
ERS+07] Julian Eckert, Nicolas Repp, Stefan Schulte, Rainer Berbner. Ralf Steinmetz; An
Approach for Capacity Planning for Web Service Workflows; 13th Americas
Conference on Information Systems (AMCIS 2007), Keystone, Colorado, USA,
August 2007 ,6 0

Page 1 of 8 Amer icas Conference on Information Systems

Eckerr, Repp, Schulle, Berbner; Steinmetz An Approachfor Capacity Plnnning of Web Service Workfows

AN APPROACH FOR CAPACITY PLANNING OF WEB SERVICE
WORKFLOWS

Julian Eckert, Nicolas Repp, Stefan Schulte, Rainer Berbner, Ralf Steinmetz
Department of Computer Science

Technische Universität Darmstadt, Germany
{eckert, repp, schulte, berbner, steinmetz) @kom.tu-darmstadt.de

Abstract
Business process management und business process optimization gain more und more importance in recent
years. Companies have to rneet custorner expectations and control IT costs to stay competitive. For this,
flexible and agile business processes, eficiently supported by IT systems are crucial. Web Services as an
upcoming technology become more and more important establishing cross-organizational workflows. Due
to a large amount of incoinir~g requests, it is crucial to plan the workflow control. Furthermore, the re-
source usage has to be addressed in order to support scalability. Thus, capacity planning mechanisms are
crucial for adapting a workflow ro the real behavior ensuring tlzar its executiori remains feasible and SLA
violations due to overload are avoided. Capacity planning requires arnong others a workload forecast as
well as a workload modeling und analysis. Therefore, in this paper we present a holistic capacity planning
and cost-effective approacl~ for Web Service workjlow parallelization und optimization.

Keywords: Web Service, Service-oriented Architecture, Capacity Planning, Business Processes, Workflows

Introduction

In recent years, the globalization and deregulation of markets forced the enterprises to react to their changing environment
and therefore adapt their business processes continuously. The IT architectures within enterprises and organizations are often
heterogeneous and have led to a high complexity, which is hardly manageable. A large amount of legacy systems, middle-
Ware platforms, programming languages, operating systems, and communication channels are prevailing characteristics of
those architectures (Papazoglou and van den Heuvel 2000). As a cmcial competitive factor, the ability to react quickly, flexi-
bly, and efficiently to changes of the environment by adapting the business strategy to new conditions becomes more and
more important (Hammer and Champy 2003). This implicates that enterprises have to be more flexible, have to plan their
business processes in advance and adapt them to changing business needs. Only companies with a high flexibility to adapt to
new conditions will survive in the long-term (Becker et al. 2003). A continuous business process management allows to react
flexible and to manage the business process to avoid performance problems during the process execution. The business proc-
ess management has to meet customer expectations, i.e. Quality of Service (QoS), and has to control the costs to stay com-
petitive. Therefore, the key issues for a holistic process management are capacity, reliability, availability, scalability, and
security (Almeida and Menasc6 2002).

An architectural support for integrating internal legacy systems as well as for coupling external business Partners in order to
realize flexible business processes is needed. The Service-oriented Architecture (SOA) paradigm is often recommended to
enable agile business processes (Papazoglou 2003). A SOA facilitates that self-contained loosely coupled services can be
coinposed and orchestrated to cross-orgariizational business processes. Workflows, which are typically the automation of a
business process, may use Web Services as an Open standard technology that have the potential to overcome integration prob-
lems by composing and implementing business processes regardless of the underlying legacy System (Alonso et al. 2004).
Web Services can be developed, deployed, and used regardless of the programming language in which the service has been

I

Arnericas C o n f e r e n c e o n Information S y s t e m s Page 2 of 8

Eckerr. Repp. Schrrlre, Berbner, Sfeinrnerz An Approach f i r Capaciiy Pkmning o f Weh Service Workflows
originally defined. Further, Web Services can be accessed and executed remotely through standardized Internet protocols.
Usually Web Services are based on Open XML standards like SOAP (W3C 2003), WSDL (Web Services Definition Lan-
guage (W3C 2001)), and UDDl (Universal, Description, Discovery, and Integration), which are widely used for integration
purposes within enterprises (Staab et al. 2003). Web Services as a technology based on Open XML-standards have become
important to realize workflows by integrating heterogeneous legacy Systems and coupling IT-systems of different business
partners. One of the major challenges in the area of Service-oriented Computing (SOC) is the automated and dynamic com-
position of Web Service workflows for the business process execution.

