
Collaboralive Working with Stand-Alone Applets http://www.kom.e-technik.tu-damstadt.d/pubicatins/abs1acts/SS9-1 .html

In Proc. of the 12th International Symposium on Intelligent Multimedia and
m

Distance E ~ U C ~ ~ ~ O ~ (I S I M A D E ' ~ ~) . - A ~ ~ L (S ~ AC43
E ~ I (E ; ~ C Q
... ~~ --

Collaborative Working with Stand-Alone
Applets

Ahdulrnotaleh EI Saddik and Oguzhan Karadurnan and Stephan Fischer and Ralf Steinmetz

In this Paper, we describe an approach to support col lahorative working with unknown applets (source
code is nlot available). The general idea of the our system is that User events occurring through the
interaction witb the GUI of an applet can be caught, distributed, and reconstructed, hence the system
allows fo~r Java applets to be shared transparently. Our approach differs frorn other collaborative
Systems in the fact that we make use of today's applets without modifying their source-code. The
architectiure described here allows to make a lot of already existing applets collaborative, which have
been developed as single User applications with no collaboration in mind.

1mport:ant Copyright Notice:

This mai.eria1 is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained hy authors or by other copyright holden. All persons copying this
informaiion are expected to adhere to the terms and constraints invoked by each author's copyright. In
most cases, these works may not be reposted without the explicit perrnission of the copyright holder.

Collaborative Working with Stand-Alone Applets

Abdulmotaleb EI Saddikl, Oguzhan ~ a r a d u r n a n l , Stephan ~ i s c h e r l and Ralf Steinmeta12

1 2
Indua.tria1 Process and System Communications GMD IPSI
Uept of EIectrical Eng. & Infomatioii Teclinology Gcrman NationaI Research Center
Darnistadt University of Trchnology for Information Technology
Merckstr. 25 D-64283 Darmstadt Germany DoIivostr. 15 D-64293 ' Darmstadt G e m a n y

{ahed, oguzhan, fisch, rst]@kom.tu-dannstadt.de

ABSTRACT

I n this paper. we describe an approach ro slrpport
col'lciborative working witti ilnknown applets (source
code is rlor uvailoble). Ttie genernl idea o j ihe orrr
syslei.rr is rtiat uJer ei,ents occurring rtirough the
iriren~ctior~ with ttre GW of an applet cnn be cauglir.
disfribnted, arid reconstructed, tience the System allows
for .Iaio applets fo be strured trnnsporently. Orrr
approacti dtffers from otller collaborarii,e sy;>tems in
fhe faci ttiar we mnke use of todcv's applets wittrorri
niod~fiiiig rheir source-code. The nrchitecrrrre
desci~ibrd tiere allows fo niake o lot ojolrend? existbii:
upplars collaborarive, which tiave beerl developed as
single user applications with no collnboration in rnirid.

The simplicity of access to a variety of information
st0re.d on reinote iocatiuiis Icd t« the fact that the
World Wide Web has gained popularity over the last
decade. In Lhis context Computer Supported
Collaborative Learning (CSCL) ir becoming morc and
more important. Collaborative systems allow users to
view and interact with a distributed application during
a session. The use of collaboraiive rystems inci-eascs in
research and business as well as in educarion. A
problem of many cooperative applications is their
platiioi-m dependence lsading to the Tact lliat users
cominunicating in heterogeneous environmenu are
resti-icted in their choice of a cooperative application.
For exainple a User might choose a UNIX-workshliuii,
ano1:her might prefer Windows 95/98/NT or a Mac-

I Proc Intelligent Multimedia and Distance Education
(ISIMADE 99), Baden-Baden, Germany 1999

intosh. The introduction of the platforin-independcnt
programming language Java made i l possible to over-
come these problems. Diverse approaches were used 10
develop Java-based collaborative sysreins. Almost
every system described in the literature requires the use
of an Application Programming Interface (API}. Others
are trying to replace some Java-components with self-
defined collaborative components in a transparent
manner.

