Challenges to Develop an Interactive 3D Virtual World for Psychological Experiments

James Cook University, Cairns, Australia

Colin Lemmon Siu Man Lui David Cottrell John Hamilton

Motivation

Engage students in experimental design, testing, data collection, and analysis

- reinforce their understanding of the scientific method
- To validate models and theories of operant conditioning learned in the classroom

Sniffy the Virtual Rat Alloway, Wilson & Graham, 2012

- Used extensively in psychology since the 1990's
 Ethical alternative to live animal testing.
- Operant chamber
 Bar to dispense food and water.
- Classical conditioning or operant conditioning
 Modify specific behaviours from repertoire of actions.

The Island Bulmer & Haladyn, 2011

 Survivors of a shipwreck which occurred in 1779

□ Population grew - 39 villages over 8000 people

- Designed for epidemiological studies
 To see data in context
 - Teach statistical reasoning to first year undergraduates
 - Address limitations and management issues relating to studies involving human subjects.

Problem: Undergraduate Research

- Management Issues
 - Ethics
 - Delays
 - Working with human subjects
- Limitations on scale of research.
 - Recruiting participants
 - Convenience samples
 - Skewed results
- Lose connection between experimental design & validity of results

Model for Operant Conditioning

Rescorla and Wagner (1972)

 If a stimulus is followed by something unexpected or surprising
 learning will be improved

Conditioning is dependent on
 the strength of the stimulus
 and the amount of surprise

Operant Conditioning Rescorla and Wagner (1972)

$$\Delta V_x = \propto_x \beta (\lambda - \Sigma V)$$

Where:

V is the predictive value

 β is the rate parameter of the Unconditioned Stimulus (US)

 λ is the maximum associative strength of the US

ΣV is the sum of the associative strengths presented in the trial

and $(\lambda - \Sigma V = \text{surprise})$

Environment

- Cairns Lagoon
- Locals and tourists
- Business, restaurants, outdoor activities

Behavioural Matrix

Behaviour	Zone/s	Probability		
		Avatar 1	Avatar 2	Avatar 3
Exercise	Grass	50	7	0
Sunbath	Grass	10	40	60
Sit down	Grass	5	25	30
Drink	Fountain	30	10	5
Smoke	Any	1	0	70
Dance	Any	10	5	0
Idle	Any	100	100	100

Idle Behaviours

- Wander free, groom, read book, use mobile

Reinforcement Matrix

Reinforcer	Cool Down Time	Reinforcement Value		
		Avatar 1	Avatar 2	Avatar 3
Money	10	5	2	4
Confectionery	10	1	4	0
Encouragement	5	3	1	5

- Random behaviour
 - Weighted by behavioural probability matrix
 - Min reinforcement period = animation cycle

Polygonal Zoning

- Travel required for location specific behaviors
- Behaviours assigned to zones or locations

Zoning and AI

- Random walking natural avoidance
- Points of interest
 Drink fountain, BBQ, vending machine

Define polygonal zones
 Associate zones with location specific behaviours
 Select zone for a selected behaviour
 Move to zone

Display intention

Conducting a Study: Scenarios

- Random configuration
- Or lecturer defined scenarios

Character configuration
 Behavioural matrix
 Reinforcement matrix

Location
 Orientation
 Initial behaviour

Data Collection and Assessment

- Time stamped event logs
- Recams observation, reflection
- Technical data text or graphical formats
 Behavioural probability matrix
 learning rates

Safe Virtual Environment

Free from the supervisory and ethical considerations

Engage with the entire experimental process

- □ Experimental design
- □ Administration of methodologies,
- □ Data collection
- Analysis

Questions

Colin Lemmon James Cook University, Cairns, Australia

Funded by a teaching and learning development grant from James Cook University, Cairns, Queensland, Australia