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ABSTRACT

Most current home automation systems are confined to a
timer-based control of light and heating in order to im-
prove the user’s comfort. Additionally, these systems can
be used to achieve energy savings, e.g., by turning the ap-
pliances off during the user’s absence. The configuration
of such systems, however, represents a major hindrance to
their widespread deployment, as each connected appliance
must be individually configured and assigned an operation
schedule. The detection of active appliances as well as their
current operating mode represents an enabling technology
on the way to truly smart buildings. Once appliance identi-
ties are known, the devices can be deactivated to save energy
or automatically controlled to increase the user’s comfort.

In this paper, we propose an approach to have buildings
informed about the presence and activity of electric appli-
ances. It relies on distributed high-frequency measurements
of electrical voltage and current and a feature extraction
process that distills the collected data into distinct features.
We utilize a supervised machine learning algorithm to clas-
sify readings into the underlying device type as well as its
operation mode, which achieves an accuracy of up to 99.8%.

Categories and Subject Descriptors

B.m [Hardware]: Miscellaneous; H.4.m [Information Sys-
tems]: Miscellaneous
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1. INTRODUCTION
The rise of home automation systems has greatly im-

proved the comfort in modern homes. Current systems are,
however, generally confined to controlling temperature [14]
and lighting settings and they do not yet offer complete
building automation. Besides increasing the user comfort,
various further functionalities can be realized, e.g., detect-
ing unexpected behavior to realize building security or de-
activating appliances to achieve energy savings. In recent
years, numerous researchers have addressed the latter issue.
Example applications include to cut off standby loads [9],
trim appliances to the most energy efficient setting [21], de-
fer the usage of devices [13] until the grid-wide energy de-
mand is low, or infer information about the user activities
at home [1].

However, an information gap exists between the building
automation system and the electric appliances, as the system
is not aware of available devices, their location, and their
state. In order to realize such functionalities without manual
configuration of all appliances and their operation state, the
building automation system needs to autonomously acquire
this information. Only when detailed information about ap-
pliances and their mode of operation are known, can the
system exert control over the electric appliances and actu-
ate them to save energy and increase the user comfort.

In this paper, we present our solution to this problem, con-
sisting of a hardware board for high resolution power mea-
surements and a software framework for classifying the con-
nected appliance and its state. The hardware board is care-
fully designed to achieve galvanic insulation between mains
and the line-level output, as well as maintaining a low noise
floor and a flat frequency response. In order to fulfill these
properties, we have conducted an evaluation of different cur-
rent transducers to select the best match for our use case.
The resulting hardware board outputs line-level signals for
both voltage and current. These signals can be simply con-
verted to the digital domain by a computer system’s audio
interface or a dedicated analog-to-digital converter to pro-
cess them further with our proposed software framework.
This setup allows us to sample the power consumption of a
connected device with up to 96 kHz sample rate.

Our software framework analyses the current and voltage
waveform obtained from the connected appliance, and ex-
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Figure 1: A schematic system overview: Our hardware board measures the voltage and the current of the load. The resulting
signals are then converted to the digital domain and post processed by a machine learning toolkit.

tracts different features from the shape of the voltage and
current consumption curves. Those features are used to
build up two kinds of models, namely (1) a coarse-grained
model to detect the appliance type attached as well as (2)
a fine-grained model to differentiate between products of
an appliance type and also to determine its mode of opera-
tion. Splitting the classification step into two stages allows
to extend the list of supported devices dynamically. Our
software framework is specifically tailored to cope with high
data rates obtained from the hardware board. The system
is designed for low latencies: Typically it takes at most one
second for recording, feature extraction, and classification.
Our approach requires no disaggregation algorithm because
each device has its own metering unit.

This work closes the information gap between existing
building automation systems and the electric appliances avail-
able in a household. By inferring type and state information,
our system allows building automation systems to control
electric appliances, e.g., in order to reduce their standby
power consumptions. We make the following contributions:

• We present our hard- and software design for the de-
vice classification and operation mode determination
system.

• We evaluate the classification accuracy values for the
device type identification based on a comprehensive
collection of traces.

• We assess the accuracy of the operation mode deter-
mination based on harmonic component fingerprints.

This paper is structured as follows. We discuss work re-
lated to the field of device classification and operation mode
detection in Section 2, and subsequently introduce our gen-
eral concept in Section 3. The hardware design for our power
measurement device is detailed in Section 4, which also sum-
marizes our comprehensive analysis of several current trans-
ducers in order to achieve a high spectral resolution and low
noise levels. In the subsequent Section 5, we present our
PISI software system, which extracts the features from the

collected traces and inserts them into a machine learning
model. We evaluate the detection sensitivity and the overall
classification accuracy in Section 6 where we also discuss the
results. Finally, we conclude this paper in Section 7.