The npproücti presriited in this psper differs froin other
approaches, in the way that we do neither propose a
new API for drveloping collaborative systems nor try
to replace cuiiipuiierits at run iimc. As a matter of fact a
great variety of well-designed applets exist distributed
in the World Wide Web which were developed 10 run
stand-alone. 11 wuuld not be acceptablc for many users
ro re-implement or change these programs to make
them work in a collaborative way. The particularity uf
our approach is rhat wr: pruposr to use JavaBcans II]
and Java's Remote Method lnvocalion [?I to extend the
capabilities of applets in a way that stand-alone applets
can be used in a collaborative wdy. Our approach docs
not change the source code of an applet. The System
we developed is called KOM Collaborative Applets
Environment (KCAE). The priiicipal idea of thc
KCAE-system is that User events occurring through the
interaction with the GUI of an applet can be caught,
distributed, and reconstructed, hence alluwing fui- Java
applets to be shared transparently. This form of
collaboration which is supported as long as a learning-
session takes part, enables users to interact in real-tiiiie,
working remote as a team without caring about low-
level issues such as networking details.

Figure I showa the Overall approach of our KCAE-
system which can be described as follows. a Collaborn-

tion dient (KCAE-Client) instantiates applets or
applications which are developed as stand-alone
applications. These applets or applications are then
used <:ollaboratively with thc aid of the KChE~Client.
The K.CAE-Client can be seen as a component adapter.
Every event occurring at the graphical User interface of
the application is sent to the adapter, which ihrn seiids
the e\,ents to the collaboration server (KCAE-Server).
When the KCAE-server receives an event, it niulticasts
it to all uther KCAE-clients in the Session.

The r,?sI of the paper is organized ns ti>llows. Section 2
describes thc systcm design. The description of thr
architecture (Section 3) is followed by the description
ot' tht: collaborative use of source code unavailable
appleis in Section 4. Sectioii 5 discusses relatcd work
and ilection 6 concludes the paper and gives an out-
look.

Fig I . Overall System Architecture of KCAE

2. System Design
The aim of KCAE is 10 make a huge amount of today's
available applets collaborative. which are devcloped as
single user applications with no collaboration in mind,
wittiout any change or modification of their respective
soulce code

2.1 Requierements

Befsure describing the architecture of the system, we
firsi prrscni a list of requiremcnts whish doscrihe our
obj~:ctive in niore detail:

Applications using ihe standard Java-Corc API should
be supported, that is no change in the API should be
necessary.

No source code is required tu aliare an applct. Both
AWT and Swing components should br supported. A
solution restricted to only one kind of graphical User
interface is not acceptable.

The system should permit unanticipated collaboration.
Furthermore, a pcrson who is interested in morr than
one application running at the same time, should have
the opportunity to take part in more than one
applicaliun ~iiiiultaiieously.

As Itttle as possible of the network's bandwidth should
he consumed.

2.2 Design Cnnsideratinns

Tlic delcgation cvcnt model of JDKI.2 providrs a
standard mechanism for a source component to
generate an event and send i t to a sct of Iisteners.
Furthermore, the eveiii iiiodel cven allows to send the
event to an adapter. which ihen works as an event
listener for the source and as a source for the listener.
Because the handling of events is the crucial task i n

developing an application, this enhancement made the
development of applets much moie flexible. Anoiher
important enhancement of Java is the introduction of
the JavaBeans Technology and of the Remote Method
Tnvocation (RMI) which makes ii possible to create
distributed Java-to-Java applications, in which the
methods of remote Java objects can be invoked from
other Java virtual machines, possibly running on
different hosts.

There are two main approaches for the design of
collaborative applications Ll5]. One possible appruach
iniplies a centralized architecture, where a single
instance of an application is run an a host machine,
usually the server machine, and its graphical output is
distributed to all participants. This approach which is
illustrated in Fipure 2 consumes substantial network
bandwidth (illustrated through bold arrows in
Figure 2), evrn if the graphical data is transmitted in a
compressed way [I 4] ~

Another approach is the replicated architecture which
allows the application to he downloaded to each
participant and to run Iocally. Consequently, the
bandwidth required for the collaboration is
substantially less than using a centralized architecture
[14]. Only input resulting from the interaction with the
graphical User interface is distributed. ihe graphical
ouiput is generated Iocall) for each participant.

