
JASMINE: Javo Applicntion Sharing iti Multiirser INtertlctive Environments:
Abdulmotaleb EI Saddik, Shervin Shirmohammadi, Nicolas D. Georganas, and Ralf Steinmetz. Accepted
for the international Workshop on Interactive Distributed Multimedia Systems and Telecommunication
Scrvices (IDMS 2000) , Oct. 2000 Entschede, Netherland

JASMINE: Java Application Sharing in Multiuser
INteractive Environments

Abdulmotaleb EI Saddik', Shervin shirmohammadi2,
Nicolas D. ~eorganas ' , and Ralf steinmetz"'

I) lndustrial Process and System Communications, Dept. of Electrical Eng. & lnformation
Technology, Darmstadt University of Technology, Darmstadt, Germany

2) Multimedia Communications Research Laboratory, School of lnformation Technology
and Engineering, University of Ottawa, Ottawa. Canada

3) GMD IPSI, German National Research Center for lnformation Technology,
Darmstadt, Germany

{Abdulmotaleb.El-Saddik, Ralf.Steinmetz}@kom.tu-darmstadt.de
{Shervin.Shirmohamrnadi, Nicolas.Georganas)@mcrlab.uottawa.ca

Abstract. In this paper. we describe an approach for ~rnnsparen~ collaboration
with java applets. The main idea behind our system is that User events occurring
through the interactions with the application can be caiight, distributed, and re-
constructed, hence allowing Java applications to be shared transparently. Our
approach differs from other collaborative systems in the fact that we make use
of already existing applets and applications in a collaborative way, with no
modifications to their source-code. We also prove the feasibility of our archi-
tecture presented in this paper with the implementation of the JASMINE proto-
type.

1 Introduction

The simplicity of access to a variety of information stored on remote locations led to
the fact that the World Wide Web has gained popularity over the last decade. In this
context, Computer Supported Collaborative Learning (CSCL) is becoming more and
more important. Collaborative systems allow users to view and interact with a distrib-
uted application during a Session. The use of collaborative systems increases in re-
search and business as well as in education. A problem of many cooperative applica-
tions is their platforin dependence, leading to the fact that users communicating in
heterogeneous environments are restricted in their choice of a cooperative application.
For example, a User might choose a UNIX-workstation, while another might prefer
Windows 95/98/NT or a Macintosh. The introduction of the platform-independent
programming language, Java, made it possible to overcome these problems. Diverse
approaches were used to develop Java-based collaborative systems. Almost every
system described in the literature requires the use of an Application Programming
Interface (API) [3], [4], [5]. Others are trying to replace some Java-components with
self-defined collaborative components in a transparent manner [7].

The approach presented in this paper differs from other approaches in the way that we
neither propose a new API for developing collaborative Systems nor try to replace core
components at run time. In fact, a great variety of well-designed applets already exist
on the World Wide Web, which were developed to be run as stand-alone and it would
not be acceptable or possible for rnany developers to re-implemcnt or change these
programs to rnake them work in a collaborative way. In our architecture, we make use
of the Java Events Delegation Model [I31 to extend the capabiiities of Java applica-
tions in a way that stand-alone applets can be used collaboratively. The delegation
event model of JDKI.1 provides a standard mechanism for a source component to
generate an event and send it to a set of listeners. Furthermore, the event model also
allows to send the event to an adapter, which then works as an event listener for the
source and as a source for the listener. Because the handling of events is a crucial task
in developing an application, this enhancement makes the development of applets
much rnore flexible and the control of the events much more easy.

Fig. 1. Illustration of the main idea

The approach behinds our concept, which is illustrated in Figure I , underlies the fol-
lowing requirements:

No restrictions in the source code are required to share an applet. Both AWT- and
Swing-based applets should be supported. A solution restricted to only one kind of
components is not acceptable.
Applications using the standard Java-Core API should be supportcd.
No new API should be developed.
As less as possible of the network's bandwidth should be consumed.

Collaboration
Framework

P

The practicality of our architecture is proven by an implernentation. We have devel-
oped a collaboration system, called JASMINE (Java Application Sharing in Multiuser
INteractive Environments), which facilitates the creation of multimedia collaboration -
sessions and enables users to share Java applets and applications, which are either pre-
loaded or brought into the session "live". The system also provides basic utilities for
session moderation and floor control. Our approach applies to both applets and appli-
cations and hence these terms are sometimes used interchangeably in this document.

