
use this information to determine the phone location. Our
primary goal is thus to detect the position of the phone (pocket,
backpack, desk, hand) regardless of the user’s environment.
However, we also analyze the data in order to correlate the
position of the phone and the user’s type of location (indoors,
outdoors, public transportation).

Based on the outcome of our literature survey presented in
the previous section, we propose to use a smartphone to play
various pilot sequences and record them at the same time using
its embedded microphone. We rely on the assumption that the
sound is attenuated differently for the most common phone
positions. While this might also be true for the environment
noises (i.e., without emitting a known pilot signal), recordings
of them alone are less clearly distinguishable and more prone
to classification errors.

In our system, whose architecture is shown in Figure 1,
the recordings are subsequently saved and transferred to a
server, where they are processed. The processing pipeline
include windowing, silence removal, feature extraction, and
classification, which we explain in detail in the next section.

The only remaining user concern would be discomfort by
annoying pilot sequences being played back continuously. As
a result, the improvement in functionality (i.e., knowing the
location of the phone) would be questionable if the perpetual



exposure to disturbing noises. This would be a legit problem
if the pilot signals were long enough, but our classifier only
requires samples of 10 ms duration and smartphones have the
capacity of playing such short audio samples.

IV. IMPLEMENTATION DETAILS
A. Sample Collection

We implemented an Android app which can play back wave
audio files and collect sound recordings at the same time.
The app collects recordings of a given duration at given time
intervals. If the user is connected to a WiFi network, the app
sends the files directly to the server. Otherwise it stores them
locally and sends them to the server when the user connects to
a WiFi network. The samples are then classified on the server.

When recoding the sound we had to take into account the
technical capabilities of various phones, as only a few can
support a 44.1 kHz sampling rate. For this reason, the app
keeps attempting to record tracks, starting with 44.1 kHz and
going down to 22.05, 11.05 and 8 kHz until a sampling rate
supported by the phone is found. However, for the evaluation
we only used phones that supported the 44.1 kHz rate. In addi-
tion, the volume of the generated pilot sequences is monitored
and automatically adapted in order to avoid clipping, as well
as having too faint and indistinguishable recordings.

B. Pilot Sequences

We use a total of four pilot sequences. We started with
Gaussian noise as a general way to probe our approach.
The differences in spectrum for the phone positions are quite
visible, as it can be seen in Figure 2.

We further selected a few sequences composed of prime
numbers, such that harmonics ranging at multiples of the
fundamental frequency will not impact our results). The audio
data we intended to collect was to be sampled at 44.1 kHz, so
due to the Nyquist limit, we selected only frequencies under
20 kHz for our probing sequences. We used two sequences
of pseudo-logarithmically distributed primes, half of them
distributed under 1 kHz and the other in the 1-20 kHz range.
The first of the samples uses 40 primes, while the second
uses 316, including all 158 primes under 1000. A further
pilot sequence we used included 40 linearly distributed primes
under 20 kHz.

The semilogarithmic sequences are visualized in Figure 3,
together with the spectrum of samples collected in the main
phone locations. One can notice that the spectral shapes are
pronouncedly more distinct in this case than for the case
using Gaussian noise. We should note that these samples were
collected in silent environments; in noisy environments the
spectrum becomes less distinguishable than for the Gaussian
noise.

C. Classification Process

To determine the location of the phone as well as the loca-
tion of the user, we use a custom-tailored audio classification
cascade. This cascade consists of four consecutive stages:
windowing, Fourier transformation, feature extraction and
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Fig. 2. The spectrum of the Gaussian noise sample, as well as of the samples
collected with a phone located in the pocket, backpack, on the desk and in
the user’s hand

classification. In the following paragraph, a brief description
of these stages will be given.

In the first stage, the sampled audio signal s(¢,,) is split into
equally sized windows w(t,) of 4,096 samples per window.
Given a sample rate 44,100 Hz, this causes an audio length
of 10ms per window. Currently our implementation allows the
usage of rectangular, Hamming or Hanning windows.