The bandwidth savings become apparent when one
considrrs thnt the centralized approach also must

receiva input tiom each User, but uses a considerable
amount of bandwidth to distribute the graphical infor-
mati<iii.

Fig2: Interaction by transmission of graphical data

Our system is bascd on rhe replicated architecture
presented in Figure 3 in which an instance of each
application runs locally at each participant's side and
only the interaction of each User with thc system is
distributed through cvents to all the participants passcd
by thc Server.

It should be noted that our approach relies on the
particular properties of Java The lava Viriual Machine
provided in each browscr available nowadays offers a
homi)geneous application environment across different
plotft~rms. All participants in a collaborative session
have access to the applets which are downloaded and
executed within the browser's virtual machine. In case
of using Swing components the usr of a Java-Plugin to
replzice the browser's virtual machine is an appropriate
solution.

3. System Architecture

In this scction, wc describe our implernentation of a
collaborative System according to the requirements and
des@ consideration described above. As we are
cuiii:erned with Java applcts ir should be mentioned
that we prcsume the availability of a web-server.
Thei:efore it is the part of the system to start with. It
shuiild alsu be iioted that thcrc arc two rypes of scrvers
runiiing on the central machinc. One is the Web-Server
whii:h sends the HTML documents and the applets to
the requesting clients. thc sccond onc is a Java-RMI
Server responsible for multicasting all events sent from
one clienl to all othcr clients.

When the User loads an HTML document that contains
a reference tu a KCAE-Client, thc browscr loads rhe

applet and cxecutes it. When the applet is started the

Fig3: The replicated distribution approach

uscr rcqucsts to join a specified session. If the session
does not exist, a new one is creoted. If n« other
participants are in thc session the unique Person in the
session can intcract with the applet slhe chose from a
list of all available applications and explore it as if slhe
were not be parr of a collaborative environment. This is
donc bccause applicatiuns arc designed and imple-
mented as collaboration-unaware applications. Thus
the KCAE-client sends the received events to the
KCAE-Scrvei, which finds out that there are no other
participants in the 5ession and ignores the evenis.

Java Applications/Applet~

It should be noted that Java applicationslapplets
inrtantiated by our KCAE-Client are not part of KCAE.
'They are furthermore cullaboration-unawarc
appIications developed using the standard Java
technology. As mentioned earlier in this Paper, our
system Supports both AWT- and Swiiig-based
applications. These applications are loaded
dynamically. after a client joined a session. In this
manner alI possible applicationsl appleis a User ~ a i i
invoke can be stored in a configuration file by the
KCAE-Client. Participants can invoke one or more of
these applications in a session if desired.

3.1 KCAE-Server

The KCAE-Server is a Java based application. I1 is
entirely written in Java and can therefore be run

independently from the underlying platforni. The
server works as an event multicaster. Each remote
client in the collaboration session registers itself with a
unique name at the server.

The ¿ommunication hcrween KCAE-clients and
KCAE-server is based on Java RMI and bi-directional.
With rhe help of the RMI-Callback mechanism, ihe
server communicates directly with the registered
clients. The server dispatches the external events
comine from registered clients in the session and
multicasts them. An event received by ihe server is
multicasted to all registered clients except of the client
which hred the event. Information about available
applic,ations and applets. which can be used in a
collaboiative way. are read from ihe configuration file
by the server and sent to parricipants who just joined.
so that the participants can load and run these
applications and applets. The configurlition file, which
is orgsnized as a propertics file. contains the names of
the applicationslapplets and the full nanies of iheir
main class. The eniries should have the following
syntax:

application.[n].name = [nanie]

application.[n].class = [class]

wherr:

n: number of the applicarion in the list

name: a suilable nanie for the application

class: full name of the rnain class

An example is in Figure 4 illustrated:

#Application entry

appli~:ation. 1 .nanie=myTestApplication

application. I .class=kom.develop.apps.MyApp

Apj~let entry

applet. l .name=niyTestApplet

a e t . l . c las s=kom.d~apple t s .Tes tApple t

Fig4: Excerpt of a configuration file

3.1 H.CAE-Client:

The 1<CAE-client is a Java applet which consists of the
tollowing coniponents

Coilabordtion Manager
Componcnt Adapter
Listener Adapter . IEvent Adapter

Collaboralion Manager

The Collaboration Manager is the main component on
ihe client side and provides the User with a graphical
interface offering the following options: Joining the
session, starting applicationslapplets and chatting with
all other participants. The collaboration manager
dispatches external events coming from the
collaboration server and forwards them to the
component adapter.