Shared
Applet 4 b

The rest of the paper is organized as follows. Section 2 discusses the system architec-
ture, while section 3 describes the implementation of JASMINE, followed by discus-
sion of related work in section 4. Finally, section 5 concludes the paper and gives an
out-look for future work.

2. JASMINE Architecture

The principal idea of JASMINE is that User events occurring through the interaction
with the GUI of an applet can be caught, distributed, and reconstructed, hence allow-
ing for Java applets to be shared transparently. This form of collaboration which is
supported as long as a learning-session takes part, enables Users to interact in real-
time, working remotely as a team without caring about low-level issues, such as net-
working details.

Figure 2 illustrates the overall concept of JASMINE, where our collaboration
framework wraps around an applet that is to be shared. The framework listens to all
events occurring in the graphical User interface of the applet and transmits these events
to all other participants in order to be reconstructed there. The framework captures
both AWT-based and Swing-based events. After capturing the event, it is sent to the
communication rnodule (JASMWE-Server) where the event is sent to all other par-
ticipants in the session.

Fig. 2. Overall systern architecture of JASMINE

4 b

In the next sections we are going to discuss the architecture in more details, first the
client side, and then the communication module.

/

Comrnu-
nication
rnodiile

4 +

The JASMINE client can be Seen as a component adapter. Every event occurring at
the graphical User interface of the application is sent to this adapter, which then sends
the events to the collaboration Server (JASMINE-Server). The client is a Java applica-
tion, which consists of the following components:

Collaboration Manager
Component Adapter
Listener Adapter
Event Adapter

These components are discussed next.

2.1.1 Collaboration Manager

The Collaboration Manager is the main component on the client side and provides the
User with a graphical interface offering options such as joining the session, starting
and sharing applicationslapplets and chatting with other participants. The collaboration
manager is also responsible for dispatching external events coming from the commu-
nication module and forwarding them to the component adapter, as well as receiving
internal events from the component adapter and sending them to the communication
module.

2.1.2 Component Adapter

The Component Adapter maintains a list of the GUI-components of all applications
and applets. This list is created with the help of the java.awt.Container class, which
allows us to get references of all applet components [13]. With the help of the main
window of an application, a list of the GUI components in the application can directly
be created. Therefore, the main window of an application loaded by the Collaboration
Manager is registered by the Component Adapter. However, Java applets do not use
stand-alone windows. They are an extension of the class java.applet.Applet and thus of
javci.a~vr.Pane1. Hence, applets can be easily placed into a window, which can then be
registered as the main window for the applet. All these registrations are done at the
Component Adapter. An example Syntax of the registration by the Component
Adapter is shown in Figure 3.

.....
Class CI = Class.forName(className);
11 If it is an applet, instantiate and locate
11 i t in a Frame
myApplet = (Applet)cl.newInstance();
myApplet.init();
myWindow = new Frame("TitelV);
myWindow.add("Centerm, myApplet);
// Otherwise (if it is an instance of Window) just
/I instantiate it
myWindow = (Window)cl.newInstance();
I1 Register this Frame as main Frame
I1 by Components Adapter
ComponentsAdapter.addContainer(myWindow);
....

Fig. 3. Excerpt of the instantiation rnethod

After the registration is completed, a list of all Swing andlor AWT-components within
the loaded application/applet is created. This task is done in the same order on each
client, so that a coinponent has the Same reference identification at all clients. These
references are used to point to specific components, which are the source of the events
generated internally and the recipient of the events generated externally. With the help
of the references, the recipient of an incoming event is located and the event is recon-
structed on each client, as if i t occurred locally.

2.1.3 Listener Adapter

The Listener Adapter implements several AWT listeners, which listen to Mo~iseEvent
and KeyEvent for al l AWT-components except of java.awt. Scrollbar, java.awt. Choice
and java.awt.List. For these components the Listener Adapter listens to AdjiistntentE-
vent, ItemEvent and ActionEvent. When an event occurs on the GUI of the application,
the Listener Adapter catches it, converts it to an external event, and forwards i t to the
Collaboration Manager. The Collaboration Manager in turn sends this event to the
communication module, which propagates the event to all other participants.

2.1.4 Event Adapter

The Event Adapter works opposite to the Listener Adapter: i t converts incoming ex-
ternal events to AWT events, which then can be processed locally.

