
1
Exploiting User Behaviour in Prefetching WWW Documents: Abdulmotaleb El-Saddik, Carsten Griwodz, and Ralf Steinmetz
accepted for International Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services‘98, Oslo, Norway Sept. 08-11, 1998

Exploiting User Behaviour in Prefetching WWW Documents

Abdulmotaleb El-Saddik1, Carsten Griwodz1, Ralf Steinmetz1,2

{Abdulmotaleb.El-Saddik,Carsten.Griwodz,Ralf.Steinmetz}@kom.tu-darmstadt.de

Abstract

As the popularity of the World Wide Web increases, the amount of traffic results in major
congestion problems for the retrieval of data over wide distances. To react to this, users and
browser builders have implemented various prefetching and parallel retrieval mechanisms, which
initiate retrieval of documents that may be required later. This additional traffic is even worsening
the situation. Since we believe that this will remain the general approach for quite a while, we try
to make use of the general technique but try to reduce the destructive effects by retrieving less
content which remains finally unread.

In our user-specific prefetch mechanism, the prefetching system gathers references by parsing the
HTML pages the user browses, identifies the links to other pages, and puts the words describing
the links into a keyword list. If such a word was already present in the list, its associated weight is
incremented. Otherwise it is added to the table and a weighting factor allocated. We have designed
and implemented a client based proxy-server with this mechanism. This paper shows the design
and implementation of this prefetching proxy server, presents results and general considerations on
this technique.

1 INTRODUCTION

The simplicity of access to a variety of information stored on remote locations led to the fact that
World Wide Web services have grown to levels where major delays due to congestion are
experienced very often. There are several factors influencing the retrieval time of a web document.
These factors are network bandwidth, propagation delay, data loss, and the client and server load.

1

Industrial Process and System Communications
Dept. of Electrical Eng. & Information Technology

Darmstadt University of Technology
Merckstr. 25 • D-64283 Darmstadt • Germany

2

GMD IPSI
German National Research Center

for Information Technology
Dolivostr. 15 • D-64293 Darmstadt • Germany

2
Exploiting User Behaviour in Prefetching WWW Documents: Abdulmotaleb El-Saddik, Carsten Griwodz, and Ralf Steinmetz
accepted for International Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services‘98, Oslo, Norway Sept. 08-11, 1998

Although several approaches have been implemented to reduce these delays, the problem still
exists.

The latency of retrieval operations depends on the performance of servers and on the network
latency. Servers may take a while to process a request or may refuse to accept it due to over-load.
The network latency depends on the network congestion and the propagation delay. While the
propagation delay is a constant component, which can not be reduced, the network bandwidth is
steadily increased by the increase of networks’ capacities and the installation of new networks.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 describes
our approach in designing a newer prefetch proxy. The description of the system architecture is
followed by initial experiences in section 4, section 5 concludes the paper.

2 Related Work

Various approaches to solve the problem of retrieval delays were presented in the past. Most of
them deal with caching ([Abra][Chan][Mark96]). However, the effectiveness of caching to reduce
the WWW latency is small. Several papers report that the hit-rate of the caching proxy server is
under 50% ([Abra][Chan]). Actually, we observe that the hit-rate is constantly falling because the
number of documents and the size of those documents grows faster than the typical proxy server.

An alternative approach to reduce delay experienced by the end user is prefetching. The majority
of users browse the Web by following hyperlinks from one page to another with a general idea or
topic in mind. While users read the downloaded page, there is a communication pause. Since there
is a general topic that drives the user´s navigation, this time can be used to prefetch pages that are
likely to be accessed as a follow up to the current page. Actually, prefetching does not reduce
latency, it only exploits the time the user spends reading, and thereby theoretically decreases the
experienced access time. Practically, the growing number of users of this technique destroys the
effects by increasing considerably the overall amount of data transfers on the networks.