Components Adapter

The Component Adapter maintains a list of the GUI-
components of all applications and applets. This list is
created with ihe help of the java.awt.Container-class.
which allows to gei references of all applet compo-
nents. With the help OE the main window of an
application, a list of the GUI components in this
application can be created directly. For that reason, the
main window of an application loaded by the
Collaboration Manager is registered by the Component
Adapter. However, Java iipplets do not use stand alone
windows. They are an extension of the class
java.awt.Panel and can thus be easily located in n
window. The window containing the applet can ihen be
registered as main window by the Component Adapter.
As an example syntax of the registriiiion by ihe
Coniponent Adapter is shown in Figure 5. After die
registration the list of all the Swing andlor AWT-
componenrs within the applet is created directly. This
task is done by each client in such an order, ihnt the
components have the same reference by all clients. The
references are used to point the components, which are
the source of the events sent to the Server and afier that
rnulticasted to all clients. With ihe help of references,
the source of the incoming events are located and the
event is reconstructed on each client. as if it occurred

.....

Class C I = Class.forName(className);

I1 If it is an applet, instantiate and locate
11 it in a Frame

myApplel.init();

niywindow = new Frame("Titel9);

I IIOtherwise instantiate i t I
I Register tliis Frame as niain ~ r a n l e 1

I
//oinponents Adapter 7

Fig5: Excerpt of the instantiation meihod

Listener Adapter

The Lisiener Adapter implements AWT listeners,
which listcn to Mouse- and KeyEvent for all AWT-
components cxcept of java.awt.Scrollbar,
java.a.wt.Choice and java.awt.ldist. For these
coniponents the Listener Adapter listens to
AdjustmenrEvent, ItemEvent and ActionEvent. 1f an
intern.11 event occurred, Thc Listeners Adapter catches
and converts it to an external event which is then
forwarded to the Collaboration Managcr. The CoI-
labora~tion Manager sends these events to the
collaborarion server ihat multicasts them.

Event Adapter

Thc Event Adapter converts incoming external evenis
to A'WT events, which can bc processed locally.
External events are cxtensions of the AWT events
denotid as remote (external) to let the Listener Adapter
be ahle to differentiale internal occurred events from
exterrial (incoming) ones.

3.3 Data Flow

Figure 6 shows the overall event circulation of the
systein. Applications are embedded in the client as
shown in the Figure 6. There are two main data paths
in the wholr system. Tfie First path is labelled with the
numt~er 1,2 and 3. This path is used tosend the internal
AWT events io the server, which multicasts ihem to all
other pariicipants. The data tlow woiks as follows:

Fig6: Events circulation

1) Any Evenr occurred i n a Java-application is caught
by the Listener Adapter.

2) The Listener Adapter tests, whether the event is an
external or an internal event. It sends only internal
AWT events, which were not received froin other
clients to the Collaboration Manager.

3) The Collaboration Manager sends incoming events
to the server via a RMI connection.

Via the second data path shown in Figure 6 lahelled
with the numbers 4, 5 . 6, 7 and 8, the external AWT
events sent from the servcr are caught by the
Collaboration Manager and the Component Adapter in
order to reconstruct ihe event locally, These events are
sent to the Java application in the following order:

4) The server sends the reniote events to ihe client

5) The client catches remote events and sends them to
the Component Adapter.

6) The Componenr Adapter extracis thc information
about event sources and sends the informaiions
accomplished with the evenis to the Event
Adapter.

7) The Evcnt Adapter converts these cvents to AWT
events and sends ihem to ihe Coinponent Adapter.