2. RELATED WORK
Numerous approaches exist to classify electric appliances

based on their power consumption. These approaches can
be divided into three different groups: Non-Intrusive ap-
proaches meter the current draw at a central position and
then apply a disaggregation step to separate between dif-
ferent devices. In contrast Intrusive approaches provide a
measuring unit for each household appliance. Finally inte-
grated approaches require the household appliance to con-
tain a metering and communication module. In this section
we will describe these three different groups and discuss their
advantages and disadvantages.

Centralized approaches meter a household’s whole elec-
tricity consumption in order to detect attached appliances.
The first who introduced such a solution was Hart in 1992.
His Non Intrusive Appliance Monitoring paper [7] described
a system consisting of a power meter for real and reac-
tive power measurement and an attached state machine to
track steps in the power consumption. Since then many re-
searchers picked up his idea and improved it by sampling
with a higher frequency [16, 17], better features [20, 5] and
better disaggregation algorithms [2, 10, 15]. The main ad-
vantage of such a system is the requirement to place only
one metering unit at a central position next to the fuse box.
But as Zeifman summarizes in [24], centralized approaches
are known to suffer from problems in detecting low-power
appliances and devices with variable power consumption.
Also the centralized approaches only allow the monitoring
of currently running appliances and not controlling them
from remote.

Alternatively distributed smart meters could be used to
measure the power consumption at appliance level. One of
the first researchers to explore this field was Ito [8]. He built
up a system for classifying devices connected to a special



wall outlet based on their power consumption. Many re-
searchers improved his system by using better features [22,
10] or a wireless sensor network for metering devices [11, 4].
Kim even used different audio, light, temperature, and vi-
bration sensors in combination with power meters to classify
the currently running appliances [12]. As a main advantage,
this solution does not rely on an error-prone load disaggre-
gation method to split the power trace of a whole household
into power traces for single devices. Furthermore, the dis-
tributed smart meters can control the attached appliances.
But on the other hand each appliance requires its own me-
tering unit. To the best of our knowledge, none of these
systems can classify the state of an attached appliance.

There is a third field of related work namely the fact that
an increasing number of business and household appliances
will be equipped with networking capabilities in the future.
If those appliances expose an interface to their functionality
they become controllable from remote. A smartphone ap-
plication to control home and office appliances was shown
by Nichols [19]. Other researchers developed smart home
servers to control such appliances from the Web [18]. Al-
though those systems would make it possible to forward the
internal state of appliances to a smart home system without
the necessity of deploying additional measurement devices,
we do not expect such functionalities to be present in low-
end products in the coming years. As a result, this renders
the integration of intelligent monitoring components into ev-
eryday appliances unlikely in the mid-term.

3. CONCEPT DESCRIPTION
In this section, we describe the general concept of our

system, followed by the selected system architecture and a
short description of its individual components.

In order to extract suitable features from voltage and cur-
rent waveforms, the collection of these analog quantities is
required, followed by their conversion to the digital domain
and their appropriate processing. Hence, a hardware sys-
tem with transducers for both physical parameters is needed,
which needs to be capable of its interfacing to a data process-
ing system. As a result, we have conducted both hard- and
software design in order to address the problem at hand. We
have especially designed our system to fulfill the following
fundamentals:

• The system has to record power traces including as-
sociated current and voltage waveforms to enable the
calculation of real, reactive, and apparent power, as
well as the calculation of the phase shift.

• The collected power traces need to have a high resolu-
tion in both time and quantization. This also makes
the usage of low-noise components necessary in order
to minimize the impact of unwanted error signals.

• The provided current waveforms must be processed ap-
propriately in order to enable machine learning tools to
find and evaluate current and voltage waveform char-
acteristics of appliances.

• The stored data has to be normalized with respect to
the power value and grid frequency in order to cater
for the repeatable nature of the conducted evaluations.

The resulting architecture of our system is shown in Fig-
ure 1. Its main components can be decomposed into three

tiers: a hardware board, the software framework and the ma-
chine learner. The hardware board is plugged between the
wall outlet and the electric appliance to easily measure the
power consumption. It features voltage and current sensors
to analyze device-specific high frequency characteristics of
its energy consumption. It outputs two analog signals, one
which is proportional to the grid voltage, whilst the second
signal is directly proportional to the device’s current draw.
Those signals are then sampled by an analog-to-digital con-
verter and further processed by our software framework.
This framework is responsible for extracting features from
the power recordings and to forward the extracted features
to the widely used Weka data mining toolkit [6]. In order to
maintain workplace safety, the hardware board furthermore
ensures a galvanic decoupling from the mains voltage.