2.1.5 Data Flow

Let us summarize the client side's architecture through the following data flow dia-
gram. Figure 4 shows the overall event circulation of the system.

J A S M I N E
C<?m. Modi i lc

Fig.4. Event Circulation

Thcre are two main data paths in the system: the first path is labeled with numbers 1,2
and 3. This path is used to send the internal AWT events to the communication mod-
ule, and it works as follows: any Event occurred in a Java-application is caught by the
Listener Adapter. The Listener Adapter first tests whether the event is an external or
an internal event. It then sends only the internal events, which were not received from
other clients, to the Collaboration Manager, which in turn sends the events to the
communication module.

Via the second data path shown in figure 4 with numbers 4, 5, 6 and 7, the external
AWT events received from the communication module are captured by the Collabora-
tion Manager and the Component Adapter in order to reconstruct the event locally.
After receiving the remote event, the Component Adapter extracts the information
about its target component and sends this information togeiher with the events to the
Event Adapter. The Event Adapter converts the event to normal AWT events and
sends them to the application, which then reacts to the event in the Same manner as i t
would to a local user's interaction with the application's GUI.

2.2 JASMINE Server

JASMINE uses a multithreaded server, where the main server launches a sub-server
for each user joining the session. The sub-server is responsible for processing only the
update rnessages or requests coming in from its own client. Once the sub-server re-
ceives the update message, i t will send it to all other clients in the session (figure 5).
This will create a fast system response, at the expense of more resources utilized due

to sub-server threads. However, usually only one client at a time can control and inter-
act with an application (due to floor control as we will see), and most thrcads will
simply be waiting and won't consume too many resources.

Main

Fig. 5. JASMINE Server

The server's main job is to propagatc the incoming events from a User to all other
users. But it also provides other services, which are necessary for maintaining a col-
laboration session. It provides services for scssion moderation and management, floor
control, and data exchange. Data exchange is of particular importance for multimedia
sessions as we will See next.

2.3 Advanced Multimedia Applications

As discussed in the literature, a pure transparent collaboration system is not sufficient
for multimedia applications [12]. This fact is due to specific services that are required
by multimedia applications such as synchronization, quality of Service, etc. For exam-
ple, think of a collaboration session where a video applet is being played. When one
User presses the pause button, simply capturing the "pause event' and sending it to all
other clients is not sufficient because when other clients receive the pause event and
apply i t to their video player, at each client the video player will pause on a different
frame and clients will not be synchronized. Hence there is a need to send control mes-
sages between clients, such as "pause on frame number 57" to maintain consistency
among all users. The JASMINE Server provides a high-level API that can be used for
this type of advanced requirements. Howevcr, an application must specifically use the
API to take advantage of these functionalities, hence the transparent feature of the
system is somewhat diminished.

3 Implementation

Figure 6 illustrates a sample screenshot of a typical JASMINE session. It shows the
client's Collaboration Manager and some shared applets and applications running in
the session.

JAS MINE
' J

Fig. 6. A screenshot of a sample JASMINE session

3.1 Configuration file

Information about locally available applications and applets, which can be used in a
collaborative way, are read from a configiiration file. The configuration file, which is
organized as a properties file, contains the names of the applications/applets, which
will be presented in the menu and the full names of their main class or URL. The
entries have the following Syntax:

application.[n].name = [name]
application.[n].class = [class]

where:
n: number of the application in the list.
name: a suitable name for the application to be shown in the menu.
class: full name of the main class.

An example configuration file is illustrated in Figure 7.

#Application entries
application. I .name=myTestApplication
application. I .class=kom.develop.apps.MyApp
Applet entries
applet. I .name=myTestApplet
applet. 1 .class=kom.develop.applets.TestApplet
URL entries
url. 1 .name= TestUrl
url. I .address=http://desiered.server/test.html

Fig. 7. Excerpt from a configuration file

Before starting the session, applets and applications that are thought to be useful can
be placed in this configuration file. Additional applets and applications can be brought
into the session live as needed by typing the corresponding URL in the appropraite
field.

3.2 Floor Control

A collaborative system must address many issues such as synchronization, latecomers,
management or moderation, floor control, and awareness [12]. Among these, floor
control is perhaps the most primary issue without which a collaborative session won't
function properly. In short, floor control ensures that only one Person at a time con-
trols the shared application. Without tloor control, there will be collisions of events,
which leads to unwanted results in the shared application.