Prefetching has some problems and drawbacks. One of these problems is to decide or to predict
what and when to prefetch. Another problem is the large amount of traffic. Both problems can be
addressed by increasing the hit-rate of the prefetching mechanism. There is a long list of references
considering prefetching of WWW pages. Each of these references deals with different situations
and different mechanisms. In general we can consider the following strategies:

• Non statistical prefetching

• Servers’ access statistics

• Users’ personal preferences

3
Exploiting User Behaviour in Prefetching WWW Documents: Abdulmotaleb El-Saddik, Carsten Griwodz, and Ralf Steinmetz
accepted for International Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services‘98, Oslo, Norway Sept. 08-11, 1998

Chinen ([Chin]) prefetches referenced pages. The prefetching system he suggested is to prefetch all
the referenced pages of an HTML document at each request of the client. This scheme reduces the
relative latency experienced by the user, but it suffers from the fact that there is no speculative
prediction.

Server access statistics to prefetch WWW documents is investigated by Markatos ([Mark96]),
Bestavros ([Best95]), Doi ([Doi96]), and Padmanhaban ([PaMo96]). Such a strategy is based on
the observation of a client’s access pattern. They exploit the fact that users do generally not access
files at random. Although the access pattern of a user is not deterministic, the server can obtain a
good idea of the files likely to be accessed next based on the currently accessed file. In order to
achieve high hit-rates, a long observation time is required. It is difficult to react to new trends in
user behaviour immediately using this scheme. Padmanhaban and Mogul ([PaMo96]) propose
protocol modifications on both server and clients to keep state in the server.

The use of users’ personal preferences is also a way to prefetch document in the WWW. This
mechanism is implemented by Microsoft’s Channel Bar ([Micr]) and Netscape’s Netcaster
([Nets]), which enable (so-called) push delivery of information and off-line browsing. This
technology enables users to subscribe to channels, which describe an interest profile for a user.
When the user starts the browser, the prefetching mechanism that is built into the browser contacts
the servers specified by the channel information and retrieves all appropriate information for off-
line browsing by the user. The user doesn't have to request or search manually for the information.

All of these approaches work with long-term constant interests of the users. No approach considers
the appropriateness of prefetching for short-term interests of the user. We consider questions such
as “where can I find information on MPEG-2 encoders?” or “how do I travel in Tibet?” short-term
interests, which concern the user for some minutes up to a few days but are not worth the manual
specification of a user-specific profile. Since we believe that all of these prefetching techniques are
not specific enough to cover the short-term interests of a user, and thus, that too much unnecessary
information is retrieved, we have designed an alternative approach to prefetching.

3 Design of a new Prefetching-Proxy Algorithm

3.1 Design considerations

The user’s browsing strategy can be determined by observing the user’s earlier behaviour. Most
user events are of the type “select hyperlink on current document” (52%) and “browser-back-
button” (41%) ([Pitk95]). For effective prefetching, a mechanism should take these events into
account. In other words, many web sessions start with an idea of what to search. In general, the
user detects very quickly whether a piece of information is interesting for him or not and decides to
move on. Other browsing strategies are less relevant to prefetching. It is not useful to prefetch
when the major user event is “goto URL”. Users who demonstrate this kind of behaviour are just

4
Exploiting User Behaviour in Prefetching WWW Documents: Abdulmotaleb El-Saddik, Carsten Griwodz, and Ralf Steinmetz
accepted for International Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services‘98, Oslo, Norway Sept. 08-11, 1998

surfing in unpredictable ways and find information randomly. However, this is rare and
additionally, those users move on slowly because they don’t look for specific topics but consume
all input. Models which describe and determine the different browsing strategies are investigated in
[CuJa97].

We believe that very specific interests are (in the mind of the user) expressed by a keyword or set
of keywords; these keywords are also the basis of any search he performs, typically by starting
with a typical search engine such as Alta Vista. For such a user behaviour, the prefetching of a
subset of links is viable and we have implemented a mechanism to exploit it. Our idea is to make
use of the Web technology as is and to implement a mechanism that can be used with all clients
without replacing servers and protocols. Our mechanism differs from those which prefetch all
pages referenced by the current page, by loading only those referenced pages which are predicted
to be interesting to the user and thus, probably visited.

3.2 Structure of a Web page

Usually a Web page is a simple text document with in-line images and references to other pages
(links). In general, all web documents can be grouped into two categories with regard to the time at
which the content of the page is determined.