4. POWER MEASUREMENT
In order to collect the power consumption of electric ap-

pliances at a high resolution, distributed measurement units
with high sample rates are required. Commercially available
metering platforms, like Plugwise1 or Wattson2 however, of-
ten output mean power consumption values instead of allow-
ing for direct access to the collected samples. Additionally,
the phase shift is commonly not reported by these units,
such that real power, but not reactive power components,
can be measured.

As a result, these existing solutions are not suitable for
the task at hand, and in consequence, we have designed a
specific circuit board that fulfills the following set of criteria.

• High sample rate: In order to collect all possibly rel-
evant characteristics from an appliance’s current con-
sumption, a sample rate as high as possible is desired.
This requirement is based on the observations made
in related work (e.g., [16]). At the same time, higher
sampling frequencies allow for a better spectral reso-
lution of the frequency domain plot, and thus better
means for the subsequent signal analysis.

• Galvanic decoupling: The most straightforward ap-
proach to collect voltage and current measurements
relies on the use of resistors (shunts for current mea-
surement and resistor dividers to sample the mains
voltage). Both approaches, however, suffer from the
drawback of galvanic coupling to the mains voltage,
which can destroy expensive measurement equipment
and is not touch-safe. As a result, our prerequisite
to the data collection unit was the galvanically decou-
pled transmission of both voltage and current to the
sampling unit.

• Linear transducers: Especially when higher frequency
components are analyzed in the signal, non-linear sig-
nal distortions can falsify the signal. As a result, the
transducers used to galvanically decouple the signals
from the mains voltage need to behave as linear as
possible and add a minimum amount of noise onto the
signals.

1Plugwise: Smart Wireless Solution for Energy Saving,
Monitoring and Switching.
http://www.plugwise.com. Accessed: 10.01.2013
2Wattson: Energy Monitoring from Energeno.
http://www.diykyoto.com/uk/. Accessed: 10.01.2013



• Line-level output: In order to process the collected
readings using small-signal processing components, e.g.
studio recording equipment, the device needs to pro-
vide adjustable output voltages up to 2V RMS. In our
case 775mV RMS for line-level was used.

4.1 Hardware Design
As a result of the commercial unavailability of galvanically

decoupled high-resolution voltage and current measurement
units in affordable price classes, we have developed our own
printed circuit board that meets aforementioned design cri-
teria. The resulting device is visualized in Figure 2, in which
its four main functional sections are highlighted.

Figure 2: The PCB of the hardware board. Part 1 shows
the capacitive power supply. Part 2 illustrates the small
signal processing, Part 3 and 4 show the voltage and current
measuring components.

4.1.1 Mains Voltage Components

The mains voltage is connected to the voltage and current
transducers. In our practical realization, we have chosen a
current transducer manufactured by LEM (a detailed dis-
cussion on its selection is given in Section 4.2). In order to
enable our device to also collect voltage readings, an Avago
Technologies HCPL-7840 optocoupler has been used, which
caters for a galvanic decoupling of analog signals. While the
LEM transducer does not require any power supply on the
mains voltage side, the linear voltage optocoupler requires
an input voltage of 5 volts DC to operate, which is not gal-
vanically decoupled from mains. We have hence included a
capacitive power supply on the mains side, which provides
the linear optocoupler with its required operating voltage.
The widely available switch mode power supplies have de-
liberately not been used in order to avoid switching noise on
the captured signals.

4.1.2 Current and Voltage Sampling

The second part of our circuit board comprises the signal
conditioning of the current signal. Instead of directly inter-
facing the transducer’s output voltage to the signal process-
ing system, however, we have included an operational am-
plifier in the signal path. The operational amplifier is used
as voltage follower to increase the output driving strength.

Similar to the current conditioning part, the output of the
linear optocoupler is interfaced to an operational amplifier.
This amplifier setup adjusts the fully differential output sig-
nal of the optocoupler to different line levels and increases
the output driving strength. Both voltage and current sig-
nals at the secondary side are decoupled using capacitors.

4.2 Sensor Selection
Many different sensor technologies are readily available

for current sensing. Emerald [3] and Ziegler [25] give a good
overview of the performance characteristics, advantages and
disadvantages for the major sensor technologies. For the
hardware board, we require a current sensor with a cur-
rent range from 5mA up to 15A, which corresponds to a
power draw ranging from 1.15W up to 3.5kW given the Eu-
ropean grid voltage of 230V. The sensor should be capable
of measuring frequencies from 50Hz up to 50kHz with a flat
frequency response. Ideally it should have linear I/V corre-
lation. Because we are mainly interested in the characteris-
tics of different devices a precise calibration for current and
voltage was not a major requirement.