After windowing the data, each window is transformed
to the frequency domain: W(fn) = DFT(w(t,)). This
representation directly shows the frequency components of the
analyzed signal. Thus, selecting an appropriate window size
is crucial for the performance of the overall system because
the length of the window directly influences the frequency
resolution of the Fourier transformation. Longer windows with
more samples take longer to record but they also cause a higher
frequency resolution. On the other hand, smaller window sizes
results in a lower frequency resolution but cause a lower
computation complexity. In our setup with a sample rate of
44,100 Hz and a window size of 4,096 samples this results
in 4,096 spectral components ranging from OHz to 22,050 Hz
with a frequency resolution of 10.77 Hz.

To further reduce the amout of data, the next stage extracts a
feature vector for transformed window I = W(f,,). Currently
our implementation supports the extraction of Mel Frequency
Cepstral Coefficients (M F'CC), Delta Mel Frequency Cepstral
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Fig. 3. The spectrum of the two sequences of pseudo-logarithmically
distributed primes, as well as of the samples collected with a phone located
in the pocket, backpack, on the desk, and in the user’s hand

Coefficients (DM FCC) and Band Energy (BFE) features,
which are calculated by folding the window W(f,) with N
triangular shaped filters with logarithmically distributed center
frequencies. According to the findings of other researchers
[30], we selected a value of N=13 to compute the first 13
cepstral coefficients and thus to create a feature vector with
13 elements. An in-depth description of the MFCC features
including their relation to the human hearing and their calcu-
lation was contributed by [31]. The DMFCC features are the
derivation of the MFCC features over time and clearly show
transitions of different tones over time and the Band Energy
features indicates the Band Energy for M different frequency
bands.

In the last stage, the previously extracted features are
classified to determine the location of the user as well as the
location of the phone. Although our framework would allow
the usage of arbitrary classification alorithms, we decided to
focus our research to tree-based and distance-based algorithms.
We expect those algorithms to work best because all N
features which are forwarded from the feature extraction
phase are numerical values which express the distribution
(spectral shape) of the signal’s frequency components. This
distribution is directly influenced by the frequency selectivity
of the transmission channel. As our work relies on the fact
that this frequency selectivity is nearly constant and unique

for a given environment, all feature vectors recorded in this
particular environment will form clusters in the N-dimensional
feature space.

Given the window size of 10 ms, it would be possible to
collect up to K classification results, then to fell a majority
vote without increasing the recording time over K x 10ms.
We decided to not follow this route because of two reasons:
first, a variation of the schema is the core working principle
of the ensemble-based machine learning algorithms we used
and secondly such an algorithm would accumulate state in the
classification cascade which complicates the evaluation. This
is the case because the direct relation between input signal
and classified output would be lost.

V. EVALUATION
A. Evaluation Setup

For the evaluation, we recorded samples using a Samsung
Galaxy Nexus and a Samsung Galaxy S3. The phones were
chosen for to their audio recording quality and their support
of a sampling rate of 44.1 kHz. For the Galaxy S3 we
noticed the volume of the sequences we played had to be
pronouncedly higher than for the Galaxy Nexus in order
to achieve comparable results, presumably due to its noise
reduction feature.

The general phone locations we considered were: desk,
hand, pocket and backpack, as they cover the most common
situations of a phone in use. One of our hypotheses was that
the differences in the propagation of the probing sequences
induced by the different environments would lead to very good
accuracies for the classification.

As visible in Table I, we collected the samples both in silent
(e.g., office) and noisy environments (e.g., outdoors, tram, bus
etc.), the majority of these being in noisy environments. This
structure of the data poses a problem to the classifiers, as
each individual class is actually a combination of two distinct
classes: the phone position and the user location.

We collected a total of 7862 samples while generating Gaus-
sian noise, and a similar number without using any probing
sequence. For each of the other pilot sequences, we collected
1640 recordings on average. The achievable classification
accuracy of our prediction model has been evaluated by means
of a 10-fold cross validation.