B) The Component Adapter sends the event to the
application which reacts as if the User would
interact with the GUI.

4. Collaborative Use of Apple t s in K C A E

Figure 7 shows the graphical User interface of the
KCAE-clirnt applet with a collaborntion unaware
auulet (ItBean Ethernet Frame) used collaboraiivelv.

Fig7: The graphical User interface of the KCAE-Clieni
with a cullaborarion-unawai-e applet used
collaboraLively

In gensral we can summarize ihe functionaliiy of the
KCAE system from the end-user's poini of view (see
Figure 7) as follows:

User:; go to a specified URL (the weh server
containing the HTML documents and applets to be
shared).

they load an applet (KCAE-Clierrr) which offers the
following properties:

applets list: list of all available applets to he
shared. Choosing an applet will cause it to be
downloaded to run on the local machine.

prirticipants list: contains ihe namcs of participants
ot'a running session.

each interaction with a collaborative applet 1s
iransmitted to all participant via the RMI-srrver.

usrrs can chat with oiher participanis.

User5 may invoke rnore than one collaborative applet
U r a time

5. Related Work

Kuhmünch [1] at the University of Mannheim
developed a Java Remote Control Tool, which allows
to control and synchronize disrrihuted Java applications
and applets The drawback of this approach is that it is
necessary to have access to the original source code of
the applicaiion or applets in order to makr it collabo-
rative That means every applet must initiate a Reniote-
Contr'~1-Client object which is usually donr in the
construclor of the applet. AIso the event handling
withiri thc applet must be modified in order to receive
andl <Br send events from 1 to remote applets.
The A4ullirnedia Coriimunicati«ns Research Laboratory
at the University of Ottawa has developed Java
Enahled Telecollah«ration System (JETS) (hat supports
the development of ~ollahorative applicarions. JETS
(41, Lfi] is an API, which iniplies that an application has
to he rewritten if it shall run in a collaborative way.
Habanero 161 is an approach that supports the
development of collaborative environments. Hahanero
is in its terms a framework that helps developers to
creati: shared applications, either by developing a new
one from scratch or by altering an existing single-user
applicalion which has to he modified t» inlegrate the
new collahorative functionaIity. Instead of using
applets, which can be enihedded in almost every
browscr, the Habanero system uscs so-called
"Happlets" which need a proprietary hrowser to be
dowriloaded and installed on the client siie.
Java Collnborative Environment (JCE) has been
develioped at the National Institute of Standards and
Technology (NIST) coming up with an extended

version of the Java-AWT [81 callrd Collahorative
AWT (C-AWT). In this approach AWT-comp<inents
must be replaced hy ihe corresponding C-AWT
components [I I].
All these approaches propose the use of an API, which
has the cost O E modifying the source-code of an
applicaiion. re-implernenting ii or to design and
implement a new application from scratch in order to
make it collaborative.
Java Applets Made Multiuser (JAMMI [91 is a system
which is similar to our appriiach in ternis of its
ohjective: The collahoration of single-user
applications. The difference hetween both approaches
is the way how the collahoraiion is achieved. In JAMM
[I01 the set of applications that can be shared is
constrained to those that are developed using Swing
usei interface components as pnrt of Java Foundation
Classes which are part of the standaid JDK since
version 1.2. IAMM's set of applications is furtheimore
restricted io those which implement the Java
serializable interface.

6. Conclusion and Future Work

In this paper we descrihed a mechanisrii that enahle us
to use almost all single-user applets and applicaiions in
a collaborative way We used the replicated approach
and keep uack of the components to he able to
reconstruct User events on the remote side. We hence
developed an architecture ihat allows to coIlaborate via
collahorative-unaware applications without modifying
the source code.
We have successfully tested our system on a number of
applets, including educational applets (Figure 7)
implemented wiih JDK I . I , and Swing. A chat
funetionaliiy is supported directly in our environment.
In general, these applets work well with a few minor
difficulties relaied to some limitations desciibed helow.
A part of these restrictions we encountered is that
Frames, Dialogs and FileDialogs created within a
collahorative-made application at run time can not be
used collaboratively, as long as they are not registered
by the Coniponent Adapter explicitly. This leads to the
fact that collaboration is only possible fbr first level
windows. Some of the interesting aspect in
collaborative environment which we did noi consider
yet are session control and floor conrrol. Floor control
means if a User wants io control the appIet, S I he
should he able I» apply for the conrrol. The
collahoration mannger on the server sends the request
to the owner of the session (if available) to get a
permission for handing the control over to the
requesred User. Lusing and gaining a conirol can be
seen as a simple task where gaining ihe control means