In our previous work we described the detailed workflow execution within one workflow (Berbner et al. 2005a, Berbner et al.
2005b) and the designed and prototypically implemented proxy-architecture Web Service Quality of Service Architectural
Extension (WSQoSX), which is based on Web Service technology and enables the selection of specific Web Services at run-
time. Furthermore, it facilitates the management of their Service Level Agreements (SLAs) and replaniWig strategies to opti- ! JL-
mize the whole workflow concerning given ~ m g . cost, reputation, response time, and throughput. In Berbner et
al. (2007) we designed and evaluated heuristics to adapt the execution plan to the actual behavior of already executed ser-
vices by a dynamic service selection at runtiine, ensuring that the QoS and cost requirements are still met.

Workflows with a high repetition rate and a high business value, e.g. claims handling, loan handling, and accounting, require
a continuous workflow control including capacity planning strategies to handle all execution requests and even peaks. The
capacity planning procedure concerning a complete business process management requires the following steps: understand-
ing the environment, workload characterization, workload model validation and calibration, performance model develop-
ment, performance model validation and calibration, workload forecasting, performance prediction, cost model development,
cost prediction, and cost/performance analysis (Menasck and Almeida 2002). Capacity planning, in the context of workflow
and business process automation, is inevitable due to the risk of poor performance and has become a major issue in recent
years. Capacity planning can be described as the process of predicting when future load levels of a business process will satu-
rate the system and determining the most cost-effective way of delaying system saturation as much as possible (Menasck et
al. 1994). Considering a generic credit process, which can be decomposed into the sub processes loan request, credit assess-
ment, servicing, and workout, represents a workflow with a high repetition rate. The high number of execution requests of the
credit process has to be processed by a composed Web Service workflow. In order to ensure the complete execution of all
requests a continuous capacity planning is required. It is indispensable to achieve a proactive and continuous capacity plan-
ning procedure to guarantee that all requests of a workflow can be served. Due to the necessity of a holistic workflow control
for workflows with high repetition rates, we propose a capacity planning and cost-effective approach for Web Service work-
flows.

The rest of this research in Progress paper is structured as follows. The next section shows an overview about the considered
Web Service workflows. The proposed capacity planning approach for Web Service workflows including a cost-effective
model supporting the capacity planning approach is described in the following section. The sustainability of the proposed
approach is descnbed in the next section with an evaluation. The paper closes with a conclusion and an outlook on future
work.

Web Service workflows

In the organization theory, a business process is a consecution of activities, which creates a value to the customer. ' A busi-
ness process is a set of one or rnore linked procedures or activities which collecrively realize a business objective or policy
goal, nomally within the context of an organizational structure definingfuncrional roles und relationships" (Workflow Man-
agement Coalition 1999). Workflows are typically the automation of a business process by IT-systems. "A WorkJlow is the
automation of a business process, in whole or part, during whicli documents, infonnation or tasks are passedfiom one par-
ticipant to another for action, according to a set of procedural rules" (Workflow Management Coalition 1999). In order to
execute a business process several Web Services WSi (i=l, ..., n) can be composed to a Web Service workflow. It is possible
to select and inter-connect Web Services provided by different service providers or partners according to a business process
(Zeng et al. 2004). Therefore, a business process implemented with Web Services in order to execute the basic activities of
the workflow can be described as a Web Service-based workflow.