While recordings of 10 ms duration are sufficient for our
system to work properly, for training and evaluation purposes
we used longer recordings (1 to 10 seconds), and thus can
ponder on the disturbance of the sequences themselves. The
volume of the samples we played was less than half of the
maximum supported by the phone in order to avoid clipping,
so the noise was quite easy to ignore or go unnoticed in noisy
environments, like outdoors or in a tram, and even in silent
environments if the phone was in a backpack.

B. Gaussian Noise

Let us first analyze the classification accuracy of the samples
collected while generating Gaussian probing sequences. We
used a variety of situations, noisy and silent, indoors and



TABLE I
PHONE AND USER LOCATIONS USED FOR THE CLASSIFICATION

l Code ‘ Phone location | User location | State # Windows
bbu Backpack Bus Motion 3975
bof Backpack Office Stationary 11867
bos Backpack Outdoors Stationary 4015
bow Backpack Outdoors Motion 3699
btm Backpack Tram Motion 3978
ddf Desk (down) Office Stationary 11952
ddt Desk (down) Outdoors Stationary 4028
duf Desk (up) Office Stationary 11818
dut Desk (up) Outdoors Stationary 3975
hbu Hand Bus Motion 3780
hof Hand Office Stationary 11685
hos Hand Outdoors Stationary 4011
how Hand Outdoors Motion 4024
htm Hand Tram Motion 4016
pbu Pocket Bus Motion 3926
pfs Pocket Office Stationary 11960
pfw Pocket Office Motion 11931
pus Pocket Outdoors Stationary 3991
puw Pocket Outdoors Motion 6336
ptn Pocket Train Motion 12024
ptm Pocket Tram Motion 11973

Total no. of windows 148964

outdoors, stationary and in motion, as shown in Table I. When
placing the phone on a table, we distinguish between the case
when it is facing the table or the ceiling, thus having the
microphone covered or fully exposed.

Next, we compare the accuracies of all combinations of
feature extraction algorithms and classifiers for determining
the phone and user type of location at the same time.

The features that we used were MFCC, DMFCC, and BE.
For the classification model we used Gaussian Naive Bayes
(GNN), Decision Trees (DT), K-Nearest Neighbors (KNN),
Random Forest (RF), and Gaussian Mixture Model (GMM)
classifiers.

Results can be seen in Figure 4, where one can notice that
the best results, as far as features are concerned, are given
by MFCC and Delta MFCC. This confirms the expectations
that the two algorithms which take the coefficients of the
spectrum into account result in best results (cf. Figure 2).
MFCC has slightly better results than Delta MFCC, as the
latter is calculated as the difference between MFCC feature
values, and thus slightly uniforming the features.

K-Nearest Neighbors and Random Forest are the most
accurate classifiers with a 97% and 96% accuracy respectively,
as the extracted features form distinct clusters on two layers:
phone position and user location. This also leads to Decision
Trees having a lower accuracy than Random Forests, as the
phone position, the user location, and their correlation are
distinct enough to require at least separate trees.

The way data is clustered affects even more severely the
Gaussian Mixture Model results, making the extracted features
play an even more important role. For instance, while with
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Fig. 4. Comparison of the classifier performances and feature types

MFCC and Delta MFCC the average accuracy is 90% and
89% respectively, for band energy it drops to 59%. It should
also be noted that while for the classifiers with higher accuracy
the standard deviation is quite low, it increases significantly
for the lower accuracy classifiers.

C. Gaussian Noise vs. No Pilot Sequence

Next, we will compare the results for the samples recorded
using Gaussian noise and recordings of the environment
sounds alone. As we have seen previously, MFCC together
with K-Nearest Neighbors offer the best results for both types
of recordings, therefore we are going to use them to compare
their performance.