the ability to interact with the whole appler, and losing Sysrenis: A Cririque" Procccdings of Office Information

the conirol rs losing the ability 10 inleract with il. A s Systems 1990.

our architecture aliows us to know exactly the [I51 J.Gmdin. "Con~purer.Sizpporred Coopernrive Work:
cornponents in the applels such a iask can be achieved Hisro~nndFocus" . lEEEComputer, Vo1.27. No. 5, 1994
by ena~bling, disabling the coriiponents of the applel if
the tloor control is gained or lost respectively.

References

[I] I. O'Neil: "Joi.aBea,is Progruwinibig frorri rhr
GROUND UP", Osborne, 1998.

[2] Jn~vasoft Websites: hiip://www.juv<i.co,dprodicrdr~,ii.
1999.

131 C. Kuhmünch. T . Fuhrmann, and G. Schäppe: "Java
Teachware - The Javri Rerriore Coritrol Tool niid irr
Applio~riotis" In procceding of ED-blEDlA98. 1998.

[4] S. Shirmohammadi, J . C. Oliveira, and N. D. Georganas,
"Java-Eoied Multi>riedin Collab~,rarro,i: Approoches und
Issrtrs", Proc. lnternational Conference On
Telecammunlcations (ICT 981, Val. I, Porto Carras, Greece,
1998.

[SI S. Shirmohammadi and N. D. Gcorganar, "JETS: a Java-
Eizabli!d Trl~~collaborarion S?sierri". Proc. lEEE Conference
on Multimedia Cumputing and Systems (ICMCS 97). 1997.

[61 NCSA Habanera Home Page:
hiip://wwti.ncsa.uiuc.ediJSDG/SofnvardHub~1nero/ NCSA
Software Development Division. 1996.

171 Java Shared Data Toolkir,
hrrp://n~~i.iu.swi.co~ds~fr~vordjsdr/i~~de. Iirinl, 1999.

[S] PI. Ahdel-Wxhab, J. Favereau, 0. K~rn and P. Kabore
"Aii Inlerrirr Collaboralive E,ivironme,il for Shari~ig Java

Appli<-airons" lEEE Computer Society Workshop on Future
Trends of Distribured Systems (iTDCS'971, Tunis. Tunisia,
1997.

(91 J . ßegole, C. Srmble. C. Shaffer and R. Smirh:
"Trrinspai-enr Shariiig of Java Applers: A Rrplicared
A1111rc'nch". Proceeding of the 1997 Symposium on User
Jnterfxe Software and Technology (UIST'97). ACM Press.
NY. 1997.

[I01 J. ßegole and C. Shaffer,"Flexible Collabororron
Tran.sl>are,icy". Virginia Tech. Department of Computer
Science, Technical Repon TR-98-1 I . 1998.

[l l] H. Abdel-Wahab, B. Kvande, S. Nanjangud, 0. Kim, J.
Favreau, "Uxiiig Java fnr Mulirntedia Collabnrarive
Applicalio,rs" PROMS96. Madrid. Spliin. 1996.

[I21 R. Steinmetz, and K. Nahrstedi: "Mulrimedia
coinl>uting, coniniuiiicarions. a,id applicorions", Prenrice Hall
1995.

(1 31 G. Hamilian : "Th< JovaEuaris API spec~ficurion", Sun
iMicri~systems. 1997.

[14] I.C. Lauwers. T.A. luseph, K.A. Lintz arid A.L.
Rnmi~riow, "Replicared Arcliirecrures for Shawd Wi~idows