From an economical and technical aspect, the tasks within a workflow are treated as indivisible. It is not allowed to execute a
task only to a specific part. Each task has to be executed completely. In the following, we consider a workflow, consisting of
several specific different tasks n, wliich are executed sequentially and realized by Web Services. To ensure that the tasks are
executed sequentially, task i (i=l, ..., n) has to be executed before task i' (i '=l, ..., n) if i<i'. For each task the workfiow control-
ler has to select the appropriate Web Service that provides the required functionality for tlie specific task i (i = l , ..., n) . In addi-
tion, the controller has to plan the whole execution of the workflow, i.e. which Web Services have to be invoked in which
order. The resulting execution plan provides the sequential order and the detailed execution procedure of the workflow and

2

Page 3 of 8 Americas Con fe r ence a n Information S y s t e m s

Eckerr, Repp, Schulte, Berbner, Steinmetz An Approach fnr Capacify Plnnning of Web Service Workflows
defines that the tasks are fonvarded to the first Web Service WSI. After WS, has executed its work package, WS, will invoke
the next Web Service WS2. Each Web Service will invoke the next Web Service until the workflow is completed. The last
invoked Web Service gets the instniciion from ihe execution plan to forward the results to the workflow controller. Each of
these tasks has a specific but fixed response time (i=l, ..., n), which is specified iii the SLAs with the service provider.
The response time of each Web Service can be furtlier divided into task processing time, network processing time (i.e. time
consumed while traversing the protocol stacks of source, destination, and intermediate systems), and the network time itself
(Repp et al. 2006). In the considered workflow the response time trt,,yp,i of each Web Service WSi can be described as:

Assuming that the workflow has to be instantiated in order to be executed several times due to a large amount of requests a
fixed time after which the next instance execution will start has to be defined. This time is referred to as the cycle length cl,
i.e. after the specific time period cl the next instance will start the execution if there is an incoming request for a workflow
execution. This implies that in ro the execution of the first request will start and the next instance execution will start in tl=
to+cl. To descnbe the starting time of each instance execution t„„„ we denote e as the number of request executions. The
starting times for the executions are:

Based on the aforementioned assumption and multiple execution requests, the workflow controller has to plan the instance
execution in advance to guarantee that the incoming requests can be served by the composed Web Service workflow. The
resulting capacity planning problem can be seen as a simple assembly line balancing problem (Domschke et al. 1997) with
the aim to parallelize workflows to guarantee that a specific number of requests can be served within a given time period. The
proposed capacity planning approach to solve this problem is depicted in the following section.

Capacity planning for Web Service workflows

In this section, we present our proposed capacity planning approach to design the workflow control in advance. The aim of
the approach is to guarantee that a fixed number of requests can be executed in a specific time period (Almeida and Menasck
2002).

Capacity planning approach

This approach meets the following assumptions: a fixed time between the sequential instance execution, in the SLAs is de-
fined that the availability of the Web Services for the workflow executions are guaranteed for a specific time tmfi, the costs
are paid per instance parallelization, and the costs per Web Service are anti proportional to the response times. As we men-
tioned earlier, the response time of each task is the elapsed time that occurs from invoking a Web Service until the Web Ser-
vice is executed completely. After this time, the next Web Service can be invoked and the next task can be executed. Usuaily
the response times of the Web Services are conservatively defined in the SLAs. The service provider only offers response
times, which can be safely realized. Assuming that the instance execution starts in t„,, the instance execution completion
will be in t,vlun,e+T. The overall execution time T of the instance is the summation of all response times of the invoked Web
Services of the workfiow.

The execution plan of a workflow defines the composition and the invocation of the Web Services. In order to analyze,
whether the workflow is able to serve all incoming requests, the capacity respective the number of parallel executions of the
workflow and the workload of the process have to be analyzed. In order to serve all incoming execution requests the work-
flow has to be available a specific penod of time tuwil per day and has a specific number of minimal requests r per day. An
upper bound for the cycle length CI,,„ of the workflow (the elapsed time of starting a workflow until the workflow is exe-
cuted completely) can be calculated by the division of the time, where the workflow has to be available and the number of
requests in this time period. The maximum cycle length is defined by:

Amer icas C o n f e r e n c e o n Information S y s t e m s Page 4 of 8

Ecker!, Repp, Schulte. Berbner, S~einntetz An Approach for Capncity Planning of Weh Service Workjlows