To evaluate the sensors we generated sinusoidal, rectangu-
lar, and SMPS-like (Switched Mode Power Supply) signals
using a HAMEG HMF 2525 frequency generator. Those sig-
nals were amplified using a BEAK BAA 1000 high current
amplifier with a maximum output power of 1250VA and a
maximum frequency of 50kHz. To avoid measuring errors
caused by distortions of the amplifier a reference current
was metered using a shunt resistor. To simulate a load we
used high power resistors wrapped in two CPU coolers. To
keep the temperature and thus the resistance of the load
network nearly constant we heated the whole circuit until
its temperature reached a steady state.

For each sensor we measured the I/V linearity, the fre-
quency response using a sweep, the noise floor and the cor-
relation with the reference signal for rectangular and sinu-
soidal signals and repeated all of those measurements with
different currents.

We evaluated a set of different technologies current trans-
ducers, namely LTS 15-NP (hall effect), ACS712 (hall ef-
fect), CAS 15-NP (fluxgate), and ACS1050 (current trans-
former) called CT using the stated criteria. For each cri-
terion we ranked the sensors and finally we calculated the
average rank of each sensor. According to the criteria the
CT and the CAS performed best. Both have the same av-
erage rank. The CT has the lowest non-linear distortions
and a flat frequency response. On the other hand the signal
obtained from the CAS has the highest correlation with the
reference signal and also the lowest noise floor. As the fre-
quency response could also be flatten with a post processing
step we decided to build up the hardware board with a CAS
current sensor.

4.3 Analog-to-Digital Conversion
To digitize the data a Realtek ACL 880 Intel HDA com-

patible sound card was connected to our hardware board
via line-in. The sound card has a maximum sample rate of
96kHz. With respect to the Nyquist Theorem this results
in a maximum usable sample rate of 48kHz. But due to an
internal analog low pass filter, frequencies above 32kHz are
attenuated and the maximum feasible frequency ranges up
to 40kHz. Above this frequency, the signals are too weak to
process them further. This low pass behavior is important to



avoid aliasing effects if signal components above the Nyquist
frequency are present in the input. The sound card has a
sampling resolution of 20 Bit and an inbound voltage range
of 1VRMS . To obtain the readings from the sound card we
use the ALSA sound system in combination with the octave
package aarecord.

We used a soundcard for recording the current and voltage
signals because of the wide availability of such Intel HDA
compatible sound capturing devices. Nearly every laptop
and desktop computer is equipped with such a hardware
component. This should allow a flexible change of the data
processing component, e.g. different PCs.

5. SOFTWARE FRAMEWORK
As we have described in Section 3, a software framework

is responsible for recording and post processing the digitized
sample stream. Our software framework called PISI is writ-
ten in GNU Octave and performs a number of processing
steps, including a segmentation of the recorded data, the
feature extraction, and the export to the Attribute Rela-
tions File Format (ARFF), supported by the Weka toolkit.
Next, we describe each of these steps in detail.

The first step in data processing is the generation of raw
sample recordings. Those raw recordings contain many pe-
riods of the alternating voltage and current signals. As the
recording starts at a random point in time, the alternating
voltage signal has an undetermined phasing. To avoid any
influence of this indeterminism, the software framework per-
forms a segmentation of the recorded data. A segment starts
on a zero-crossing of the voltage signal from a negative to a
positive value and has a fixed length of N periods. The seg-
mentation process is graphically shown in Figure 3. Shorter
values of N are faster to obtain, whereas larger values of N
are expected to yield better classification results due to the
smaller impact of unexpected signal variations.

Si
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Figure 3: The segmentation process of the PISI .

In the second stage, our software framework extracts fea-
tures from the segments which we present in more detail in
Section 5.1. The resulting feature vector is stored and can
be exported as a ARFF file. This is an important task to
interface the Weka machine learning toolkit [6, 23] which
is used for the classification. Numerous feature generation
functions exist to extract the feature vector. Those functions
take a segment as input and produce a set of features as
output. PISI was designed with the requirement in mind to
add new feature generation functions on demand. Therefore
PISI organizes all recordings in a project environment. The
environment keeps track of historic recordings with their cor-
responding class, the available feature generation functions
and a list of available classes.

Last but not least the software framework is able to live
predict the type and state of an electric appliance, which is
attached to the hardware board. In order to do so, the soft-
ware framework records the current and voltage signals for
several seconds. Then it extracts segments from this record-
ing and generates the features for each segment. The last
step is the invocation of a Weka machine learner with a pre-
built context model to predict the type of electric appliance.
Then PISI loads a device related model which contains all
possible states of the given device. This machine learning
model is used to classify the state of the currently connected
appliance.