In JASMINE, floor control is achieved by means of locking. Each application has a
corresponding seninphore on the Server. When a User wants to interact with the shared
application, the system first locks the application by locking a semaphore. At this
point, any other Users trying to interact with the application will be denied access.
When the first User is finished, the system releases the semaphore and others can take
control of the application.

public voidmouseDragge~MouseEvente) (
//user is dragging the mouse. so ask for control

if (getContro[)==true) (

// do whatever must be done for a mouse drag

releaseContro();

1
eise displayMessage("Access Denied!");

1

Fig. 8. Intuitive floor control

For a specific shared application, most developers prefer an "intuitive" implementa-
tion of the floor control capability; i.e., as soon as the user tries to interact with the
application, the client automatically asks for tloor control and allows or disallows its
user to interact. After the User is finished, the client releases the lock automatically.
Figure 8 shows sample Java code that demonstrates how the floor control is used in
an intuitive way. This approach is in contrast to the "direct" approach, where a client
must specifically ask for control, for example by pressing a "control-request" button.

3.3 Moderation

Although floor control addresses the issue of event collisions, it works on a first-
come-first-serve basis. This in turn leads to the possibility of a participant to abuse or
disrupt the session by feeding unwanted events into the session. There is therefore a
need to have a moderator in order for a session to be more productive, for example, a
teacher moderating a distance learning session. The moderator is usually the Person
who calls for a collaborative session and starts the server. In JASMINE we have two
types of sessions: moderated, and non-moderatcd. The server can be started by speci-
fying a login name and password for the moderator.

- .

Permiss

Permissi

. Moders
4- -

) Permi

'equests the

ssion

Fig. 9. Moderation capabilities in JASMINE.

Once the session starts, the moderator can login at any time and take control of the
session. When ihe session is moderated, no one can send any events to the server. A
participant wishing to do so must ask for permission from thc moderator as shown in
Figure 9a. The moderator will subsequently receive a message indicating the partici-

pants request to interact (Figure 9b) which the moderator can allow or refuse. Upon
moderator's acceptance of the user's request, the User will receive a green light, which
indicates that he or she can now send events to the session (Figure 9c). The moderator
can also dynamically "cut oft" a user's permission to interact if needed (Figure 9d). In
JASMINE, we allow only one User at a time to have permission to send events, al-
though this number can be increased based on the application.

4 RELATED WORK

There are many Java-based collaboration Systems, none of which offer a management
or moderation feature similar to ours. Kuhmünch [10] at the University of Mannheim
developed a Java Remote Control Tool, which allows the control and synchronization
of distributed Java applications and applets. The drawback of this approach is that i t is
necessary to have access to the original source code of the application or applets in
order to make it collaborative. That means every applet must initiate a Remote-
Control-Client object, which is usually done in the constructor of the applet. Also, the
event handling within the applet must be inodified in order to receive and/ or send
events from / to remote applets. The Java Shared Data Toolkit (JSDT) from JavaSoft
is also an API-based framework [15]. Habanero [I] is an approach that supports the
development of collaborative environments. Habanero is in its terms a framework that
helps developers to create shared applications, either by developing a new one from
scratch or by altering an existing single-user application which has to be modified to
integrate the new collaborative functionality. Instead of using applets, which can be
embedded in almost every browser, the Habanero system uses so-called "Happlets"
which need a proprietary browser to be downloaded and installed on the client site.
Java Collaborative Environment (JCE) has been developed at the National Institute of
Standards and Technology (NIST) coming up with an extended version of the Java-
AWT [2] called Collaborative AWT (C-AWT). In this approach AWT-components
must be replaced by the corresponding C-AWT components [3].

All these approaches propose the use of an API, which has the cost of modifying
the source-code of an application, re-implementing i t or to design and implement a
new application from scratch in order to make i t collaborative.

Java Applets Made Multiuser (JAMM) [8] is a system, which is similar to our ap-
proach in terms of its objective: ihe transparent collaboration of single-user applica-
tions. The difference between JAMM and JASMINE is the way collaboration is
achieved. In JAMM [6], the set of applications [hat can be shared is constrained to
those that are developed using Swing User interface components as part of Java Foun-
dation Classes, which are part of the standard JDK since version 1.2. JAMM's set of
applications is furthermore restricted to those which implement the Java serializable
interface.