The cycle length cl,,,, is the maximum length to ensure that the composed workflow can serve all incoming requests of a
workflow execution, i.e. after the time ~ l „ „ ~ the next instance has to Start to guarantee that all incoming request can be served.
In addition to the maximum cycle length cl,,„„ we can specify a lower bound for the number of instances w,lli,l that have to be
parallelized to guarantee that all requests r can be executed by the specific workflow. The calculation of the number of paral-
lel instances wmi , can be done by dividing the overall execution time T of the instance by the maximum cycle length cl,,„.
The formula for w,,,~,, results to:

If the overall execution time T, which is restricted by the response times of the invoked Web Services, exceeds the maximum
cycle length cl„„ instances have to be parallelized to ensure that all requests can be served. In this scenario, it is important to
consider that w m i , can only accept whole numbers due to the indivisibility of instances. It is not feasible to execute a Web
Service respective a task within one instance execution in part.
The introduced formulas define an upper bound for tlie cycle length cl„„ the overall response time T of one instance execu-
tion and the number of parallelized instances wmi,. A measure to quantify the utilization ratio of the composed workflow
based on the cycle length and workflow parallelization is the level of capacity of the workflow. The level of capacity LC,
where cl denotes the actual used cycle length can be described as:

Each parallelization of the instances leads to higher costs to execute all incoming execution requests, because the service pro-
vider has to provide more services at the Same time. He also has to increase his capacity to be able to offer parallel services
and is therefore faced with higher costs, which are passed on the service consumer. The aim of the workflow controller dur-
ing the capacity planning process is to maximize the capacity of the designed workflow. Thus, the level of capacity has to be
optimized for each instance parallelization for an optimal usage of the workflow. In order to achieve a high level of capacity,
the workflow controller Iias to analyze all minimum and maximum cycle lengths within one instance parallelization. The
minimum and maximum cycle length for the parallelization of instances ~ l , , , ~ , , ~ and clll„„ can be derived as follows:

cl„ ,,,. = lim i b ' w = 1 ,..., m
y+w-l P

Assuming that the overall response time T of an instance is fixed and the workflow controller has made a decision for the
number of parallelization, an optimal level of capacity can be achieved by selecting a small cycle length. Due to the indivisi-
bility of Web Services and the minimum number of request r in the available time period rWil, the chosen minimum cycle
length has to be smaller than cl„. Concerning the formula for LC an optimization will be achieved by using the minimum
cycle length ~ l , , , ~ ~ , , . This implies, that after the workflow controller has made a decision how many instances he wants to par-
allelize, he has to choose the minimum cycle length ~ l , , ~ ~ ~ , , of the corresponding parallelization W to achieve an optimum for
the level of capacity.

Obviously, for each number of parallelization we can determine the optimal level of capacity. The challenge for the workflow
controller is to minimize the execution time for the workflow and to minimize the costs. Execution time in this context means
that the smaller the cycle length c l , the faster the workflow controller can execute the requests. Without parallelization, the
requestors have to wait a long period of time until their requests will be executed. The minimization of execution time yields
to a high number of parallelization and therefore higher costs. To handle the tradeoff between execution time, i.e. cycle
length, and the resulting costs the next subsection describes our proposed cost-effective model.

Page 5 of 8 Americas Con fe r ence o n Information Systems

Eckerr, Repp. Schrrlre, Berbner, S~einrnerz An Approachfir Capaciy Plonning of Web Sentice Workj7ows

Cost-effective model for the capacity planrzing approach

In the following analysis, we assume that the workflow controller has to pay fixed costs per service for the composition of the
workflow, i.e. each invoked Web Service in the workflow has specific costs ci (i=l, ..., n) which are specified in the Service
Level Agreements with the service provider. Therefore, the overall costs C for the provision of one workflow are the summa-
tion of all costs ci (i=l, ..., n) . The overall costs for the workflow controller depend on the number of instance parallelization
W , because a parallelization of instances leads to a multiple use of services within a fixed time period. The service provider
will demand higher costs if he has to offer multiple services to realize instance parallelization. We denote the costs to serve
all incoming request depending on the number of parallelization w with C„,.