5.1 Feature Extraction
One of the most important issues in the machine learning

process is the feature extraction. Hence, a modular and
flexible feature extraction solution was chosen to enable post
processing the data prior to their forwarding to the data
mining component. In general, we differentiate between two
classes of features, namely waveform and classical features.
In the context of this paper we use active power P [W ], phase
shift ϕ[◦], and the current’s crest factor Ci as the so called
classical features. For continuous values the real power Pcont

can be calculated from voltage and current waveforms over
one or more periods T (cf. Equation 1). Its corresponding
iterative calculation multiplies current and voltage samples
over one or more periods NP (cf. Equation 2).

Pcont =
1

T

∫ t+T

t

v(t) · i(t) dt (1)

P =
1

NP

n+NP
∑

x=n

vx · ix (2)

Equation 3 gives the shift from a current to an accord-
ing voltage signal in degrees. In this context the voltage
is supplied from grid, and thus considered to have constant
amplitude during the short sampling window. Hence, only
the current is considered to vary.

ϕ = ϕv − ϕi (3)

At this point we have to mention that the phase shift is
calculated using the cross-correlation of v and i due to the
diversity of current draw signals.

The crest factor measurement is the ratio from a wave-
forms amplitude peak to its RMS (Root Mean Square) value.
For ideal sinusoidal signals it results in the factor of

√
2,

which can be assumed for the grid voltage. On the other
hand the current signal i varies and its crest factor Ci is
specified according to Equation 4. The crest factor and its
variance from

√
2 allow getting a first estimation of a signal’s

waveform characteristics.

Ci =
ipeak

iRMS

(4)

To acquire specific information about the appliance cur-
rent draw characteristics, a harmonic analysis is commonly
used. In our implementation a discrete Fourier transform
(DFT) is applied to the digitized current signal. The re-
sult is the representation of the signal in the frequency do-
main. Then the current signal harmonics (HI) are selected
by integer multiples of the fundamental frequency up to the
Nyquist frequency which is defined as the half sampling fre-
quency fS . Since the current is directly dependent on the



grid voltage, the first harmonic h1 is allocated to the grid
and thus the fundamental frequency fgrid. Hence the num-
ber of the highest harmonic hN is defined by Equation 6.

HI = [h1, h2, ..., hN ] (5)

with : N =
fS

2

1

fgrid
(6)

According to Parseval’s theorem the energy in the time and
frequency domain are equal. Because of this, the absolute
amplitude of the harmonics depends on the power consump-
tion of the metered appliance. To eliminate this coupling,
we normalize the harmonics so that the first harmonic has
a value of 0dB. This is leading to clearly separated features
of signal strength (P ) and signal waveform (HI).

In theory, the even harmonics should be zero if the stimu-
lating signal has a symmetric waveform and the stimulated
system is linear time invariant (LTI). In practice, the even
harmonics are not zero because the observed real-world sys-
tems were never totally linear. Therefore, we introduce two
more features in addition to the harmonics for the evalua-
tion of even and odd harmonic’s influences (cf. Equations 7
and 8).

RMSh,odd =

√

√

√

√

2

N

N
∑

x=1

h2
2x+1 (7)

RMSh,even =

√

√

√

√

2

N

N
∑

x=1

h2
2x (8)

Equation 9 shows the feature vector which is the base for
this research in summary. The setup has a sampling fre-
quency fS of 96kHz which - together with the European
grid frequency (fgrid = 50Hz) and Equation 6 - allows us to
choose up to 960 harmonics to gain a wide range spectrum.
Due to the low pass characteristics of the Metering Unit (c.f.
Section 4.3), we have used only the first 800 harmonics in
our implementation.

F = [P,ϕ, Ci, RMSh,odd, RMSh,even, h1, h2, ..., h800] (9)

5.2 Instance Extraction
The feature vector introduced in Equation 9 holds all fea-

tures of one segment and represents one class instance for
the machine learner. A set of K instances which are stored
together are named recording. Obviously it requires less
space to save the features of one segment as vector F . But
this reduction of the size causes no substantial information
loss because the information is then represented by classical
features and harmonics. According to Figure 3 this allows
us to adopt the resolution of the feature by changing the
number of periods per segment (M). This relation can be
observed in Figure 4 which shows the odd harmonics spec-
trum of a single instance and the standard deviation borders
(SD+, SD-) of many instances.

The spectrum of each instance is noisy in between the
characteristic standard deviation borders. This is caused by
aforementioned sampling resolution. We were able to iden-
tify this noise as non-deterministic by means of Figure 4b,
which contains the same base data and standard deviation
borders as in Figure 4, but shows a flattened spectrum in
between these.