5 Conclusion

We presented the architecture and irnplementation of our transparent collaboration
frarnework for Java applets and applications. We developed this architecture in order
for users to be able to collaborate via collaborative-unaware applications and applets
without modifying the source code. Our architecture enables us to use almost all sin-
gle-user applets and applications in a collaborative way. We have successfully tested
our System on a number of applets. We also observed that using the TCP-client-server
approach of our comrnunication rnodule can Support relatively large nurnber of users.

There are two outstanding issues rernaining. These issues are not directly related to
JASMINE but are research areas of the transparent collaboration paradigrn. The first
issue is that of latecomer-support. When a User Starts a session later than other partici-
pants, there is a need to bring this User up-to-date as opposed to Start frorn scratch.
This can be achieved either by sending the entire object state of the shared application
to the newcorner using object serialization, or by sending all the events occurred up to
now to the new User so that it follows the sarne sequence of events [hat other partici-
pants have gone through [12]. We're currently using JASMINE to experiment with
these rnethods.

Another issue was brought up in Section 2.3: multirnedia inter-client synchroniza-
tion and control. Transparent collaboration cannot address ihis issue alone and we
believe that using an API is necessary to achieve such functionality for rnultirnedia
applications.

Today, cornputing environrnents where Java applications and applets are running
over IP have become very popular and widespread. Our architecture helps people to
collaborate in such environrnents easier.

ACKNOWLEDGMENTS

The authors acknowledge the financial assistance of the Volkswagen Stifftung, Ger-
rnany, as well as the Telelearning Network of Centers of Excellence Canada (TL-
NCE) and the Natural Sciences and Engineering Research Council Canada (NSERC).

REFERENCES

1. Chabert et al, , "Java Object Sharing in Habanero", Cornmunications of the ACM, Volume
41, No. 6, June 1998, pp. 69-76.

2. H. Abdel-Wahab et al "An lnternet Collaborative environment for Sharing Java Applica-
tions" lEEE Computer Society Workshop on Future Trends of Distribured Cornputing
Systems (iTDCS'97). October 29 - 3 1 , 1997, pp. 1 12- 1 17.

3. H. Abdel-Wahab et al, "Using J n i ~ for M~tltitriedia Collnhorntive Al~pliccrtiotzs" Proc.
PROMSP6, Madrid, Spain, 1996.

4. Hnr~dlteld IP Connecriviy for 1998, IEEE lnternet Computing, Vol. 2, No. I, Janu-
ary/February 1998. pp. 12- 14.

5. International Data Corporation, "IDC's Forecast of the Worldwide Information Appliance
Marketplace 1996-2001". IDC Bulletin #W 15080, December 1997, (screen phone revisions
5/7/98).

6. Abdulmotaleb EI Saddik, Oguzhan Karaduman, Stephan Fischer. and Ralf Steinmetz.
"Collaborative Working with Stand-Alone Applets". In Proc. of the 12th International
Symposium on Intelligent Multimedia and Distance Education (ISIMADE'99). August
1999.

7. J. Begole et al, "Leveraging Java Applets: Toward Collaboration Transparency in Java",
IEEE lnternet Computing, March-April 1997, pp. 57-64.

8. J. Begole et al, 'Transparent Sharing of Java Applets: A Replicated Approach". Proc.
Symposium on User Interface Software and Technology, ACM Press, NY, 1997, pp. 55-
64.

9. J. Grudin, "Computer-Supported Cooperative Work: History and Focus", IEEE Computer,
Vol. 27, No. 5, May 1994, pp. 19-26.

10. Kuhmünch et al, "Java Teachware - The Java Remote Control Tool and its Applications",
Proc. ED-MEDIA'98, 1998.

I I. Multimedia Communication Forum Inc., "Multimedia Communication Quality of Serv-
ice". MMCF document MMCFl95-010, Approved Rev 1 .O, September 24, 1995.

12. S. Shirmohammadi et al, "Applet-Based Telecollaboration: A Network-Centric Approach",
IEEE Multimedia, Vol. 5, No. 2, April-June 1998, pp. 64-73.

13. Stephan Fischer and Abdulmotaleb EI Saddik. Open J;iv;i: Von den Grundlagen zu den
Anwendungen. Springer-Verlag, ISBN: 3540654461 (1999).

14. K. Obraczka, "Multicast Transport Protcols: A Survey and Taxonomy". IEEE Communi-
cations, Vol. 36. No. 1. 1998, pp. 94- 102.

15. Javasoft (for Java, JINI, RMI, and JSDT technologies) http://www.javasoft.com