The workflow controller is faced with a tradeoff between cost reduction and achieving small cycle lengths. He has to make a
decision how many instances at reasonable costs he wants to parallelize to obtain a passable cycle length. A purely cost mini-
mizing approach would be to choose the derived maximum cycle length cl,,,, to achieve a small number of instance paralleli-
zation. In fact, the requestor should wait a long time until all requests are processed. Thus, the workflow controller also has to
be concerned about the cycle lengths and the instance execution times to enable small waiting times for the request. The con-
troller has to make a decision which cycle length is acceptable at which costs, which is dependent on his time and costs pref-
erences. In addition, he can renegotiate with the service provider to offer services, with smaller response times. The workflow
controller has to decide how many instances he wants to parallelize based on increasing costs per parallelization. For a further
cycle length and cost reduction, he has to negotiate with the Web Service provider to change the SLAs to smaller response
times for each Web Service execution. After the negotiation of smaller response times, this time reduction leads to a decrease
in the overall response time T, a decrease in the minimum instance parallelization and a cost reduction for the workflow exe-
cutions C„, even it rnight be that the costs per instance C increase due to the new SLA negotiation. The correlation between a
reduction of the overall response time kt (in percent) and the impact on the cycle length by a fixed number of parallelization
is:

This implies that if the overall response time of one instance execution is reduced by At %, the minimum cycle length cl,,,;,,,,
will be reduced by the same percentage. The reduction in instance parallelization with a fixed minimum cycle lengths cZ,,,~,,~
before the SLA renegotiation can be described as:

With tlie identified approach, the workflow controller is able to analyze the instance parallelization due to the overall re-
sponse time, the requests in a given time period, the cycle length and the overall costs to serve all execution requests. The
workflow controller is faced with the tradeoff of response time reduction and an increase in costs per service. Depending on
the reduction of response time and the increase in costs per service, the workflow controller is able to measure the instance
parallelization and the overall execution costs based on his costs and execution time preferences. In the next section, we
evaluate the capacity and cost planning approach with an example.

Evaluation

In order to evaluate our approach we consider a process with a high repetition rate and a high business value. In the previous
section, we depicted formulas how to calculate the maximum cycle length cl„„, the level of capacity of the considered work-
flow LC and the overall costs for the instance parallelization C,. We assume that the business process can be decomposed
into n=14 different tasks as a whole, i.e. 14 different Web Services which fulfill the functional requirements. Dependent of
the analyzed process, the number of different tasks n may vary. The response times of the invoked Web Services, which ful-

Americas Conference on Information Systems Page 6 of 8
Eckert, Repp, Schulte, Berbne,; Sreinrnerz An Approach for- Capaciiy Planning of Web Service Workfiows
fill the required functionality for each specific task, are depicted in Table 1. It can be seen that the execution of one instance
needs at least T = l , I sec in this example.

Table 1. Response time of the invoked Web Services
I WSI I WS2 I WS3 (WS4 I WS5 I WS6 I WS7 (WSIl I WS9 I WSlo I 1 WS12 (WS13 (WS14 I T

t„ , i (sec.) I 0,l 1 0,05 1 0,07 1 0,08 1 0,OS 1 0,07 1 0,08 1 0,08 1 0,05 1 0,08 1 0,09 1 0,09 1 0,09 1 0,09 1 1,l

We assume that the business process has a minimum number of requests r=100 .000 per day and the time where the process
has to be available is tmi,=24/1. Calculating the maximum cycle length which is at least necessary to serve all incoming re-
quests with the above mentioned formulas leads to c1„=0,864 sec. Obviously CI„, is smaller than the overall response time
T for one instance execution. This implies that if the workflow controller would execute one request after another it would
not be possible to serve all incoming request during the availability time tflYfli,. Thus, the instance execution has to be parallel-
ized to guarantee that all requests can be served within t„,oil. Thus, for this scenario w,,,,=2, i.e. the workflow controller has to
operate at least two parallel workflows.