The spectrum was calculated as arithmetic average of odd
harmonics from all instances of one recording, and effectively
shows the noise cancellation as compared to a single spec-
trum. Obviously the flattened spectrum is visibly better
suited for classification than a single harmonic spectrum of
an instance. Therefore we have used the averaged spectrum
in further waveform-related analysis.

We have also observed that there is a trade-off between
harmonic features and features derived from the power con-
sumption of one instance. Classical features of one instance
do not show the huge variance which is visible for the har-
monics as shown in Figure 4. Thus, their features can be
extracted from short segments in a sufficiently good quality
and being used for classification. On the other hand, av-
eraged harmonic features could help to distinguish between
different appliances of one type or with similar power con-
sumptions with the drawback of an increased demand for
data, time, and processing. To exploit both benefits dur-
ing the evaluation process (cf. Section 6), we have decided
to split the machine learning models into two parts: One
coarse-grained model with power related features to sepa-
rate between different appliances and fine-grained models
to distinguish between devices of one appliance type with
nearly the same power consumption using average values.
Our software enables the user to build training and testing
data sets using feature vectors defined in Equation 9 as in-
put. One can extract new features from this base value F

and define a set with a subset of features easily. It is also
possible to merge instances with the above mentioned arith-
metic mean calculation. All these combinations are stored
as ARFF files and processed in the data mining framework
Weka.

6. ACCURACY EVALUATION
We have evaluated the system in different settings, which

are described as follows.

6.1 Evaluation Setup
Based on the observations in Section 4 we used the cur-

rent transducer CAS 15-NP for measuring different electric
appliances. We have interfaced different electric appliances,
as shown in Table 1.

For each appliance, we have measured 30 segments, where
each segment covers voltage and current readings of 10 peri-
ods. Hence the measurement of one segment needs 200ms at
50Hz European grid frequency and one recording consists of
30 instances where each holds a complete feature vector F .
The measurements of the devices and their operating modes
were repeated several times under different conditions. We
used independent recordings to create the training and test
set for the machine learning process. More precisely: Both
sets were recorded on different days with the attempt of
different conditions for the measured appliance (e.g. tem-
perature and running time of device). Using this approach
we built one machine learning model for the device classi-
fication to detect the appliance (Section 6.2.1). A second
model was built to differentiate between products of one ap-
pliance type (Section 6.2.2). In a third step we analyzed
specified operating modes of selected devices (Section 6.3).
The quality of the machine learning models was optimized
through the feature and the classifier selection.
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Figure 4: The harmonic spectrum for a laptop device. Both plots are based on the same data.

6.2 Device Identification
For the evaluation, we selected different appliances which

are typical for a household or an office environment. Those
appliances are listed in Table 1. We took care to select di-
verse devices: Some of them are movable - others are station-
ary, several appliances have the same power consumption -
others differ in a spread spectrum and a few devices are
even of the same production series. We recorded all of those
appliances according to the setup described in Section 6.1
and extracted the full set of features described in Section 5.1
from their voltage and current readings.

6.2.1 Coarse-Grained Classification

In the first step we tried to classify the appliance type only
with the classical features as described in Section 5.1. We
define this as coarse-grained classification. The first column
of Table 1 lists the different appliances to be classified in
this step. Some of them were recorded in distinctive major
operating modes. This results in a total of 14 appliance
types. Each set consists of four recordings with 30 instances
each. We used the Random Forest classifier to build our
machine learning model. With this setup we obtained a
accuracy of 99.6% for the device types. With the additional
features that are calculated trough the RMS value of all
even respectively all odd harmonics (see Equations 7 and
8 ) we can improve the result to 99.8%. This means that
even if the device is in standby mode we can differentiate
the device type. In general this is a hard task, because the
standby power consumption is typically located in the range
of 0.5-5 W. Since the classical feature values showed small
variance, we were able to use single instances of recordings as
classifier input. In our scenario an appliance type can hence
be classified by a 200ms snapshot of its I/V characteristics.

6.2.2 Fine-Grained Classification

The classification of different series of devices within the
same class using the coarse-grained classification was only
partially satisfying. For example the six devices of the mon-
itor type reached a maximum of 87% classification accuracy
using the features described in the last section. This clearly
shows that the coarse-grained classification would not scale

with respect to a broad training set. Again, the harmonic
RMS features brought an accuracy improvement of 4%. This
indicates that it might be useful to infer more information
from the harmonic content. To do so, we introduced as sec-
ond step, the so called fine-grained classification that con-
siders also the device specific waveforms. This step was also
motivated through the findings we made during the visual-
ization of the current draw in the frequency domain (see Fig-
ure 5). Since all errors in the aforementioned classification
appeared in between the products of the monitor type, we
will use the fine-grained classification only for different mon-
itors in standby and on status. Therefore the fine-grained
classification is another escalation layer to separate between
similar devices.