The first category consists of static documents. The content of these is determined at creation time.
Although some documents of the static category are generated dynamically by server processes,
these contents are independent from user interaction and are presented in the same way whenever
they are accessed. Typically, the content remains unchanged for a while, so this kind of document
is very suitable for caching and prefetching.

The second category are dynamic documents. This group can be subdivided into a fully dynamical
category and an active category. A dynamical document is created by a web server when the
document is requested (e.g. CGI-scripts). Dynamic documents can not be cached or prefetched
because the results of a request are entirely dependent on a specific situation. An active document
includes a program that runs on the client machine, e.g. a Java applet, and which may communicate
with one or more server processes. The client parts of active documents may be prefetched and
cached, since they remain unchanged for longer periods and their download operation is similar to
the download of a computer program.

3.3 Description of the Prefetching Algorithm

We have implemented a client side architecture that addresses the prefetching of static documents.
Our approach includes criteria which are determined by observing the user behaviour. In our
implementation the collection of the user-specific criteria is accomplished by a „clicked-word-
list“. This list is the database in which the frequencies of words extracted from the selected anchors
are collected (see figure 1). As soon as an HTML-document is retrieved by the proxy, the

5
Exploiting User Behaviour in Prefetching WWW Documents: Abdulmotaleb El-Saddik, Carsten Griwodz, and Ralf Steinmetz
accepted for International Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services‘98, Oslo, Norway Sept. 08-11, 1998

prediction algorithm parses this document, builds a list of current links and anchor texts. The
words in this list are compared to a user database of user-specific keywords. This database grows
while the user is browsing. Each time a link is clicked, the words in the anchor text of the link are
recorded in the database, respectively their counters are incremented. The database is kept for
future sessions. The possibility of deleting this database is also given.

The advantages of the mechanism are:

• Web latency is reduced: The system prefetches the predicted pages until all predicted pages are

retrieved or until a new request is made by the user, whichever occurs first.

• The prefetching is not a recursive copying of all references on a page but only of the relevant

documents.

• Using the user’s preferences: The algorithm gathers the links by parsing the HTML document

and by comparing the words in the anchor text with the user’s database.

• abandon the use of statistics

The disadvantages of the mechanism are:

• Synonyms, and words that contain less than 4 lowercase letters are not taken into consideration:

we have to add thesauri

• the large traffic that comes generally with prefetching

 description text

clicked-
word-list

Predict module Prefetch module

Figure 1: The predict module compares the anchor text
with the user’s clicked word list

6
Exploiting User Behaviour in Prefetching WWW Documents: Abdulmotaleb El-Saddik, Carsten Griwodz, and Ralf Steinmetz
accepted for International Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services‘98, Oslo, Norway Sept. 08-11, 1998

3.4 Modules

This section describes the module of the prefetching proxy server called MObile proxy helPER
(MOPER). Figure 2 shows the system architecture of MOPER which consists of three modules:
ClickedWord module, Predict module and Prefetch module.

ClickedWord module

The main task of this module is to identify the anchor associated with a click, to extract the relevant
words and to put them into a list with their associated URLs. In the current version of our
implementation we consider only words which consists of more than three letters, except words in
capital letters. In future implementations we will incorporate thesauri to decide which words are
worth considering and which are not.

The requested HTML document is parsed on the fly. The list of all included URL and their anchor
text are saved until the browser sends a new request. If the new requested URL matches one of the
URLs in the list, the words of the anchor text are entered in a database. The words in the database
reflect the user’s preferences, which are used in the predictive algorithm. Every word entered in the
list has an associated counter which will be incremented when the word occurs once again. We
consider case insensitive words (Java = JAVA = java)

.

ServerClient
Browser Document-

Files (HTML)Display

Moper
Prefetch module

Predict module

ClickedWord
 module

Internet

Local Machine

Figure 2: System Architecture

java 13

multimedia 10

computing 9

prefetching 9

caching 7

Figure 3: Excerpt from clicked-word-list

7
Exploiting User Behaviour in Prefetching WWW Documents: Abdulmotaleb El-Saddik, Carsten Griwodz, and Ralf Steinmetz
accepted for International Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services‘98, Oslo, Norway Sept. 08-11, 1998

Prediction module

This module compares the words in the clicked-word-list (Figure 3) with the words describing the
links on the actual HTML page, starts the prediction algorithm, and sends the URLs to the prefetch
module according to the correct order of their importance to the user. A prediction range is
assigned to these URLs.