Parallel workflows
W

Figure 1. Parallel workflow execution

Figure 1 depicts the correlation between CI,,,„ w,,,~,,, and the level of capacity L C of the workflow. In this example the level of
capacity is set to LC=0,9 , which implies that the workflow has a level of capacity of 90%. The workflow has still the poten-
tial to increase its efficiency. In order to optimize the workflow efficiency with respect to the level of capacity, the isoquant
of LC has to be shifted until the isoquant reaches the minimum number of instance parallelization. This implies that graphi-
cally the resulting isoquant will touch the minimum cycle lengths for each instance parallelization as mentioned earlier. Both
the minimum and the maximum cycle lengths of the introduced scenario are depicted in Table 2.

Table 2. Minimum and maximum cycle lengths of the workflow parallelization
W 1 1 1 2 1 3 1 4 1 5 I 6 1 7 18 19 110 111 1 1 2 1

Page 7 of 8 Americas Conference o n Information S y s t e m s

Eckerr, Repp. Schrtlre, Berbner, Sreinmerz An Appronch.for Copnciry Planning of Web Sewice WorkfTows
As shown in Figure 1 the workflow controller may parallelize at least wo workflows to serve all incoming requests. In order
to make a decision of how many instances have to be parallelized Table 3 shows the resulting operating costs for the number
of parallel instances (assuming the costs for one parallelized instance is C=0,15 $) depending on the minimum cycle lengths.
The coherence between workfiow parallelization and costs is linear.
Based on these characteristics the workflow controller has to analyze the execution time preferences as well as his cost pref-
erences. Obviously, it is not trivial to make the decision how many instances have to be parallelized, because of the different
preference structures of the workflow controller. Assuming that the main objective of the workflow controller is to minimize
the cycle length and realize a fast execution of all requests, he can parallelize as many instances as he wants which also leads
to higher costs.
In contrast, if the workflow controller has the objective to minimize his costs, he has to apply at least w = 2 workflows due to
the restriction of cl,,,=0,864. According to the implementation of w = 2 workflows the workflow controller has further the
possibility to realize quite smaller cycle lengths up to ~1 , , ,~ ,~=0 ,55 sec. to execute all requests r=100.000.

Assuming that the workfiow controller is restricted by a fixed budget for the whole workflow execution, he has to choose a
number of instance parallelization at reasonable costs. Afterwards he can calculate the resulting cycle length by choosing the
minim cycle length cllIlin,„ dependent on his chosen W . After he made his decision, he has the possibility to renegotiate with
the service provider to decrease the response times for the invoked Web Services. This may lead to a small increase in costs
per instance C, but the fact that smaller response times allow a smaller number of instance parallelization, which has a posi-
tive effect on the overall costs C,, leads to cost savings for the workflow controller in the long term.

Table 3. Parallelization costs

Conclusion and outlook

In this paper, we propose a capacity planning mechanism for Web Service workflows to ensure that all incoming requests for
a workflow in a given timeframe can be served. We also propose a cost model to minimize the workflow costs for parallel
executions. Due to the preference structure and tlie resulting costs for the parallelization, the workflow controller is able to
parallelize instance executions at reasonable costs.

Wmin

cl„,,(sec.)
L CW ($)

Our further research aims at extending our approach to other cost models and preference structures of the workflow control-
ler. We will enhance the capacity planning approach considering other resource planning problems, which may also occur
during a workflow execution. Further, we will focus on other workflows with a high repetition rate and a high business value,
to simulate and further evaluate the approach proposed in this paper. For this, we Start to implement a simulation engine to
analyze the trade-off between costs, the reduction in response time and instance parallelization. We will also evaluate our
approach in business scenarios within the E-Finance industry.

4
0,275
0,60

Acknowledgments

This work is supported in part by the E-Finance Lab e.V., Frankfurt am Main, Germany (http://www.efinancelab.com).

1
1,100
0,15

References

5
0,220
0.75

1. Almeida, V. A. F., and Menasck, D. A. "Capacity Planning: An Essential Tool for Managing Web Services," IT Pro-
fessional (4:4), 2002, pp. 33-38.

2. Alonso, G., Casati, F., Kuno, H., and Machiraju, V. Web Services. Concepts, Architectures aiid Applications, Berlin,
Germany: Springer, 2004.