In a first step we processed a Greedy Stepwise feature
ranking on a global set. This global set holds only one in-
stance for each monitor which was calculated as the arith-
metic average of all recordings. The aim of such a set is
to provide a spectrum with product specific harmonics and
thus to prevent the ranking of single instance’s noise. We
chose the top 20 ranked features, including 3 classical fea-
tures (P , ϕ, RMSh,even) and 17 harmonics: In total 3 even
harmonics, 9 harmonics below 5kHz, and 7 harmonics up to
38.95kHz are present. These features build the new feature
vector for the fine grained classification. As next step we
created an independent training and test set with recordings
from different days. To reduce the collected information and
to concentrate on finding patterns we calculated the mean
of 30 instances for each recording. Thus - and with a Ran-
dom Forest classification model built from the train set - we
gained a classification rate of 100%. This rate has to be in-
terpreted as optimistic for a generalized case but it is valid
for this specific scenario. It might decrease with the use of
more products or with the use of test sets recorded under
yet new conditions. To determine the influence of varying
environmental conditions over the time, we investigated the
long term behavior in Section 6.4.

6.3 Operating Mode Identification
In the last section, we have shown that it is possible to

distinguish between different appliances. Furthermore the



question is, if it is even possible to detect the operating
mode of an appliance by analyzing its power consumption
characteristics. To do so, we have selected different devices
with several operating modes. Those devices have either
operating modes with different power consumptions in each
mode or their power consumption is nearly constant in all
operating modes. To detect the operating mode, we trained
a machine learning model for each appliance. Due to this
design decision, it is possible to use different feature sets
for each machine learning model. This flexibility is espe-
cially useful if some features do not differ between operating
modes.

To evaluate the models, we performed the classification of
a test set for each model. Those results are shown in Ta-
ble 2. The model of a smartphone charger showed a high ac-
curacy. It was always possible to detect, whether the charger
was running idle, loading an empty smartphone battery or
trickle loading an attached smartphone. No incorrect clas-
sification occurred by the use of only waveform features.
We repeated the same procedure to classify the number of
clients wired to an Ethernet switch and also if those clients
were transferring data or not. Our system can classify the
number of wired ports accurately but it was impossible to
detect whether there is a network transfer happening or not.
This can be seen in Table 2: The state c0 shows the switch
running idle, c1 shows the switch connected with one client,
c2 with two clients, c2d1 shows the results with two clients
and a pending network transfer. As one can see in the table,
it is impossible, to separate between the state c2 and c2d1.
Last but not least we built a model with several operating
modes of a TFT monitor. As a TFT monitor consists of mil-
lions of different pixels and a dimmable back light it has a
nearly infinitely large set of different operating modes. From
all of these operating modes we have chosen seven different

Table 1: Description of the devices tested during the evalu-
ation.

Appliance [status] Product Power/W
Monitor [on, stby] Fujitsu Siemens 24” [77, 1]

Fujitsu Siemens 19” [34, 1]
Fujitsu Siemens 17” [34, 2]
3 x Dell 20” [48, 1]

LCD TV [on, stby] Samsung 40” [178, 1]

Laptop Lenovo T430s 28
Lenovo T420s 22
Macbook 2.1 22
Dell 29

Freezer [on, idle] Liebherr FKS 3602 [130, 13]

Lamp 110W CCFL 105
10W LED 6
60W resistive 63
100W resistive 98

Charger [stby] Samsung Phone 0.5
Apple Laptop 0.5
Lenovo Laptop 0.5

Switch Netgear 8 Port 6

Fan [level 1-3] Tevion [32-45]

USB-Hub LogiLink 4 Port 0.5

Table 2: Results of the operating mode evaluation.

a b c d e f g h i j k l m n o classified as

60 0 0 a charger idle

0 60 0 b charger loading

0 0 60 c charger done

30 0 0 0 0 d switch c0
0 30 0 0 0 e switch c1

0 0 22 8 0 f switch c2

0 0 16 14 0 g switch c2d1

0 0 0 0 30 h switch c3

149 30 0 0 0 0 0 i monitor black
0 26 0 0 0 0 154 j monitor red

0 0 175 0 0 2 0 k monitor white

0 0 0 170 0 10 0 l monitor picture 1

0 0 0 6 172 0 0 m monitor picture 2

0 0 40 0 0 139 0 n monitor website 1
0 1 0 0 1 0 177 o monitor website 2

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

100% 83% 81%

screen contents. Those operating modes include screens of
the colors black, red, white, two pictures and two web sites.
The initial machine learning model with the classical feature
set performed poorly. By looking at the distribution of the
features we noticed that only the power varies for different
screen outputs and there are no noticeable changes in the
frequency domain. Therefore this model considers only the
power feature. In spite of the fact that we are merely able
to classify the operating mode by the power we achieved an
accuracy of 81%. Most remarkably, colors with high con-
trast like black and white can be separated successfully. An
opposite effect is shown regarding the website one, which
is the eEnergy 2013 website, and the color white. In this
case the classification may be mixed up because of the large
white areas of the eEnergy 2013 website.