Figure 5 represents the confusion matrices for the aforemen-
tioned situations for the two approaches, considering all the
situations from Table I. One can notice a clear improvement
to the accuracy of the results due to the Gaussian noise,
the recordings using Gaussian noise having a 97% accuracy,
whereas the recordings of the environment sounds alone only
reach a 71% accuracy.

Although these are quite good results for the recordings
without any pilot sequences, this can mainly be attributed
to the fact that environment sounds are still perceived in a
different way: ideally when the phone is on a desk, muffled
and attenuated when the phone is in the pocket. Of course, as
shown by the figure, it is more difficult to distinguish between
sounds muffled by a tight pocket or a big compartment of a
backpack, or, even more so, between a phone lying on a desk
facing the ceiling or the desk. Even if slightly more accurate,
the recordings alone face another challenge when the phone
has a similar location (e.g., desk) and have to distinguish
between two different environments, or even a silent and a
noisy one (e.g., indoors vs. outdoors).

When using the Gaussian noise the results are very good
for classifying both the phone and the user location. While
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Fig. 5. Comparison of the classification results for recordings using Gaussian noise as pilot sequence vs. recordings of the environment sounds alone

for the former, we attribute the performance to the pronounced
propagation pattern of the Gaussian noise (much more obvious
and pronounced than that of the environment sounds alone),
for the latter the Gaussian noise helps cancel out some of the
irrelevant environment noise. Here, the environment specific
features are much more obvious as a difference between the
frequencies of the recordings and those of the initial noise.

Next we will compare the overall accuracies for the general
phone locations: hand, pocket, backpack, desk. We use the
same datasets and just ignore the location of the user, thus
lumping into the same class all recordings taken with the
phone in the same position. Figures 6(a) and 6(b) present the
confusion matrices for the two classifications, done using K-
Nearest Neighbors and MFCC, like for the previous evaluation
step.

The already good accuracies see an improvement, from 97
to 99% using Gaussian noise, and from 71 to 77% for the
environment sounds alone. The results for the samples using
Gaussian noise are quite expected, given that we only care
about the phone location, and thus the features of the propa-
gated signal alone, while the type of features we used (MFCC)
extracts a sequence of values of the cepstrum (“spectrum of
the spectrum”).

The 99% accuracy of the Gaussian noise recordings clearly
argues for their suitability for such a task, given the variety of
environments they were evaluated on. Even within the same
environment, different samples had different noise levels and
patterns. For instance, in a tram some recordings will have
people talking, some will have just the tram noises, some will
have the tram stopped in a station, and others will have the next
station announced on the speakers. Therefore, it is important
to note the robustness of the method under such conditions.

The accuracies for the recordings alone improve by about
10%, as the user’s environment does not need to be detected.
The classifiers relying on whether the particular sound is
muffled and attenuated or not and extrapolating this pattern
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alone is easier to achieve. However, distinguishing whether
the phone is lying on its front or its back on a desk is
still problematic, and accountable for the most misclassified
samples.

The situation when the phone is lying on the desk facing
the ceiling is also quite often confused with the user’s hand, as
the recording conditions are quite similar and the environment
sounds are not changed or affected by any obstacles. This is
also the reason for the high number of confusions between
the pocket and the backpack: the sound is muffled to a certain
degree, but it is quite difficult to distinguish between these
degrees.

The bottom line for the recordings of environment sounds
would be that they are pretty good at telling apart an open
environment (hand, desk) from a closed one (pocket, bag).
Also, as previously shown, the environment classification and
its correlation with the “in” or “out” position of the phone is
quite accurate. On the other hand, recordings using Gaussian
noise have outstanding results both for determining the phone
position and for correlating it with the user’s location.

D. Comparison Between All Pilot Sequences

Next, we compare the classification results using the four
different pilot sequences, considering the main phone positions
in silent and noisy environments (outdoors). For the classifi-
cation we used Random Forests with Delta MFCC, as it was
the second best classifier, its accuracy being very close to the
top one (only 1% difference). Figure 7 presents the confusion
matrices for all the cases.