2
0,550
0,30

6
0,184
0,YO

3
0,367
0,45

7
0,158
1,05

8
0,138
1,20

Y
0,123
1.35

10
0,110
1,50

11
0,100
1,65

12
0,092
1,80

Americas Conference o n Information Systems Page 8 of 8
Ecke>?, Repp. Schulte, Berbner, Sreinmerz An Approach for Capaciry Planning of Web Service Workji'ows

3. Becker, J., Kugeler, M., and Rosemann, M. Process Management. A Guide for the Design of Business Processes. Ber-
lin. Germany: Springer, 2004.

4. Berbner, R., Grollius, T., Repp, N., Heckmann, O., Ortner, E., and Steinmetz, R. An approach for the Management of
Service-oriented Architecture (SoA) based Application Systems, Enterprise Modelling and Information Systems Ar-
chitectures (EMISA 2005), Klagenfurt, Austria, 2005.

5 . Berbner, R., Heckmann, 0.. and Steinmetz, R. An Architecture for a QoS driven composition of Web Service based
Workflows, Networking and Electronic Commerce Research Conference (NAEC 2005). Riva del Garda, Italy, 2005.

6. Berbner, R., Spahn, M., Repp, N., Heckmann, O., and Steinmetz, R. Dynarnic Replanning of Web Service Workflows,
IEEE International Conference on Digital Ecosystems and Technologies 2007 (IEEE DEST 2007), Caims, Australia,
2007.

7. Domschke, W., Scholl, A., and Voß, S. Produktionsplanung - Ablauforganisatorische Aspekte, Berlin, Germany:
Springer, 1997.

8. Hammer, M., and Champy, J. Reengineering the Corporation: A Manifesto for Business Revolution, New York, USA:
HuperBusiness, 2003.

9. Menasc6, D. A., and Almeida, V. A. F. Capacity Planning for Web Services: Metrics, Models, and Methods, Upper
Saddle River, New Jersey: Prentice Hall, 2002.

10. Menasce, D. A., Almeida, V. A. F., and Dowdy, L. D. Capacity Planning and Performance Modeling: From Main-
frame to Client-Server Systems, Upper Saddle River, New Jersey: Prentice Hall, 1994.

I I . Papazoglou, M. P. Service-Oriented Computing: Concepts, Characteristics and Directions, 4th International Confer-
ence on Web Information Systems Engineering (WISE 2003), Rome, Italy, 2003, pp. 3-12.

12. Papazoglou, M. P., and van den Heuvel, W. J. "Leveraging legacy assets," in: Papazoglou, M. P., Spaccapietra, S. and
Tari, Z. (Eds.), "Advances in Object-Oriented Modeling," MIT Press, Cambndge, MA, 2000, pp.131-160.

13. Repp, N., Berbner, R., Heckmann, O., and Steinmetz, R. A Cross-Layer Approach to Performance Monitoring of Web
Services, ECOWS 2006 Workshop on Emerging Web Services Technology, IEEE, Zurich, Switzerland, 2006: ISSN
16 13-0073, vol. 234, http://ceur-ws.orgNol-234lpaper2.pdf.

14. Staab, S., Benjamins, R., Bussler, C., Fensel, D., Gannon, D., Maedche, A., Sheth, A., and van der Aalst, W. M. P.
"Web services: Been there, Done that?" IEEE Intelligent Systems, Trends & Controversies (%I), 2003, pp. 72-85.

15. W3C, SOAP Version 1.2, W3C Recommendation, http:/lwww.w3.orglTR~soapl2/, 2003.
16. W3C, Web Services Description Language (WSDL) 1 .l , W3C Note, http://www.w3.org/TR/wsdl, 2001.
17. Workflow Management Coalition, "Workflow Management Coalition - Terminology & Glossary," Technical Report

WFMC-TC- I01 I, Hampshire, United Kingdom, 1999.
18. Zeng, L., Benatallah, B., Ngu, A., Dunlas, M., Kalagnanam, J., and Chang, H. "QoS-aware Middleware for Web Ser-

vice composition," IEEE Transactions on Software Engineering (30:5), 2004, pp. 31 1-328.