It appears from the measurements that different colors do
not affect the power consumption. But differences in the
contrast are significantly measureable. Because of this fact,
the classification of different screen outputs is possible. The
variation of the power consumption ranges from 0.1W to
3W for the different operating modes. To separate between
different states of the TFT monitor, there must be a differ-
ence of 0.5W. Differences below 0.5W might be caused by
environmental noise and thus should not be used as feature.

6.4 Long Term Stability
We measured the energy consumption of particular de-

vices at different points in time. But due to changes in
the environment (varying grid voltage, grid frequency, tem-
perature, SMPS switching frequency), it might be the case
that the recordings of devices vary over time in a way that
causes the machine learner to fail. To analyze if variable
environment conditions could cause problems, we measured
the energy consumption of one monitor over the period of
one week. The Figure 5 shows the spectral variance of the
obtained recordings. The blue line shows the mean of a
recording which was obtained by averaging 30 continuously
recorded segments. The gray area indicates the standard de-
viation around the mean for each harmonic. The thickness
of the band shows the noise level in this harmonic spec-
trum. This noise of single instances could either be caused
by the environment or by the appliance itself. Characteristic
for this device is the oscillation around the 325th harmonic
which is caused by the switching power supply (SMPS). This
peak was present in all recordings of this particular device.
Therefore frequencies in this region are good features for
recognizing the device.

As the Figure 5 shows, the instances contain time vari-
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Figure 5: The variance of the spectrum of a monitor over a
period of one week.

ant noise. The fine-grained device classification and also the
operating mode classification have to deal with such distor-
tions to avoid overfitting of the machine learning model to
particular environment conditions. Two possible solutions
exist to deal with those issues: One could either use a hand
selected set of omnipresent features or one could repeat mea-
surements over a period of time to face varying environmen-
tal conditions by averaging all measurements. Regardless of
the time variant noise, the shape of the harmonics remains
a characteristically feature for the classification process.

6.5 Discussion
As we have shown in Section 2, various related works per-

form a device classification based on the current draw of
electrical appliances. But even recent works have diverse
limitations: either they provide no contemporary informa-
tion or the classification results are inaccurate for certain
devices under certain circumstances. Moreover, to the best
of our knowledge, no solution for operation mode estimation
was presented yet.

Our work enhances the state of the art by carefully crafted
methodologies for high accuracy device- and operating mode
classification. Our two layered approach achieves a high
precision of up to 99.8% together with low latencies. Fur-
thermore, our evaluation shows, that both waveform and
classical features carry valuable information with regard to
the device classification.

These achieved improvements close the information gap
between electric appliances and the smart home system, and
thus enable the development of a new generation of smart
home systems. These next generation smart home systems
could improve the user comfort, reduce the energy consump-
tion of the household or detect unexpected behavior and
increase the safety. For example, one can build an energy
saving module, which uses the provided information to cut
off standby loads, trim appliances to the most energy effi-
cient setting or defer devices until the time of use pricing is
low.

In the next step, we will implement our approach on an
embedded system. In this case, the amount of data to pro-
cess is no serious problem: an adaptive sampling schema
together with a decent Digital Signal Processor will easily

handle the feature extraction step. A classification of the
attached appliance is only required, if turn-on or switching
transients happen. This classification task could be handled
by a centralized processing unit. The price of such a solu-
tion might be very low, if mass production cuts the costs
per unit.

7. CONCLUSION
Enhancing current building automation systems by the

capabilities to identify electric appliances is a major step on
the way to truly smart buildings. We have thus presented an
approach to determine both the type as well as the operation
mode of an electric appliance based on measuring its voltage
and current waveforms at high resolution. To this end, we
have designed a hardware system to collect and condition the
readings from the physical environment, as well as the PISI
framework to extract relevant features from the raw data
and add them to the model of a machine learner. PISI has
been shown to classify the type and the state of connected
electric appliances with a precision of up to 99.8%.

Our solution bridges the information gap between the
building automation system and the electric appliances, and
thus enables the development of the next generation home
automation systems. Based on the appliance identification,
novel features can be realized, e.g., saving energy by au-
tomated deactivation of appliances while their operation is
not required by the user. Similarly, improvements to the
user’s comfort and safety as well as support for Ambient
Assisted Living can be made when the presented function-
ality is available to building automation systems.
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