Prefetch module

The prefetch module preserves a list of URLs to load. URLs with a higher prediction range will be
prefetched first. For more interactivity this module implements a stop method which enables the
user to stop all on-line prefetching activities.

4 Implementation results

Moper (MObile proxy helPER) is a WWW proxy server. Moper is installed on the local machine to
support prefetching of web pages based on user preferences, thus reducing the waiting time of the
user. Our application is a proxy server for the actual browser and poses as a browser for the remote
server. We decided to implement our mechanism in Java ([Sun]) to overcome platform
dependencies. We tested and evaluated our system on various platforms (Win 95, Win NT, Linux
and Solaris).

To compare the efficiency of profile-dependent prefetching with the prefetching of all referenced
pages, Moper is equipped with a couple of switches to make this decision. A small survey on
educational web sites related to multimedia was made to inquire about relevant settings for these
switches. We found that bigger cross-linking pages contain references (links) to 100 other pages
and more, but we found only some pages with less than 7 links. The average number of links on the
set of pages that were taken into account in our survey was 17.4. We consider it noteworthy that
only 6.5% of these pages were greater than 15 kilobytes when the referenced images were not
considered. Based on the results of the cross-linking survey, we chose to restrict the number of
prefetched links per retrieved page to 15.

To compare our algorithm with unrestricted prefetching operations, we tested Moper in two
different configurations. In the first one Moper made use of our approach and was configured to
prefetch a maximum of 15 referenced pages if the words in the anchor text match the words in the
clicked-word-list. The second configuration did not use the restriction and was set to prefetch any
15 referenced pages in the requested page, which reflects the approach taken by other prefetch
mechanisms ([Doi96][Chin]).

8
Exploiting User Behaviour in Prefetching WWW Documents: Abdulmotaleb El-Saddik, Carsten Griwodz, and Ralf Steinmetz
accepted for International Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services‘98, Oslo, Norway Sept. 08-11, 1998

Using these settings, we made a couple of sample web surfing sessions without taking the
download delay per page into account (all pages were loaded completely before the next request
was issued). This approach does not give us any indication of the speed increase or decrease of our
approach in comparison with other prefetching approaches but instead, provides us with an
indication of the better efficiency of our prefetching approach in terms of transmission overhead,
as well as hit-rate comparisons between ours and the simpler approach.

We defined the induced traffic as the number of prefetched pages and the hit-rate as

Figure 4(a) and Figure 5(a) present the results of various surfing sessions when our approach is
used, Figure 4(b) and Figure 5(b) present the results of the typical approach. For each exemplary
surfing sessions, a different general topic was chosen, ranging from technical issues such as Java
programming to private interests such as travelling to South America.

As shown in Figure 4, both configurations make approximately the same hit-rate (60%). While the
configuration according to our idea of the user’s behaviour has a hit-rate of about 61.05%, the
random prefetching 15 referenced pages in the requested page achieves a slightly better hit-rate of
63.86%. Obviously, our approach will never have a better hit-rate than the trivial approach, but the
difference is marginal in the experiments.

The advantage of our mechanism concerning the reduction of unnecessary traffic in the network,
however, is considerable. Figure 5 shows that the overhead induced by the general prefetching
technique (Figure 5(b)) is 10.04 times the amount of data compared with the pages that are actually
visited by the user, our approach (Figure 5(a)) reduces this overhead to 4.29 times the number of
actually visited pages.