As one can notice, the overall differences are quite small,
with a 99% accuracy for Gaussian noise, 98% for both
semilogarithmic sequences and 97% for the linear one. How-
ever, there are a few slight distinctions to be made. The
Gaussian signal has the best overall performance, as it is less
affected by noise than the other signals. One can notice that all
four signals have a very similar number of correctly classified
samples for the silent situations, coming very close to 100%.

Furthermore, in some of these silent situations, the se-
quences of primes have a better performance, as expected from
the differences in the spectrum. For instance, for the case of
a phone lying on a desk facing the ceiling in the office, the
semilogarithmic sequence of 40 primes has the best accuracy,
classifying it correctly in all cases for the given data set. The



instances that are misclassified by the sequences of primes due
to the noise tend to be assigned to the correct user location,
but to the wrong phone position.

E. Sequences of Primes

In what follows, we will look closer at the capabilities of
the sequences of primes previously presented to determine the
overall phone positions. We use again the same datasets, but
label them only based on the phone’s position. The accuracies
are 98% for the semilogarithmic sequence with 40 primes,
and 97% for the other two signals. The confusion matrices
are represented in Figures 8, 9 and 10.
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For all the signals, it can be noted that, when a phone is
lying on a desk, almost all instances are correctly classified.
The semilogarithmic sequence of 40 primes has markedly the
best results, with a slight confusion between the pocket and
the backpack, generated most likely by the noisy conditions
of some of the recordings. As has been previously shown, the
results of all these three sequences have a lower quality for
samples gathered in noisy environments. Therefore, one can
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Fig. 10. Classification results for a pilot sequence composed of 40 linearly
distributed primes

notice the confusions between the backpack and the pocket, as
well as, to lesser extent, between the backpack and the user’s
hand for the other two signals as well

F. Evaluation Conclusion

To sum up, environment noise recordings alone have decent
results, but fail at determining more than whether the phone
is in an open or closed environment. Gaussian noise has the
best overall results for detecting the phone position, either on
it own, or correlated with the user’s type of environment. The
sequences of primes have a higher accuracy than Gaussian
noise for a good part of the data collected in silent environ-
ments, but are easily affected by noise and therefore do not
measure up to the Gaussian signal in noisy environments.

Given the clustered structure of the classification task, with
classes made up of two different elements, phone position
and user type of location, K-Nearest Neighbors and Random
Forest were the most successful classifiers. We relied on the
differences in spectrum of the different classes of recordings,
and MFCC and Delta MFCC were the features that led to the
best results.

VI. CONCLUSIONS AND FUTURE WORK

Localization of mobile devices represents an important
foundation for many user-centric services. Based on a smart-
phone’s actual location within its user’s environment, different
services can be offered. We have thus presented a solution to
identify the position of a smartphone by means of emitting
short bursts of audio signals. By recording them simulta-
neously, the frequency-dependent signal attenuation of the
material surrounding the mobile device can be determined.

We have analyzed different machine learning solutions with
regard to their capability of modeling the spectral response to
our pilot sequences and determined that a K-Nearest Neighbor
classifier works best for the given data, achieving 97% of
accuracy for 21 different tested positions of the phone. A
supplementary analysis of further pilot sequences has shown
that some pilot sequences (e.g., using 40 semi-logarithmically



distributed prime frequencies) are better suited to determine
certain smartphone positions, like those confined to a office
setting, but overall a Gaussian signal has been shown to
perform best.

In the future, we plan to continue investigating other pilot
sequences that specifically range in the frequency spectrum in
which most discrepant attenuation levels could be observed.
We also intend to research on possible further mechanisms to
determine characteristic sequences in the time domain, e.g.,
by applying symbolic approximation mechanisms, like SAX
[32]. The system could furthermore be improved by including
readings from additional sensors, like light sensors. These
could be used as a further filter to increase certainty of the
already detected phone locations or to distinguish between
borderline cases. Another aim would be to implement the
classifier on the phone as an answer to the privacy concerns
raised by centralized storage of the audio recordings.
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