Hit-rate =
Requests

Responses from prefetch-proxy

pr
ef

et
ch

ed
 p

ag
es

 (
a)

pr
ef

et
ch

ed
 p

ag
es

 (
b)

Figure 4: Hit-rate

100%

pr
ef

et
ch

ed
 p

ag
es

 (
b)

pr
ef

et
ch

ed
 p

ag
es

 (
a)

re
qu

es
te

d
pa

ge
s

(%
)

Figure 5: Induced traffic

re
qu

es
te

d
pa

ge
s

(%
)

100%

9
Exploiting User Behaviour in Prefetching WWW Documents: Abdulmotaleb El-Saddik, Carsten Griwodz, and Ralf Steinmetz
accepted for International Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services‘98, Oslo, Norway Sept. 08-11, 1998

5 Conclusion and Future work

Prefetching is a speculative process. If the guess is wrong, a (high) price may have been paid by the
community of Internet users at large for nothing. If the guess is correct, on the other hand, time is
saved for the individual user. Prefetching is only sensible if the payment for the Internet connection
depends on time, not on the amount of transferred data.

In this paper we have described a predictive prefetching mechanism for the World Wide Web to
improve the access time without the extraneous penalty in network load that is typical for
applications that prefetch speculatively. We consider that the links appropriate for prefetching
come from the current user page. In our model the system guesses the next user request and
prefetched those referenced pages, whose words in the anchor text are found in the user’s clicked-
word-list. We found out that our model reduces the bandwidth used by other prefetch systems
which prefetch all referenced pages by the factor 2.34 for browsing sessions aimed at a focused
information search, and that the hit-rate is approximately still the same.

We are now in the process of incorporating thesauri inside our prefetch module to increase the hit-
rate, and to have better decision about words which may be entered in the user’s database.

Another way of works in which we are interested is to use our proxy as a blocker, like per example,
porno blocker, advertisements blocker or racism blocker. We do not need to know the IP-address or
the domain name of servers related to the topic to be blocked, all we need is to define the words
which should not be requested. The concept may even be extended to editing such links out of the
presented pages.

6 Acknowledgments

We thank testers and users of our system. We also thank our colleagues Cornelia Seeberg, Stephan
Fischer and Michael Liepert for useful comments on this paper.

References

[BeFF96] T.Berners-Lee, R. Fiedling, and H.Frystyk. "Hypertext Transfer Protocol-HTTP/1.0", RFC
1945, May, 1996.

[Best95] Azer Bestavros, Using Speculation to Reduce Server Load and Service Time on the WWW.
Technical Report TR-95-006, CS Dept., Boston University, 1995

[CuJa97] Carlos Cuncha, Carlos Jaccoud, Determining WWW User’s Next Access and its Application
to prefetching, International Symposium on Computer and Communication, 1997

[Doi96] Katsuo Doi, “WWW Access by Proactively Controlled Caching Proxy”, Sharp Technical
Journal, No. 66, December 1996.

10
Exploiting User Behaviour in Prefetching WWW Documents: Abdulmotaleb El-Saddik, Carsten Griwodz, and Ralf Steinmetz
accepted for International Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services‘98, Oslo, Norway Sept. 08-11, 1998

[Mark96] Evangelos Markatos, Main Memory Caching of Web Documents. In Electronic Proccedings
of the fifth International World Wide Web Conferece, Paris, France, May 6-10, 1996.

[PaMo96] V.N. Padmanabhan, J.C. Mogul, “Using Predictive Prefetching to Improve World Wide Web
Latency”, ACM SIGCOM, Computer Communication Review, 1996.

[Pitk95] Catledge Pitkow, Characterizing Browsing Strategies in the World Wide Web , Technical
Report 95-13, Graphics, Visualization and Usability Center, Georgis Tech, USA, 1995

[YeMc96] N.J. Yeager, R.E.McGrath, Web Server Technology, Morgan Kaufmann Publishers Inc.,
1996.

[Abra] Marc Abrams et al. “Caching Proxies: Limitations and Potentials”, http://ei.cs.vt.edu/
~succeed/WWW4/WWW4.html

[Chan] Anawat Chankhunthod et al, “A Hierarchical Internet Object Cache”, Usenix 1996 Technical
Conference, http://excalibur.usc.edu/cache-html/cache.html

[Chin] Ken-ichi Chinen, “WWW Collector Home Page”, http://shika.aist-nara.ac.jp/products/wcol/
wcol.html

[Micr] Microsoft active Channel guide, http://www.iechannelguide.com/

[Nets] Netscape Netcaster,http://home.netscape.com

[Sun] Sun Microsystems Inc.: "The Java Tutorial``, http://Java.sun.com

